
Testbed for the Security Analysis of the 464XLAT

IPv6 Transition Technology in a Virtual Environment

Ameen Al-Azzawi, Gábor Lencse

Department of Networked Systems and Services

Faculty of Electrical Engineering and Informatics

Budapest University of Technology and Economics

Budapest, Hungary

Email: alazzawi@hit.bme.hu, lencse@hit.bme.hu

Abstract—This paper focuses on one of the most prominent

IPv6 transition technologies named 464XLAT. The paper aims at

building a testbed of this technology and reviews its security

analysis. Several virtual machines were used to implement the

testbed. The design of the testbed is fully disclosed and its

operation is typically demonstrated by an example DoS (Denial of

Service) attack scenario which is implemented using the hping3

command. The testbed is suitable to point out the weak spots of

the 464XLAT technology and it may also be used for the security

analysis of further IPv4aaS (IPv4-as-a-Service) technologies like

DS-Lite, MAP-T, MAP-E, and Lw4o6.

Keywords—464XLAT; IPv4aaS; IPv6 transition; security;

STRIDE; translation.

I. INTRODUCTION

As the public IPv4 address pool was actually exhausted at
the beginning of the last decade and the deployment of the
native IPv6 has been slow, many IPv6 transition technologies
have been invented to solve the issue. Several research papers
have proposed different kinds of solutions to the problem
starting with DNS64 [1] and NAT64 [2], which proved to be
not fully successful due to IPv4 literals supporting issues and
several IPv4 only applications [3]. As a result, 464XLAT [4]
comes to overcome this problem by using its double translation
mechanism. Despite 464XLAT being so efficient, this
technology has its own security vulnerabilities.

In [5], we have analyzed the architecture of the 464XLAT
technology on a theoretical level using its DFD (Data Flow
Diagram) according to the STRIDE methodology [6] for its
detailed security analysis, and we concluded that 464XLAT
showed a lot of attacks possibilities all over its infrastructure.
We have found that both sides of 464XLAT (CLAT: customer-
side translator & PLAT: provider-side translator) have
potential security vulnerabilities. One of the main possible
attacks is the DoS (Denial of Service) attack aiming to exhaust
the internal connection tracking table of the PLAT. The
connection tracking stores tuples of source IP address,
destination IP address, and source and destination port
numbers in a unique hashing table in order to keep track of the
new incoming packets and support Linux kernel with
matching, dropping or forwarding any packet[7].

Some other test-beds have focused on performance analysis
in terms of CPU, memory utilization, throughput, end-end
delay etc. E.g. in [8], a test-bed was built using 4 workstations,
and the conducted experiment was an evaluation for Linux
operating systems in terms of IPv4-v6 configured Tunnel and
6to4 Tunnel. In [9], a test-bed was built using OPNET
simulator to analyze 3 sorts of networks: IPv4 only, IPv6 only
and 6to4 tunneling approach. In [10], another test-bed was
presented based on OPNET simulator, it covered the analysis
of transition mechanism over MPLS (Multi Protocol Label
Switching).

Another testbed was developed by Marius Georgescu [11],
in which the author used his testbed to measure the latency,
throughput, and packet loss using 464XLAT transition
technology and other ones such as MAP-E, MAP-T, DS-Lite,
etc. Moreover, it showed that 464XLAT had better
performance over others in terms of latency.

In this paper, we have taken the task to a more practical
level and we built a working 464XLAT system using Debian
Linux-based virtual machines to serve as a testbed for the
security analysis of the 464XLAT IPv6 transition technology in
a virtual environment. It also has a wide range of usage
possibilities, because it has the flexibility of having multiple
separate environments for each IP version, and the versions
themselves can be altered later on to fit the need. The topology
is simple and yet it can be very effective for other researchers
to perform their own experiments. It is important to mention
that the presented solution can be used for testing a high
number of vulnerabilities. We demonstrate the usability of the
testbed on the example of 464XLAT. However, this testbed
can be used in so many other infrastructures, especially, when
it comes to IPv4aaS (IPv4-as-a-Service) IPv6 transition
technologies such as DS-Lite, MAP-T, MAP-E, and Lw4o6
[12].

