
Towards the Efficient Simulation of … See last page for copyright! TSP 2013, Rome, Italy

Abstract—An introduction is given to the topics of the paral-

lel and distributed simulation and of the modeling of

telecommunications systems. Our practical modeling concept

for simulation in heterogeneous execution environment is pre-

sented. Its logical topology is a star shaped network of

homogeneous clusters. The load balancing and the coupling

factor criteria are set up for building models of telecommunica-

tions systems so that the simulation may produce good speed-

up in a heterogeneous distributed execution environment.

A case study is given with the open source OMNeT++ dis-

crete-event simulation system and its parallel CQN (closed

queueing network) sample model executed by 64 CPU cores of

four different types. Our criteria are heavily supported by the

results of our experiments.

Keywords—discrete-event simulation, heterogeneous execu-

tion environment, MPI, OMNeT++, parallel and distributed

simulation, telecommunication systems.

I. INTRODUCTION

There is a rapid development in the technology of the tele-

communication systems (both wired and wireless) but the

global recession makes the service providers (or network

owners) careful in their investments. This phenomenon brings

the performance analysis of telecommunication systems into

the focus of current research. Performance analysis [1] can

give answers to questions, like: Where are the bottlenecks in

my IP network? Can I guarantee certain QoS parameters in the

following six months if the growth of the traffic will follow the

current trends? What will be the traffic conditions if certain

elements of the network will be replaced by given faster ones?

Etc.

Event-driven discrete-event simulation [2] is a widely used

method for the performance analysis of telecommunication

systems. However, the precise simulation of large and complex

networks may require an amount of computing power and

memory that is often available only on a supercomputer. The

usage of multiple computers instead is a natural idea, but the

algorithm of the event-driven discrete-event simulation makes

Manuscript received February 11, 2013. This research was supported

by the TÁMOP-4.2.2/B-10/1-2010-0010 project and by the Széchenyi

István University (15-3202-08).

Gábor Lencse, István Derka and László Muka are with the Depar t-

ment of Telecommunications, Széchenyi István University, 1 Egyetem

tér, Győr, H-9026, Hungary,

(e-mail: {lencse,steve,muka}@sze.hu).

it a difficult problem (see details later). Parallel and distributed

simulation has a large literature and we can make only a short

survey of it focusing on the choice of the most appropriate

method for telecommunication systems.

The clock speed of the CPUs of the computers was rising

quite fast until 2002 when it reached 3GHz (see Intel Pentium

4), but it is rising much slowly since then and the increase of

the computing power of CPUs comes from other sources such

as parallelism. The current proliferation of the multi-core CPUs

makes parallel and distributed simulation even more relevant

research topic.

The global recession influences also the availability of

computing resources for the purpose of simulation. It means

not only that clusters of less expensive computers should be

used instead of a supercomputer, but it may also mean that

even the purchase of a new cluster of workstations with iden-

tical configuration is not possible, rather the already existing

computers should be used, which are possibly differ from

each other in certain parameters or perhaps also in their archi-

tecture.

The aim of this paper is to show how to exploit the compu-

ting power of multiple computers for simulation of telecom-

munication systems even if the computers are of different

types. That is, how to use a heterogeneous execution envi-

ronment for the simulation of telecommunication systems.

The rest of this paper is organized as follows. First, a brief

summary of the synchronization methods of parallel and dis-

tributed simulation is given focusing on what method(s) can

be used in the field of telecommunication systems. Second,

our view of the most general model of the components of tele-

communication systems is introduced. Third, our practical

modeling concept for simulation in a heterogeneous execution

environment is presented. Fourth, our test environment is

described. Fifth, our experiments and results are presented

and discussed. Sixth, the related work of other researchers is

summarized. Finally, our conclusions are given.

II. PARALLEL AND DISTRIBUTED SIMULATION

A. Basic Concepts

1) Event-Driven Discrete-Event Simulation

The event-driven discrete-event simulation uses the so-

called Future Event Set (FES, also called event-list) for storing

the events that are to happen at a given model time. At the

beginning of the simulation, some events are inserted into the

FES. The general step of the simulation removes the ‘first’

Towards the Efficient Simulation of

Telecommunication Systems in Heterogeneous

Distributed Execution Environments
Gábor Lencse, István Derka and László Muka

Towards the Efficient Simulation of … See last page for copyright! TSP 2013, Rome, Italy

event (that is the event with the smallest time stamp) from the

FES. Then it sets the model time (also called virtual time) ac-

cording to the timestamp of the event and ‘plays’ the event.

