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Abstract—This paper focuses on one of the most prominent 

IPv6 transition technologies named 464XLAT. The paper aims at 

building a testbed of this technology and reviews its security 

analysis. Several virtual machines were used to implement the 

testbed. The design of the testbed is fully disclosed and its 

operation is typically demonstrated by an example DoS (Denial of 

Service) attack scenario which is implemented using the hping3 

command. The testbed is suitable to point out the weak spots of 

the 464XLAT technology and it may also be used for the security 

analysis of further IPv4aaS (IPv4-as-a-Service) technologies like 

DS-Lite, MAP-T, MAP-E, and Lw4o6. 

Keywords—464XLAT; IPv4aaS; IPv6 transition; security; 

STRIDE; translation. 

I. INTRODUCTION 

As the public IPv4 address pool was actually exhausted at 
the beginning of the last decade and the deployment of the 
native IPv6 has been slow, many IPv6 transition technologies 
have been invented to solve the issue. Several research papers 
have proposed different kinds of solutions to the problem 
starting with DNS64 [1] and NAT64 [2], which proved to be 
not fully successful due to IPv4 literals supporting issues and 
several IPv4 only applications [3]. As a result, 464XLAT [4] 
comes to overcome this problem by using its double translation 
mechanism. Despite 464XLAT being so efficient, this 
technology has its own security vulnerabilities. 

In [5], we have analyzed the architecture of the 464XLAT 
technology on a theoretical level using its DFD (Data Flow 
Diagram) according to the STRIDE methodology [6] for its 
detailed security analysis, and we concluded that 464XLAT 
showed a lot of attacks possibilities all over its infrastructure. 
We have found that both sides of 464XLAT (CLAT: customer-
side translator & PLAT: provider-side translator) have 
potential security vulnerabilities. One of the main possible 
attacks is the DoS (Denial of Service) attack aiming to exhaust 
the internal connection tracking table of the PLAT. The 
connection tracking stores tuples of source IP address, 
destination IP address,  and source and destination port 
numbers in a unique hashing table in order to keep track of the 
new incoming packets and support Linux kernel with 
matching, dropping or forwarding any packet[7].  

Some other test-beds have focused on performance analysis 
in terms of CPU, memory utilization, throughput, end-end 
delay etc. E.g. in [8], a test-bed was built using 4 workstations, 
and the conducted experiment was an evaluation for Linux 
operating systems in terms of IPv4-v6 configured Tunnel and 
6to4 Tunnel. In [9], a test-bed was built using OPNET 
simulator to analyze 3 sorts of networks: IPv4 only, IPv6 only 
and 6to4 tunneling approach. In [10], another test-bed was 
presented based on OPNET simulator, it covered the analysis 
of transition mechanism over MPLS (Multi Protocol Label 
Switching). 

Another testbed was developed by Marius Georgescu [11], 
in which the author used his testbed to measure the latency, 
throughput, and packet loss using 464XLAT transition 
technology and other ones such as MAP-E, MAP-T, DS-Lite, 
etc. Moreover, it showed that 464XLAT had better 
performance over others in terms of latency. 

In this paper, we have taken the task to a more practical 
level and we built a working 464XLAT system using Debian 
Linux-based virtual machines to serve as a testbed for the 
security analysis of the 464XLAT IPv6 transition technology in 
a virtual environment. It also has a wide range of usage 
possibilities, because it has the flexibility of having multiple 
separate environments for each IP version, and the versions 
themselves can be altered later on to fit the need. The topology 
is simple and yet it can be very effective for other researchers 
to perform their own experiments. It is important to mention 
that the presented solution can be used for testing a high 
number of vulnerabilities. We demonstrate the usability of the 
testbed on the example of 464XLAT. However, this testbed 
can be used in so many other infrastructures, especially, when 
it comes to IPv4aaS (IPv4-as-a-Service) IPv6 transition 
technologies such as DS-Lite, MAP-T, MAP-E, and Lw4o6 
[12]. 

For simplicity and due to the low applied traffic and less 
sophisticated requirements, virtual machines will be sufficient 
in our case instead of actual Linux-based servers. 

However, we will consider deploying the testbed later on 
(in upcoming research papers) using separate physical Linux-
based machines for each topology element if it will be 
necessary. 



This paper opens the door for a scientific challenge in the 
next upcoming papers, its main focus is the proposed test-bed 
and we have already taken it one step further by extending the 
range of the clients in another ongoing research work. We are 
also planning on using this testbed for testing purposes with 
other transition technologies. 