For simplicity and due to the low applied traffic and less
sophisticated requirements, virtual machines will be sufficient
in our case instead of actual Linux-based servers.

However, we will consider deploying the testbed later on
(in upcoming research papers) using separate physical Linux-
based machines for each topology element if it will be
necessary.

This paper opens the door for a scientific challenge in the
next upcoming papers, its main focus is the proposed test-bed
and we have already taken it one step further by extending the
range of the clients in another ongoing research work. We are
also planning on using this testbed for testing purposes with
other transition technologies.

In Section II, we lay out the structure of our testbed, its
topology elements, and the operation of 464XLAT and its
structure. Section III presents the most important
vulnerabilities of 464XLAT.In section IV, we demonstrate a
sample attack by 4 clients. Section V is where we show the
results of our attack and analyze them. In section VI, we
explain our future focus regarding this research topic. Finally,
in section VII, we summarize and conclude the paper.

II. 464XLAT TESTBED DESIGN AND IMPLEMENTATION

A) Overall Description

There was a high dependency on VMware-based machines
in our testbed design. The reason behind that was due to its
quick deployment and ease of configuration. The virtual
machine images that we made quite good use out of them were
based on a script called debian-vm written by Daniel Bakai
[13] which is a good option when an engineer is looking for a
machine with small size and low memory usage.

This machine has Debian 8.9 distribution installed, and all
of those machines were run by VMware workstation 12 Player.
(We are aware that the most current version of Debian is 10,
but debian-vm supports only version 8.)

The main core of the 464XLAT infrastructure is composed
of two translators (CLAT & PLAT).

• CLAT (client-side translator) algorithmically translates

1:1 private IPv4 addresses to global IPv6 addresses and

vice versa [4].

• PLAT (provider-side translator) translates N:1 global

IPv6 addresses with the previously set CLAT prefix to

public IPv4 addresses and vice versa [4]. PLAT

implements a stateful NAT64 gateway as described in

RFC 6146 [2].

B) Testbed Topology

The topology of the 464XLAT testbed is shown in Fig. 1. It
can be divided into two sides:

• On the left side, there are four clients (10.0.0.1/24 --

10.0.0.4/24) and the CLAT.

• On the right side, there are the PLAT and the IPv4

server.
The presented topology is simple in its structure, which can

be used for multiple purposes, and it is based on several
elements:

1) Clients: we could have used only one client, but in

this paper, we used 4 of them to demonstrate the

different behavior of network resources after running

each one of those four clients.

2) Stateless NAT46 gateway (CLAT): this is where

IPv4 packets are translated into IPv6 packets and sent

over.

3) Stateful NAT64 gateway (PLAT): this is where IPv6

packets are translated back into IPv4 packets in a

stateful way (besides their IP addresses, their source

port numbers are also translated, when necessary)

and finally, the packet is sent over.

4) IPv4 server: the machine where the original IPv4

packet was sent to and where it is received and

replied for.

C) Testbed Implementation

In our testbed, each virtual machine has 1GB of RAM, 1
CPU core, and 20 GB of a hard disk.

We have separated the topology into three different virtual
networks: VMnet11, VMnet12, and VMnet13.

• VMnet11: the network between the four clients and

CLAT eth1. The network is IPv4 only.

CLAT

eth1 10.0.0.4

IPv4 Server

eth2: 198.51.100.1
eth1: 10.0.0.11

eth1: 2001:db8:2::2

Client 1 Client 4

VMnet 11

VMnet 12

VMnet 13

eth1: 198.51.100.2

PLAT

eth2: 2001:db8:2::1

eth1 10.0.0.1

Fig. 1. 464XLAT testbed

• VMnet12: the network between the CLAT eth2and

PLAT eth1. The network is IPv6 only.

• VMnet13: the network between PLAT eth2 and IPv4

server eth1. The network is IPv4 only.
Table I shows the Linux and VMware settings used for the

virtual machines.

Because of its simplicity, the TAYGA [13] user space
NAT64 implementation was used.

D) Stateless NAT46 gateway setup

The core configuration of this gateway is to set a specific
prefix for the translation mechanism from IPv4 to IPv6 and
other supporting configurations.