During this, some new event(s) may be produced and put into

the FES. The algorithm can be formalized as follows:

initialize, insert certain events into the FES;

repeat

 remove the first event from the FES;

 CLOCK := the time of the event removed from

the FES;

 process the event, during this insert some

event(s) into the FES if necessary;

until (FES is empty) or (CLOCK > limit) or (for

other reason, we must stop)

How can this algorithm be parallelized?

2) Possibilities for parallelization

The computing power of multiple processors can be utilized

for the same simulation in a number of ways [3] using:

 replicated trials

 functional decomposition

 time-parallel approach

 space-parallel approach

If the model has the complexity that it does not fit into the

memory of one computer and/or its execution time is unac-

ceptable (e.g. weeks – depending on the situation) then the

space-parallel approach should be used: the model is cut into

segments, and the segments are assigned to processors that

are executing them. This paper deals with this approach only.

3) The hardship of parallelization

Using one centralized FES for all the segments would be a

bottleneck and the parallel simulation would not scale up well.

Hence, the segments must use their own event sets. Thus, the

first event is selected and executed independently in each

segment: the segments (also called logical processes) have

different local virtual times, which may result in causality

errors. To avoid causality errors, the local virtual times of the

segments must be synchronized.

B. Synchronization Methods

There are two well-known synchronization methods for

parallel discrete-event simulation (PDES). They are described

by [4].

1) Conservative Synchronization Method

The causality is ensured by the rule that only safe events

can be processed. An event is safe if it is guaranteed that no

events with a smaller timestamp may arrive from any other

segments. The so-called lookahead is a very important factor

concerning the possible speed-up. If the local virtual time of

segment A is tA, and the lookahead is τ then all the segments

can be sure that no events will arrive from segment A with a

timestamp smaller than tA+τ. The lookahead is the property of

the simulation model. There may be a minimum time interval

between events. Unfortunately, the models of telecommunica-

tion systems often use Poisson distribution for generating the

timestamp of transactions, or exponential distribution for the

length of the service time; they both result in zero lookahead.

However a positive and sometimes even large lookahead may

come from the delay of communications lines. Its value is pro-

portional to the length of the lines and its relative value

increases with the speed of the networks: the faster the net-

works are the more events may happen during the time that is

necessary for a packet to travel for a given distance. This

phenomenon makes the conservative synchronization method

more usable now than it was decades before. This method is

used in our paper.

2) Optimistic Synchronization Method

Any first events from the FES of a segment can be pro-

cessed and the causality errors are detected when an event

arrives to a segment with smaller timestamp than the local vir-

tual time of the segment. This message is called struggler. A

rollback is done: all the state changes happened in the sys-

tem later than the timestamp of the struggler are reverted and

anti-messages are sent for all the messages that were sent out

with greater timestamp than that of the struggler.

There are two problems with this approach. The method

does not scale up well: as the number of segments increases,

the rollbacks cause larger and larger load and there will be no

good speed-up. The other problem is more technical. This is

the implementation of the rollback. It can be done by periodic

state savings, but that may take too much time and may con-

sume too much memory. Dynamic memory allocation may also

cause problems so it should be done with the support of the

simulation kernel.

As the optimistic synchronization method causes extra

work for the writers of both the simulation kernels and the

models it is not popular in practice. This method is not tested

in our paper.

3) Statistical Synchronization Method

The Statistical Synchronization Method [5] is less well-

known. It does not exchange individual messages between the

segments but rather the statistical characteristics of the mes-

sage flow. The method can produce excellent speed-up [6]

but has a limited area of application [7]. However, it may be

successfully used in the performance analysis of telecommu-

nication systems therefore we plan to test it in a later research.

III. GENERAL MODEL OF TELECOMMUNICATION SYSTEMS

Even though the wired and wireless telecommunication

systems can contain many types of elements , for the purpose

of performance analysis, they can be modeled by a graph built

of nodes and lines. In the simplest model, the nodes can be

characterized by the number of packets they can forward in a

second, and the lines can be described by their transmission

speed (e.g. in Mbps) and their transmission delay. More s o-

phisticated models may more or less precisely follow the

different protocols that are used in the network.