In Section II, we lay out the structure of our testbed, its 
topology elements, and the operation of 464XLAT and its 
structure. Section III presents the most important 
vulnerabilities of 464XLAT.In section IV, we demonstrate a 
sample attack by 4 clients. Section V is where we show the 
results of our attack and  analyze them. In section VI, we 
explain our future focus regarding this research topic. Finally, 
in section VII, we summarize and conclude the paper. 

II. 464XLAT TESTBED DESIGN AND IMPLEMENTATION 

A) Overall Description 

There was a high dependency on VMware-based machines 
in our testbed design. The reason behind that was due to its 
quick deployment and ease of configuration. The virtual 
machine images that we made quite good use out of them were 
based on a script called debian-vm written by Daniel Bakai 
[13] which is a good option when an engineer is looking for a 
machine with small size and low memory usage. 

This machine has Debian 8.9 distribution installed, and all 
of those machines were run by VMware workstation 12 Player. 
(We are aware that the most current version of Debian is 10, 
but debian-vm supports only version 8.) 

The main core of the 464XLAT infrastructure is composed 
of two translators (CLAT & PLAT). 

• CLAT (client-side translator) algorithmically translates 

1:1 private IPv4 addresses to global IPv6 addresses and 

vice versa [4]. 

• PLAT (provider-side translator) translates N:1 global 

IPv6 addresses with the previously set CLAT prefix to 

public IPv4 addresses and vice versa [4]. PLAT 

implements a stateful NAT64 gateway as described in 

RFC 6146 [2]. 

B) Testbed Topology 

The topology of the 464XLAT testbed is shown in Fig. 1. It 
can be divided into two sides: 

• On the left side, there are four clients (10.0.0.1/24 -- 

10.0.0.4/24) and the CLAT.  

• On the right side, there are the PLAT and the IPv4 

server.  
The presented topology is simple in its structure, which can 

be used for multiple purposes, and it is based on several 
elements: 

1) Clients: we could have used only one client, but in 

this paper, we used 4 of them to demonstrate the 

different behavior of network resources after running 

each one of those four clients. 

2) Stateless NAT46 gateway (CLAT): this is where 

IPv4 packets are translated into IPv6 packets and sent 

over. 

3) Stateful NAT64 gateway (PLAT): this is where IPv6 

packets are translated back into IPv4 packets in a 

stateful way (besides their IP addresses, their source 

port numbers are also translated, when necessary) 

and finally, the packet is sent over. 

4) IPv4 server: the machine where the original IPv4 

packet was sent to and where it is received and 

replied for. 

C) Testbed Implementation 

In our testbed, each virtual machine has 1GB of RAM, 1 
CPU core, and 20 GB of a hard disk.  

We have separated the topology into three different virtual 
networks: VMnet11, VMnet12, and VMnet13. 

• VMnet11: the network between the four clients and 

CLAT eth1. The network is IPv4 only. 

CLAT

eth1  10.0.0.4

IPv4 Server

eth2: 198.51.100.1
eth1: 10.0.0.11

eth1: 2001:db8:2::2

Client 1                       Client 4

VMnet 11

VMnet 12

VMnet 13

eth1: 198.51.100.2

PLAT

eth2: 2001:db8:2::1

eth1  10.0.0.1

-------------------------------

 
Fig. 1.  464XLAT testbed 



• VMnet12: the network between the CLAT eth2and 

PLAT eth1. The network is IPv6 only. 

• VMnet13: the network between PLAT eth2 and IPv4 

server eth1. The network is IPv4 only. 
Table I shows the Linux and VMware settings used for the 

virtual machines. 

Because of its simplicity, the TAYGA [13] user space 
NAT64 implementation was used.  

D) Stateless NAT46 gateway setup 

The core configuration of this gateway is to set a specific 
prefix for the translation mechanism from IPv4 to IPv6 and 
other supporting configurations. 