The “/etc/default/tayga” file was modified as follows:

RUN="yes"
CONFIGURE_NAT44="no"

Moreover,“/etc/tayga.conf” file is very essential to the
translation process, as the below configurations were added:

tun-device nat64
ipv4-addr 10.0.0.9
ipv6-addr 2001:db8:2::9
prefix 2001:db8:a::/96
map 10.0.0.1 2001:db8:c::10.0.0.1
map 10.0.0.2 2001:db8:c::10.0.0.2
map 10.0.0.3 2001:db8:c::10.0.0.3
map 10.0.0.4 2001:db8:c::10.0.0.4

Finally, a bash script was added to configure special routes
for the translated packets to be sent back and forth between
NAT46 & NAT64 gateways and to enable IPv4 and IPv6
forwarding:

#!/bin/bash
ip route add 198.51.100.0/24 dev nat64
ip route add 2001:db8:c::/96 dev nat64
ip route add 2001:db8:a::/96 via 2001:db8:2::2
echo 1 > /proc/sys/net/ipv4/ip_forward
echo 1 > /proc/sys/net/ipv6/conf/all/forwarding
ip route del 2001:db8:a::/96 dev nat64

The last command was used to delete the automatically set

route by TAYGA (based on TAYGA prefix).

E) Stateful NAT64 gateway setup

The same procedure with a similar configuration was
repeated on NAT64 gateway (PLAT).

The /etc/default/tayga file with the same configuration:

RUN="yes"
CONFIGURE_NAT44="no"

We did not want TAYGA to configure stateful NAT44, as
we set it by ourselves (see below).

The /etc/tayga.conf file with similar configuration also:

tun-device nat64
ipv4-addr 198.51.100.9
ipv6-addr 2001:db8:2::9
prefix 2001:db8:a::/96
map 10.0.0.1 2001:db8:c::10.0.0.1
map 10.0.0.2 2001:db8:c::10.0.0.2
map 10.0.0.3 2001:db8:c::10.0.0.3
map 10.0.0.4 2001:db8:c::10.0.0.4

The bash script has almost similar configuration here:

#!/bin/bash
echo 1 > /proc/sys/net/ipv4/ip_forward
echo 1 > /proc/sys/net/ipv6/conf/all/forwarding
ip route add 10.0.0.0/24 dev nat64
ip route add 2001:db8:c::/96 via 2001:db8:2::1

Moreover, NAT64 has to have a route for all outgoing
packets (from NAT64 towards NAT46), to dev nat64(the
translation interface). In this case, there will be no need for the
below command, because TAYGA will set it by default:

ip route add 2001:db8:a::/96 dev nat64

Another layer of filtering (firewall) was added on PLAT
eth2, NAT44 was configured in order to apply the feature of
MASQUERADING, which replaces the source IP address of
every incoming packet with the public IPv4 address of the eth2
interface (198.51.100.1).

The feature is enabled by applying Netfilter well-known
successful firewall as the below command:

iptables -t nat -A POSTROUTING -o eth2 -j MASQUERADE

From now on, the outgoing packets from PLAT eth2 to
IPv4 server will have the source IP address of eth2
(198.51.100.1).

Moreover, on each attacking client, the default route for
every single packet heading towards the IPv4 server on the
other side of the topology, and of course, the same procedure of
enabling IP forwarding applied here as well:

#!/bin/bash
ip route add 198.51.100.0/24 via 10.0.0.11
echo 1 > /proc/sys/net/ipv4/ip_forward
echo 1 > /proc/sys/net/ipv6/conf/all/forwarding

TABLE I. LINUX AND VMWARE NETWORK SETTING FOR VIRTUAL MACHINES

VM name Clients 1-4 CLAT PLAT IPv4 Server

eth0 Linux setting DHCP DHCP DHCP DHCP

eth1 Linux setting
Static IPv4: 10.0.0.1/24 -

10.0.0.4/24
Static IPv4: 10.0.0.11/24 Static IPv6: 2001:db8:2::2/64 Static IPv4: 198.51.100.2/24

eth2 Linux setting N/A Static IPv6: 2001:db8:2::1/64 Static IPv4: 198.51.100.1/24 N/A

eth0 VMware setting NAT NAT NAT NAT

eth1 VMware setting VMnet11 VMnet11 VMnet12 VMnet13

eth2 VMware setting N/A VMnet12 VMnet13 N/A

III. 464XLAT VULNERABILITIES

Several vulnerabilities of 464XLAT were uncovered in our
previous paper [5], such as spoofing of NAT64 gateway, DoS,
FoS, buffer overflow attack, etc. However, we now focus on
specific ones against the stateful NAT64 operation of the
PLAT device:

• Denial of service attack, when the CPU usage is so
high that it does not allow the PLAT to receive and
process packets anymore.