The queue is a typical modeling element in discrete-event

simulators. It can represent for example a router. A router

stores the arriving packets in a buffer and forwards them into

the right direction on the bases of the routing decision. The

routing decision may take a fixed amount of time or if the rout-

ing table is ordered in the decreasing probability

(approximated by their frequency in the past) of the routes

then the popular routes are found faster and the less popular

ones are found slower. Using a queue as a model of the router,

service time can be fixed or may follow a certain distribution.

Towards the Efficient Simulation of … See last page for copyright! TSP 2013, Rome, Italy

Telecommunication models typically use exponential distribu-

tion for modeling the service time. A queue can also represent

a transmission line. Here, the service time is determined by the

length of the packets divided by the speed of the line. Thus

the distribution of the service time follows the distribution of

the packet length. In addition to that, the delay of the line

must be modeled too.

IV. DISTRIBUTED MODEL CONSTRUCTION FOR

SIMULATION IN HETEROGENEOUS EXECUTION

ENVIRONMENTS

A. Our Concept of Heterogeneous Execution Environments

Theoretically, many levels of hierarchy and many kinds of

topologies could be used. To be practical, we recommend a

logical topology of two levels only: a star shaped network of

homogeneous clusters. This model is simple enough and can

describe a typical heterogeneous execution environment .

What is logically described as a homogeneous cluster, it can

be physically, for example, a cluster of PCs with identical con-

figuration interconnected by a switch or it may also be a

chassis based computer build up by several main boards, etc.

The main point is that a homogeneous cluster is built up by

identical configuration elements especially concerning CPU

type and speed as well as memory size and speed. The differ-

ent homogeneous clusters are interconnected logically in a

star shaped topology. The physical connection can be a

switch or the topology may be different but our model consid-

ers it to be a star for simplicity.

Notes:

1. The above definition allows a homogeneous cluster to

be built up by a single element only.

2. The elements of the homogeneous clusters can share

the same type of executable code and they provide the

same performance.

B. Constructing models to achieve a good speed-up

1) Load Balancing Criterion

The basic idea is very simple: all the CPUs (or CPU cores)

should get a fair share from the execution of the s imulation. A

fair share is proportional to the computing power of the CPU

concerning the execution of the given simulation model.

(This is very important, because, for example, using different

benchmark programs for the same set of computers one can

get seriously different performance results.) Thus, for the fair

division of a given simulation model among the CPUs, the

CPUs should be benchmarked by the same type of simulation

model that is to be executed by them (but smaller in size, of

course). See more details later at the discussion of our test

simulations.

Note that real life models cannot be arbitrarily cut into seg-

ments. Models usually can be cut along the boundaries of

logical building blocks.

2) Lookahead or Coupling Factor Criterion

As the lookahead of telecommunication systems usually

comes from the delay of transmission lines, the model should

be cut into segments at the long distance lines.

At this point, some important questions come up:

 How many segments should be made?

 Is it worth using all the available computers?

To be able to answer these questions, some earlier research

results should be recalled. The so-called coupling factor can

be calculated from values that can be easily measured in a

sequential simulation or directly in the execution environment

[8]. The order of magnitude of the coupling factor gives a

good hint if there is a chance for a good speed-up [9]. The

available parallelism can be assessed using the following

quantities (description is taken from [9]):

 P performance represents the number of events pro-

cessed per second (ev/sec). P depends on the

performance of the hardware and the amount of com-

putation required for processing an event. P is

independent of the size of the model.

 E event density is the number of events that occur per

simulated second (ev/simsec). E depends on the model

only and not on the hardware and software environ-

ment used to execute the model. E is determined by the

size, the detail level and also the nature of the simulat-

ed system.

 R relative speed measures the simulation time advance-

ment per second (simsec/sec). Note that R = P/E.

 L lookahead is measured in simulated seconds (simsec).

When simulating telecommunication networks and us-

ing link delays as lookahead, L is typically in the

microsimsec–millisimsec range.

 τ latency (sec) is the latency of sending a message from

one segment of the simulation model to another. This

value is usually in the µs -ms range, and is largely de-

termined by the hardware and software on which the

simulation runs.

 λ coupling factor can be calculated as the ratio of LE

and τP:

P

EL
 (1)

The value of λ decreases with the number of segments . If

we use N number of segments then:

N

N
 (2)

Ref. [9] states that if λ is in the order of a couple times 100

or higher then we may expect good speed-up. It may be nearly

linear even for higher number of segments if λN is also at least

in the order of a couple of hundreds.