The “/etc/default/tayga” file was modified as follows: 

RUN="yes" 
CONFIGURE_NAT44="no" 

Moreover,“/etc/tayga.conf” file is very essential to the 
translation process, as the below configurations were added: 

tun-device nat64 
ipv4-addr 10.0.0.9 
ipv6-addr 2001:db8:2::9 
prefix 2001:db8:a::/96 
map 10.0.0.1 2001:db8:c::10.0.0.1 
map 10.0.0.2 2001:db8:c::10.0.0.2 
map 10.0.0.3 2001:db8:c::10.0.0.3 
map 10.0.0.4 2001:db8:c::10.0.0.4 

Finally, a bash script was added to configure special routes 
for the translated packets to be sent back and forth between 
NAT46 & NAT64 gateways and to enable IPv4 and IPv6 
forwarding: 

#!/bin/bash 
ip route add 198.51.100.0/24 dev nat64 
ip route add 2001:db8:c::/96 dev nat64 
ip route add 2001:db8:a::/96 via 2001:db8:2::2 
echo 1 > /proc/sys/net/ipv4/ip_forward 
echo 1 > /proc/sys/net/ipv6/conf/all/forwarding 
ip route del 2001:db8:a::/96 dev nat64 

The last command was used to delete the automatically set 

route by TAYGA (based on TAYGA prefix). 

E) Stateful NAT64 gateway setup 

The same procedure with a similar configuration was 
repeated on NAT64 gateway (PLAT). 

The /etc/default/tayga file with the same configuration: 

RUN="yes" 
CONFIGURE_NAT44="no" 

We did not want TAYGA to configure stateful NAT44, as 
we set it by ourselves (see below).  

The /etc/tayga.conf file with similar configuration also: 

tun-device nat64 
ipv4-addr 198.51.100.9 
ipv6-addr 2001:db8:2::9 
prefix 2001:db8:a::/96 
map 10.0.0.1 2001:db8:c::10.0.0.1 
map 10.0.0.2 2001:db8:c::10.0.0.2 
map 10.0.0.3 2001:db8:c::10.0.0.3 
map 10.0.0.4 2001:db8:c::10.0.0.4 

The bash script has almost similar configuration here: 

#!/bin/bash 
echo 1 > /proc/sys/net/ipv4/ip_forward 
echo 1 > /proc/sys/net/ipv6/conf/all/forwarding 
ip route add 10.0.0.0/24 dev nat64 
ip route add 2001:db8:c::/96 via 2001:db8:2::1 

Moreover, NAT64 has to have a route for all outgoing 
packets (from NAT64 towards NAT46), to dev nat64(the 
translation interface). In this case, there will be no need for the 
below command, because TAYGA will set it by default: 

ip route add 2001:db8:a::/96 dev nat64 

Another layer of filtering (firewall) was added on PLAT 
eth2, NAT44 was configured in order to apply the feature of 
MASQUERADING, which replaces the source IP address of 
every incoming packet with the public IPv4 address of the eth2 
interface (198.51.100.1). 

The feature is enabled by applying Netfilter well-known 
successful firewall as the below command: 

iptables -t nat -A POSTROUTING -o eth2 -j MASQUERADE 

From now on, the outgoing packets from PLAT eth2 to 
IPv4 server will have the source IP address of eth2 
(198.51.100.1). 

Moreover, on each attacking client, the default route for 
every single packet heading towards the IPv4 server on the 
other side of the topology, and of course, the same procedure of 
enabling IP forwarding applied here as well: 

#!/bin/bash 
ip route add 198.51.100.0/24 via 10.0.0.11 
echo 1 > /proc/sys/net/ipv4/ip_forward 
echo 1 > /proc/sys/net/ipv6/conf/all/forwarding 

TABLE I.  LINUX AND VMWARE NETWORK SETTING FOR VIRTUAL MACHINES 

VM name Clients 1-4 CLAT PLAT IPv4 Server 

eth0 Linux setting DHCP DHCP DHCP DHCP 

eth1  Linux setting 
Static IPv4: 10.0.0.1/24 -   

10.0.0.4/24  
Static IPv4: 10.0.0.11/24 Static IPv6: 2001:db8:2::2/64 Static IPv4: 198.51.100.2/24 

eth2  Linux setting N/A Static IPv6: 2001:db8:2::1/64 Static IPv4: 198.51.100.1/24 N/A 

eth0  VMware setting NAT NAT NAT NAT  

eth1  VMware setting VMnet11 VMnet11 VMnet12 VMnet13 

eth2  VMware setting N/A VMnet12 VMnet13 N/A 

 



III. 464XLAT VULNERABILITIES 

Several vulnerabilities of 464XLAT were uncovered in our 
previous paper [5], such as spoofing of NAT64 gateway, DoS, 
FoS, buffer overflow attack, etc. However, we now focus on 
specific ones against the stateful NAT64 operation of the 
PLAT device:  

• Denial of service attack, when the CPU usage is so 
high that it does not allow the PLAT to receive and 
process packets anymore. 

• The exhaustion of the source port number pool of the 
stateful translator. 