• The exhaustion of the source port number pool of the
stateful translator.

• Potential attacks against the connection tracking table
including its capacity, hashing table size, and applied
connection timeout.

IV. SAMPLE ATTACK

The attack is started from the client-side targeting the IPv4
server. The focus of the process will be on the PLAT
performance in terms of CPU usage and source port
exhaustion.

Client one (10.0.0.1s) was used for the central control. SSH
authentications were established between client one and the
rest of the network elements. The attack was through hping3
command with specific arguments:

hping3 -S -p80 -s5000 -k 198.51.100.2 –iu500

-S: TCP Syn attack.

-p: destination port number.

-s: source port number.

-k: to maintain the same port number and avoid its increment.

-iu: to control the number of sent packets per second.

The attack process was as below:

a. Starting the measurements, then waiting for 5 seconds

to monitor the performance of the attack.

b. Starting attack with client 1, then waiting for 5

seconds.

c. Starting attack with client 2, then waiting for 5

seconds.

d. Starting attack with client 3, then waiting for 5

seconds.

e. Starting attack with client 4, then waiting for 5

seconds.

f. Ending the measurements, then stopping the four

attacks.

After running the script from client1, we monitored the
performance of PLAT and IPv4 server simultaneously. As
anticipated, the traffic on the PLAT was increasing after adding
the first client attack till it reached its maximum traffic, when
the fourth client was added.

During the attack, the original destination was the IPv4
server (198.51.100.2). The packets were translated smoothly as
planned (i.e. IPv6 packets arrived at PLAT eth1, then got
translated back to IPv4 packets and finally their source IP was
replaced with PLAT eth2 IP address (198.51.100.1) due to the
enabled masquerading feature). Fig.2 shows a snapshot of the
tshark result on IPv4 server eth1, where packets arriving from
the PLAT are displayed with their masqueraded source IP
address.

It is worth mentioning that we have experienced some
faulty results as it is obvious with the first row of Fig.2,
wherethe source IP address 10.0.0.3 is appearing instead of the
public IP address of the eth2 interface. Iptables seem to work
perfectly fine except for the masquerading feature of some
packets. We attribute this issue to the low resources and
capability of the VM itself (PLAT) and not a bug in iptables.

V. RESULTS

Our attack revealed the followings:

• The double translation mechanism worked well.

• At the PLAT, the source port number was forced to

be changed.

• PLAT CPU utilization has increased after adding

each client.

• Some faulty un-masqueraded packets were noticed

due to Netfilter iptables unanticipated behavior.

• The number of faulty translations increased after

increasing the packet rate of the attack.

Fig. 3 illustrates the CPU utilization and un-masqueraded

(that is, faulty) packets distribution.

It is fairly obvious that percentage of CPU idle is in
decreasing pattern. It started with 99%, which means that the
CPU has amost zero task to execute, then it gradually falls
down as the first client attack comes in place till it ends up with
29% where have four clients deployed. This number could be
also decreased again by increasing the packet rate ratio and
adding more clients as well.

As for the faulty (un-masqueraded) packets, it kept
increasing with 3 clients and it reached around 40 packets per
second at the end of experiment.

Fig. 2. IPv4 Server eth1 tshark capture

VI. PLANS FOR FUTURE RESEARCH

Our future focus will be on building the following to-attack
scenarios:

• Exhausting the pool of PLAT eth2 source ports.

• Exhausting CPU capacity of the PLAT, thus making

it unable to receive and process incoming packets.

• Exahusting PLAT connection tracking table.

• Finnaly, find methods to mitigate each attacking

scenario.

We also have an ongoing research work that takes this test-
bed one step further, by adding more clients and performing
DoS attack, etc.

It would require more sophisticated tools and a higher rate
of flowing packets to the PLAT. We would also consider other
IPv6 transition technologies such as DS-Lite and put them
under test using our current testbed (with little possible
tweaking).