More details and our measured values will be given later

when discussing the experiments.

V. TEST ENVIRONMENT

A. Available Hardware Base

The following servers, workstations and PCs were available

for our experiments at the Info-communications Laboratory of

the Department of Telecommunications, Széchenyi István

University.

Towards the Efficient Simulation of … See last page for copyright! TSP 2013, Rome, Italy

1) Sun Server SunFire X4150

 Two Quad Core Intel Xeon 2.83GHz CPU

 8GB DDR2 800MHz RAM

 Two near-line SAS 160GB HDD

 Two Intel 82571EB Gigabit Ethernet NIC

 Two Intel 80003ES2LAN Gigabit Ethernet NIC

Altogether it means a homogeneous cluster of 8 nodes.

2) Three LS21 Blades (in IBM BladeCenter E Chassis)

 Two Dual Core Opteron 280 2.4GHz CPU

 4GB DDR2 667MHz RAM

 73GB SCSI Ultra 320 HDD

 Broadcom NetXtreme BCM5704S Gb. Eth. NIC

Altogether it means a homogeneous cluster of 12 nodes.

3) Six Dell Precision 490 Workstations

 Two Intel Xeon 5140 Dual Core 2.33GHz CPU

 4x1GB DDR2 533MHz RAM (quad channel)

 80GB SATA HDD

 Four Intel 82571EB Gigabit Ethernet NIC

 Broadcom NetXtreme BCM5752 Gb. Eth. NIC

Altogether it means a homogeneous cluster of 24 nodes.

4) Ten AMD PCs

 AMD Athlon 64 X2 Dual Core 4200+ 2.2GHz CPU

 2GB DDR2 667 MHz RAM

 Two 320 GB SATA HDD

 nVidia CK804 Gigabit Ethernet NIC

Altogether it means a homogeneous cluster of 20 nodes.

Switches for Interconnection

 3Com Baseline Switch 2948 SFP Plus (3CBLSG48)

 Cisco Intelligent Gigabit Ethernet Switch Module, 4

ports (Part Number 32R1894) in the BladeCenter

B. Software Environment

1) Operating Systems

Linux was used on all the computers.

Sun Server and LS21 Blades: Ubuntu 12.04 LTS x86-64

Dell Precision 490 Workstations and AMD PCs: Debian

Squeeze (x86_64)

2) Cluster Software

OpenMPI 1.6.2 (x86_64)

3) Discrete-event simulation software

The widely used, open source OMNeT++ 4.2.2 discrete-

event simulation environment was chosen [10]. It supports the

conservative synchronization method (the Null Message Al-

gorithm) since 2003 [11].

VI. EXPERIMENTS AND RESULTS

A. The Simulation Model

The Parallel CQN (Closed Queueing Network) sample s imu-

lation model of OMNeT++ was used for our experiments. We

considered this model appropriate because it is built up by

queues, lines and routing decision points, which ones are the

typical elements of the models of telecommunication net-

works. The same model was used in [9]. The below description

of the model is taken from there.

This model consists of M tandem queues where each tan-

dem consists of a switch and k single-server queues with

exponential service times (Fig. 1). The last queues are looped

back to their switches. Each switch randomly chooses the first

queue of one of the tandems as destination, using uniform

distribution. The queues and switches are connected with

links that have nonzero propagation delays. The OMNeT++

model for CQN wraps tandems into compound modules.

To run the model in parallel, the tandems should be as-

signed to different segments (Fig. 2). Lookahead is provided

by delays on the marked links.

As for the parameters of the model, the preset values

shipped with the model were used unless it is stated other-

wise. Configuration B was chosen, the one that promised

good speed-up.

Fig. 1. M=3 Tandem Queues with k=6 Single Server Queues in Each

Tandem Queue

Fig. 2. Partitioning the CQN Model

B. Experimenting on a Homogeneous Cluster

As an introduction, series of experiments were performed

on the Sun server. The main parameters of the CQN model

were set to the same as in [9]: M=24 tandem queues, k=50

queues in each tandem queue, exponential service time of the

queues with expected value of 10 seconds , the delay between

the tandem queues L=100 seconds. A single processor simula-

tion was executed to measure the E and P variables necessary

for the calculation of λ. (OMNeT++ directly displays these

values both in its GUI and command line environment.) The

communication latency between the cores was measured by

the pingpong OpenMPI test program. We got 10-6 seconds

for the value of latency.