• Potential attacks against the connection tracking table 
including its capacity, hashing table size, and applied 
connection timeout. 

IV. SAMPLE ATTACK 

The attack is started from the client-side targeting the IPv4 
server. The focus of the process will be on the PLAT 
performance in terms of CPU usage and source port 
exhaustion. 

Client one (10.0.0.1s) was used for the central control. SSH 
authentications were established between client one and the 
rest of the network elements. The attack was through hping3 
command with specific arguments: 

hping3 -S -p80 -s5000 -k 198.51.100.2 –iu500 

-S: TCP Syn attack. 

-p: destination port number. 

-s: source port number. 

-k: to maintain the same port number and avoid its increment. 

-iu: to control the number of sent packets per second. 

The attack process was as below: 

a. Starting the measurements, then waiting for 5 seconds 

to monitor the performance of the attack. 

b. Starting attack with client 1, then waiting for 5 

seconds. 

c. Starting attack with client 2, then waiting for 5 

seconds. 

d. Starting attack with client 3, then waiting for 5 

seconds. 

e. Starting attack with client 4, then waiting for 5 

seconds. 

f. Ending the measurements, then stopping the four 

attacks. 

After running the script from client1, we monitored the 
performance of PLAT and IPv4 server simultaneously. As 
anticipated, the traffic on the PLAT was increasing after adding 
the first client attack till it reached its maximum traffic, when 
the fourth client was added. 

During the attack, the original destination was the IPv4 
server (198.51.100.2). The packets were translated smoothly as 
planned (i.e. IPv6 packets arrived at PLAT eth1, then got 
translated back to IPv4 packets and finally their source IP was 
replaced with PLAT eth2 IP address (198.51.100.1) due to the 
enabled masquerading feature). Fig.2 shows a snapshot of the 
tshark result on IPv4 server eth1, where packets arriving from 
the PLAT are displayed with their masqueraded source IP 
address. 

It is worth mentioning that we have experienced some 
faulty results as it is obvious with the first row of Fig.2, 
wherethe source IP address 10.0.0.3 is appearing instead of the 
public IP address of the eth2 interface. Iptables seem to work 
perfectly fine except for the masquerading feature of some 
packets. We attribute this issue to the low resources and 
capability of the VM itself (PLAT) and not a bug in iptables. 

V. RESULTS 

Our attack revealed the followings: 

• The double translation mechanism worked well. 

• At the PLAT, the source port number was forced to 

be changed. 

• PLAT CPU utilization has increased after adding 

each client. 

• Some faulty un-masqueraded packets were noticed 

due to Netfilter iptables unanticipated behavior. 

• The number of faulty translations increased after 

increasing the packet rate of the attack. 

 
Fig. 3 illustrates the CPU utilization and un-masqueraded 

(that is, faulty) packets distribution. 

It is fairly obvious that percentage of CPU idle is in 
decreasing pattern. It started with 99%, which means that the 
CPU has amost zero task to execute, then it gradually falls 
down as the first client attack comes in place till it ends up with 
29% where have four clients deployed. This number could be 
also decreased again by increasing the packet rate ratio and 
adding more clients as well. 

As for the faulty (un-masqueraded) packets, it kept 
increasing with 3 clients and it reached around 40 packets per 
second at the end of experiment. 

 

Fig. 2.  IPv4 Server eth1 tshark capture  



VI. PLANS FOR FUTURE RESEARCH 

Our future focus will be on building the following to-attack 
scenarios: 

• Exhausting the pool of PLAT eth2 source ports. 

• Exhausting CPU capacity of the PLAT, thus making 

it unable to receive and process incoming packets.  

• Exahusting PLAT connection tracking table. 

• Finnaly, find methods to mitigate each attacking 

scenario. 

We also have an ongoing research work that takes this test-
bed one step further, by adding more clients and performing 
DoS attack, etc. 

It would require more sophisticated tools and a higher rate 
of flowing packets to the PLAT. We would also consider other 
IPv6 transition technologies such as DS-Lite and put them 
under test using our current testbed (with little possible 
tweaking). 

VII. CONCLUSION 

The proposed testbed proved to be an effective and 
convenient tool for the security analysis of the 464XLAT IPv6 
transition technology and has shown very promising 
performance in terms of simulating an actual journey of 
packets through the double translation mechanism. Therefore, 
the most important takeaway from this testbed is that it could 
be used with other technologies(not just 464XLAT), too. 
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Fig. 3.  PLAT CPU utilization & IP un-masqueraded Packets  
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