VII. CONCLUSION

The proposed testbed proved to be an effective and
convenient tool for the security analysis of the 464XLAT IPv6
transition technology and has shown very promising
performance in terms of simulating an actual journey of
packets through the double translation mechanism. Therefore,
the most important takeaway from this testbed is that it could
be used with other technologies(not just 464XLAT), too.

ACKNOWLEDGMENT

The authors thank Ahmed Al-hamadani for reviewing and
commenting the manuscript.

REFERENCES

[1] M. Bagnulo, A Sullivan, P. Matthews and I. Beijnum, “DNS64: DNS

extensions for network address translation from IPv6 clients to IPv4
servers”, IETF RFC 6147, 2011, doi:10.17487/RFC6147.

[2] M. Bagnulo, P. Matthews and I. Beijnum, “Stateful NAT64: Network
address and protocol translation from IPv6 clients to IPv4 servers”, IETF
RFC 6146, 2011, doi:10.17487/RFC6146.

[3] S. Répás, T. Hajas, G. Lencse, “Application compatibility of the NAT64
IPv6 transition technology,” in Proc. 37th International Conference on
Telecommunications and Signal Processing, Berlin, 2014, pp. 49–55,
doi:10.1109/TSP.2015.7296383.

[4] M. Mawatari, M. Kawashima, C. Byrne, “464XLAT: Combination of
stateful and stateless translation, IETF RFC 6877 (2013).

[5] A. Al-Azzawi and G. Lencse, "Towards the identification of the possible
security issues of the 464XLAT IPv6 transition technology," Proc. 2020
43rd International Conference on Telecommunications and Signal
Processing (TSP 2020), Milan, Italy, 2020, pp. 439-444, doi:
10.1109/TSP49548.2020.9163487.

[6] A. Shostack, Threat modeling: Designing for security, 1st Edition,
Wiley, Indiana, 2014.

[7] M. Boye, “Netfilter connection tracking and NAT implementation”, in
Proc. Seminar on Network Protocols in Operating Systems, Aalto
University publication series, 2013, pp. 34-39.
https://wiki.aalto.fi/download/attachments/69901948/netfilter-paper.pdf

[8] S. Narayan, P. Shang, and N. Fan, “Network performance evaluation of
internet protocols ipv4 and ipv6 on operating systems”, in Proc. Sixth
international conference on Wireless and Optical Communications
Networks, WOCN’09, pages 242–246, Piscataway, NJ, USA, 2009.
IEEE Press

[9] S. Sasanus and K. Kaemarungsi. “Differences in bandwidth
requirements of various applications due to ipv6 migration”. in Proc.
The International Conference on Information Network 2012, ICOIN ’12,
pp. 462–467, Washington, DC, USA, 2012. IEEE Computer Society.

[10] P. Grayeli, S. Sarkani, and T. Mazzuchi. Performance analysis of ipv6
transition mechanisms over mpls. International Journal of
Communication Networks and Information Security, vol. 4, no. 2, 2012.

[11] Georgescu, M., Hazeyama, H., Kadobayashi, Y. and Yamaguchi, S.,
“Empirical analysis of IPv6 transition technologies using the IPv6
Network Evaluation Testbed”, in Proc. Internat. Conf. on Testbeds and
Research Infrastructures, 2014, pp. 216-228. Springer.

[12] G. Lencse, J. Palet Martinez, L. Howard, R. Patterson, I. Farrer, “Pros
and cons of IPv6 transition technologies for IPv4aaS”, active Internet
Draft, 2021. [cited 2021-06-24] [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-transition-
comparison

[13] D. Bakai, “Debian-VM”, [Online]. Available:
https://git.sch.bme.hu/bakaid/debian-vm

[14] TAYGA: Simple, no-fuss NAT64 for Linux”
http://www.litech.org/tayga

Fig. 3. PLAT CPU utilization & IP un-masqueraded Packets

0

5

10

15

20

25

30

35

40

45

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

U
n

-m
a

sq
u

ra
d

e
d

 P
a

ck
e

ts

C
P

U
 I

d
le

%

Time (s)

CPU-IDLE Un-masquraded Packets