The value of λ was calculated as follows:

 33000
sec/ev468192sec10

secsim/ev156secsim100
6

 (3)

Series of experiments were performed executing the CQN

model divided into N segments running each segment on its

own CPU core. The values of N were: 1, 2, 4, and 8. N=1 means

that there was only a single segment. The length of the simu-

lation was set as 106 seconds in model time (simsec) in order

to have a reasonably long execution time. (All the experiments

Towards the Efficient Simulation of … See last page for copyright! TSP 2013, Rome, Italy

were performed 11 times and the average and the standard

deviation of the execution time were calculated. This applies

to all the later series of experiments .) Table I shows the re-

sults. They show an excellent speed-up.

TABLE I

EXECUTION T IME AND SPEED-UP IN THE FUNCTION OF THE NUMBER OF

SEGMENTS WITH L=100S LOOKAHEAD – SUN SERVER ONLY

Number of segments 1 2 4 8

Average execution time

(sec)
332,50 183,18 91,33 48,70

Std. dev. of the execution

time
2,75 4,41 3,85 1,96

Speed-up - 1,82 3,64 6,83

Relative speed-up - 0,91 0,91 0,85

To demonstrate a case with a poor speed-up, the lookahead

was decreased from 100s to 1s (in model time). This change

results in approximately 100 times smaller lambda (but not ex-

actly, because the values of the lookahead influenced also the

event density in the model):

The value of λ was calculated as follows:

 350
sec/ev453739sec10

secsim/ev160secsim1
6

 (4)

This value still anticipates a good speed-up for two seg-

ments, however the situation is different for 8 segments:

 44
8

350

8
8 (5)

The results in Table II show to support the theory present-

ed in [8] and [9]. The simulation produced longer execution

time using 8 cores than using 4 cores.

C. Experimenting with Load Balancing

The simplest inhomogeneous execution environment con-

tains two homogeneous “clusters” – each of which is actually

a single computer (or CPU core). Our test system had one core

from the Sun server and one core from the IBM BladeCenter

interconnected by a 3Com Baseline 2948SFP Plus switch. The

value of τ between the two computers was 25µs . The simula-

tion model was the same as before with L=100s lookahead.

First, the computers (the CPU cores) were benchmarked with

the simulation model (performed as sequential simulation).

Table III shows the results (also for the two other CPU types

which were used later on).

Next, the following series of experiments were performed:

the CQN model was cut into two segments: N and 24-N tan-

dem queues were put into the segment executed by the Blade

and the Sun, respectively, where N took the values form 1 to

23. For the purpose of comparison, the N=0 and N=24 cases

were also executed, that is the simulation was executed se-

quentially by the Sun and the Blade, respectively. Fig. 3

shows the results.

The measurement results show that the partitioning was the

best when 9 and 15 tandem queues were put into the seg-

ments executed by the Blade and the Sun servers,

respectively, but the results for 8 and 16 tandem queues are

also very close. The exactly performance proportional parti-

tioning would result in the assignment of 8.1 and 15.9 tandem

queues. The computed “optimal partitioning” is quite close to

the results of the experiments.

Fig. 3. Execution T ime of the CQN Model in the Function of the Par-

tit ioning: there were N and 24-N tandem queues put into the segment

executed by the Blade and the Sun servers, respectively.

TABLE II

EXECUTION T IME AND SPEED-UP IN THE FUNCTION OF THE NUMBER OF

SEGMENTS WITH L=1S LOOKAHEAD – SUN SERVER ONLY

Number of segments 1 2 4 8

Average execution time

(sec)
352.22 220.16 190.15 242.54

Std. dev. of the execution

time
2.13 1.47 1.34 2.24

Speed-up - 1.60 1.85 1.45

Relative speed-up - 0.80 0.46 0.18

TABLE III

T HE PERFORMANCE OF T HE SUN, IBM, DELL AND AMD COMPUTERS

(EVENTS/SECOND)

Core Type Sun IBM Dell AMD

Average 468 192 238 174 373 787 235 861

Std. dev. 5 581 6 049 4 908 2 726

D. Looking for the Best Available Speed-Up

A large heterogeneous system was set up including 8 Sun

cores, 12 Blade cores, 24 Dell cores and 20 AMD cores that is

altogether 64 cores from four types . Fig. 4 shows the topology

of the system. The number of the tandem queues was in-

creased in the CQN model from 24 to 480 to be able to utilize

all the CPU cores. The value of the lookahead was increased

from 100s to 1000s to ensure a large enough value for λ64.

Before experimenting with the heterogeneous system, the

CQN model was executed by all the possible maximum size

homogeneous clusters in order to have references for the cal-

culation of the speed-up of the heterogeneous system. It

means that the 480 tandems were divided into 8, 12, 24 and 20

partitions and they were executed by the homogeneous Sun,

IBM, Dell and AMD clusters, respectively. The results are

shown in table IV.

Towards the Efficient Simulation of … See last page for copyright! TSP 2013, Rome, Italy

Fig. 4. The Heterogeneous Distributed Execution Environment for

Testing

TABLE IV

T HE EXECUTION T IME OF THE 480 T ANDEM QUEUES BY DIFFERENT

HOMOGENEOUS CLUSTERS

Cluster type Sun IBM Dell AMD

Number of cores 8 12 24 20

Average execution

time
1 170.83 1 241.19 359.96 658.20

Std. dev. of exec. t ime 52.52 20.91 4.82 4.95

For experimenting with the heterogeneous system, the tan-

dem queues were divided into partitions proportionally with

the performance of the cores. As the model was formally

“changed”, the CPU cores could be benchmarked again, but

as the nature of the model remained the same, the performance

values of the CQN model with 24 tandem queues were used.

Note that it must be done in the same way when simulating

real life systems: the model for benchmarking the CPUs must

be much smaller in size than the real model to be executed oth-

erwise the benchmarking would take too much time.

Theoretically, if the number of the CPU core types is denot-

ed by NCT, the number and the performance of CPU cores

available from core type i are denoted by Ni and Pi, respective-

ly then the ni number of tandems to put into a segment

executed by a core from type i should be:

iNCT

j

ii

i
i P

NP

P
n 5-

1

102.364
480

 (6)

However, the number of the tandem queues per segments

must be an integer, thus the division of the tandems could not

be fully precise, some “roundings” were done manually and

there were differences made even between the load of the

cores from the same core type (16 AMD cores had 5 tandem

queues each but 4 AMD cores had 6 tandem queues each).

Table V shows the division of the tandems among the cores.

The results of the execution of the simulation by the 64

cores of the heterogeneous system are shown in Table VI.

They show different but significant speed up compared to any

of the homogeneous clusters as references, thus we can con-

clude that it is worth using the heterogeneous system instead

of any of the homogeneous clusters.

TABLE V

T HE DIVISION OF THE 480 T ANDEM QUEUES AMONG THE CORES

Core

type
Pi Ni ni

no. of

cores

tandems

/core

cumulated

tandems

Sun 468 192 8 11.08 8 11 88

IBM 238 174 12 5.63 12 6 72

Dell 373 787 24 8.84 24 9 216

AMD 235 861 20 5.58 16 5 80

 4 6 24

Number of tandems in the whole system: 480

TABLE VI

T HE EXECUTION T IME OF THE 480 T ANDEM QUEUES BY THE

HETEROGENEOUS CLUSTER – T HE SPEED-UP CALCULATED AGAINST

THE DIFFERENT HOMOGENEOUS CLUSTERS

Execution time (s) Speed-up against

average std. dev. Sun IBM Dell AMD

197.86 9.06 5.92 6.27 1.82 3.33

E. Further Experiments

We have carried out further experiments after the submis-

sion of this paper. The results of those experiments can be

found in [12].

F. Discussion of the Validity of the Results

Our model was built up by queues , the typical elements

used for modeling telecommunication networks. However the

values of the parameters are questionable. In some of our ex-

periments, the lookahead was chosen as 1000 seconds while

the expected value of the service time of the elementary

queues of the tandem queues was 10 seconds. That is the

lookahead between the segments was chosen 100 times more

than the typical service time of a packet. Is it a realistic as-

sumption for a telecommunication network?

Now let us examine it in a short case study. The majority of

the traffic of modern telecommunication networks comes from

computer networks. Let us consider a system that intercon-

nects three computer networks each of which resides in one of

the following capitals: Budapest, Prague and Rome. If Gigabit

Ethernet is used in the computer networks, the service time of

the smallest (64bytes long) packets and the largest (1518bytes

long) packets are 5.12x10
-7

 seconds and 1.2144x10
-5

 seconds,

respectively. Even the shortest distance between Budapest

and Prague is longer than 500km. If optical communication is

used, the delay between these two sites is about 2.5x10
-3

 se-

conds, which is at least two orders of magnitude higher than

the service time of any packet. Therefore, the model of the

three sites can be efficiently executed in parallel by three pro-

cessors as the delays of the long distance lines ensure the

necessary values of the lookahead.

Note that the situation would be different in the case of

lower data speed and/or shorter distances.

Thus the lookahead values used in our model can be realis-

tic in some real life simulations with high enough data speed

and long enough distances.

Towards the Efficient Simulation of … See last page for copyright! TSP 2013, Rome, Italy

VII. RELATED WORK

To find appropriate methods for the performance improve-

ment of the execution of parallel and distributed simulation in

heterogeneous cluster environment, there has been made a lot

of relevant researches. The approaches which are related to

the results introduced by the present paper can be divided

into three groups.

The first group of approaches uses performance prediction

of simulation in order to support planning and improving the

efficiency. The method described in [13] interprets the effi-

ciency improvement task as a scheduling and assignment

problem and tries to solve it by using linear programming ap-

proach. The most important result of this work is the

description of the theoretical limit of the execution improve-

ment. Ref. [14] introduces an event-trace-based performance

prediction tool which can be used for the practical planning of

the simulation execution as a critical path analysis instrument.

The use of methods described in [13] and [14] is strongly lim-

ited by the necessity of the application of special tools since

they are tool based approaches. The method described in [15]

is based on an analytical performance model of the conserva-

tive null message-based synchronization method. It may help

to improve the partitioning of parallel simulation but it is not

really convenient for a practical use.

The second way of approaches concentrates on the dis-

covery of resources in the network that are suitable for the

execution. Then, the results of the discovery process can be

used in planning and scheduling of the execution process. For

example, ref. [16] introduces methods of resource discovery

and categorization for large-scale grid networks.

The third group of related approaches focuses on the pro-

cess of autonomous load balancing in the network. Papers

[17] and [18] introduce this approach well. Paper [17] proposes

a bargaining based self-adaptive auction method for the load

balancing while paper [18] looks at load balancing as the pro-

cess of distributed negotiations among autonomous self-

interested network computing peers. According to these ap-

proaches, there is no need for preliminary knowledge about

the resources of the network, which is an advantage but the

loss of control in the execution process may lead to efficiency

decrease, which is a disadvantage.

VIII. CONCLUSION

A simple and practical modeling concept was proposed for

simulation in heterogeneous execution environments. Its logi-

cal topology is a star shaped network of homogeneous

clusters. The load balancing criterion and the coupling factor

criterion were set up for building models of telecommunication

systems so that the simulation may produce good speed-up in

a heterogeneous distributed execution environment. Both

criteria use the results of preliminary benchmarking the pro-

cessors of the execution environment with a smaller version of

the given simulation model to be executed.

The usability of the criteria was demonstrated on a hetero-

geneous execution environment built up by 64 CPU cores of

four different types. Different test scenarios were conducted:

good or poor speed-up was demonstrated depending on the

size of the lookahead, the load balancing was justified by the

measurement of the execution time of a model in the function

of its partitioning and finally, it was demonstrated that a het-

erogeneous execution environment can overperform all its

building homogeneous parts.

We conclude that it is a promising idea to use a heteroge-

neous execution environment for the simulation of telecom-

munications systems and our criteria may help to achieve a

good speed-up.

REFERENCES

[1] R. Jain, The Art of Computer Systems Performance Analysis:

Techniques for Experimental Design, Measurement, Simulation,

and Modeling. Wiley, New York, NY, 1991.

[2] J. Banks, J. S. Carson, B. L. Nelson, Discrete-Event System Simu-

lation. Prentice Hall, Upper Saddle River, NJ, 1996.

[3] J. Liu, “Parallel Discrete-Event Simulation” in Wiley Encyclopedia

of Operations Research and Management Science , 2010. John

Wiley and Sons.

[4] R. M. Fujimoto, “Parallel Discrete Event Simulation”, Communi-

cations of the ACM, vol. 33, (1990.) no 10, pp. 31-53

[5] Gy. Pongor, “Statistical Synchronization: a Different Approach of

Parallel Discrete Event Simulation”, Proceedings of the 1992 Eu-

ropean Simulation Symposium (ESS’92) (Dresden, Germany.

Nov. 5-8) SCS Europe, pp. 125-129.

[6] G. Lencse, “Efficient Parallel Simulation with the Statistical Syn-

chronization Method”, Proceedings of the Communication

Networks and Distributed Systems Modeling and Simulation

(CNDS'98) (San Diego, CA. Jan. 11-14). SCS International, pp. 3-

8.

[7] G. Lencse, “Applicability Criteria of the Statistical Synchroniza-

tion Method”, Proceedings of the Communication Networks and

Distributed Systems Modeling and Simulation (CNDS'99) , San

Francisco, CA. (1999. Jan. 17-20) SCS International, pp. 159-

164.

[8] A. Varga, Y. A. Sekercioglu and G. K. Egan. “A practical efficien-

cy criterion for the null message algorithm”, Proceedings of the

European Simulation Symposium (ESS 2003) , (Oct. 26-29, 2003,

Delft, The Netherlands) SCS International, pp. 81-92.

[9] G. Lencse and A. Varga, “Performance Prediction of Conservative

Parallel Discrete Event Simulation”, Proceedings of the 2010 In-

dustrial Simulation Conference (ISC'2010) (Budapest, Hungary,

2010. June 7-9.) EUROSIS-ETI, pp. 214-219.

[10] A. Varga and R. Hornig, “An Overview of the OMNeT++ Simula-

tion Environment”, Proceedings of the 1st international

conference on Simulation tools and techniques for communica-

tions, networks and systems & workshops, (Marseille, France,

March 3-7, 2008) pp. 1-10.

[11] A. Varga and A. Y. Sekercioglu, “Parallel Simulation Made Easy

with OMNeT++”, Proceedings of the 15 th European Simulation

Symposium (ESS 2003), (Oct. 26-29, 2003, Delft, The Nether-

lands) SCS International, pp. 493-499.

[12] G. Lencse and I. Derka “Testing the Speed-up of Parallel Discrete

Event Simulation in Heterogeneous Execution Environments”,

unpublished.

[13] G. Kunz, S. Tenbusch, J. Gross, and K. Wehrle, “Predicting

Runtime Performance Bounds of Expanded Parallel Discrete

Event Simulat ions”, In Modeling, Analysis & Simulation of Com-

puter and Telecommunication Systems (MASCOTS), 2011 IEEE

19th International Symposium on. pp. 359-368.

[14] Z. Juhasz, S. Turner, K. Kuntner and M. Gerzson, “A Performance

Analyser and Prediction Tool for Parallel Discrete Event Simula-

t ion”, International Journal of Simulation , vol. 4, no. 1. (May

2003.) pp. 7-22.

Towards the Efficient Simulation of … See last page for copyright! TSP 2013, Rome, Italy

[15] C. H. Li, A. J. Park and E. Schenfeld, “Analytical Performance

Modeling for Null Message-Based Parallel Discrete Event Simula-

tion”, In Modeling, Analysis & Simulation of Computer and

Telecommunication Systems (MASCOTS), 2011 IEEE 19th Inter-

national Symposium on. pp. 349-358.

[16] K. Karaoglanoglou and H. Karatza, “Directing Requests and Ac-

quiring Knowledge in a Large-Scale Grid System”, International

Symposium on Performance Evaluation of Computer and Tele-

communication Systems (SPECTS 2012), (Genoa, Italy, July 8-

11), pp. 609-617.

[17] H. Zhao, and X. Li, “ Efficient grid task-bundle allocation using

bargaining based self-adaptive auction”, In Cluster Computing and

the Grid, 2009. CCGRID'09. 9th IEEE/ACM International Sympo-

sium on. (2009, May). pp. 4-11.

[18] H. Zhao, and X. Li, “ Hypergraph-based task-bundle scheduling

towards efficiency and fairness in heterogeneous distributed sys-

tems”, In Parallel & Distributed Processing (IPDPS), 2010 IEEE

International Symposium on. (Atlanta, Georgia, USA, April 19-

23), pp. 1-12.

This is the author’s version of the paper. For personal use only, not for

redistribution. The definitive version can be found in the Proceedings

of the 36th International Conference on Telecommunications and Sig-

nal Processing (TSP 2013), (Rome, Italy, 2013. July, 2-4.) pp. 304-

310. © IEEE

