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Abstract—An introduction is given to the topics of the paral-

lel and distributed simulation and of the modeling of 

telecommunications systems. Our practical modeling concept 

for simulation in heterogeneous execution environment is pre-

sented. Its logical topology is a star shaped network of 

homogeneous clusters. The load balancing and the coupling 

factor criteria are set up for building models of telecommunica-

tions systems so that the simulation may produce good speed-

up in a heterogeneous distributed execution environment.  

A case study is given with the open source OMNeT++ dis-

crete-event simulation system and its parallel CQN (closed 

queueing network) sample model executed by 64 CPU cores of 

four different types. Our criteria are heavily supported by the 

results of our experiments. 

Keywords—discrete-event simulation, heterogeneous execu-

tion environment, MPI, OMNeT++, parallel and distributed 

simulation, telecommunication systems. 

I. INTRODUCTION 

There is a rapid development in the technology of the tele-

communication systems (both wired and wireless) but the 

global recession makes the service providers (or network 

owners) careful in their investments. This phenomenon brings 

the performance analysis of telecommunication systems into 

the focus of current research. Performance analysis [1] can 

give answers to questions, like: Where are the bottlenecks in 

my IP network? Can I guarantee certain QoS parameters in the 

following six months if the growth of the traffic will follow the 

current trends? What will be the traffic conditions if certain 

elements of the network will be replaced by given faster ones? 

Etc. 

Event-driven discrete-event simulation [2] is a widely used 

method for the performance analysis of telecommunication 

systems. However, the precise simulation of large and complex 

networks may require an amount of computing power and 

memory that is often available only on a supercomputer. The 

usage of multiple computers instead is a natural idea, but the 

algorithm of the event-driven discrete-event simulation makes 
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it a difficult problem (see details later). Parallel and distributed 

simulation has a large literature and we can make only a short 

survey of it focusing on the choice of the most appropriate 

method for telecommunication systems. 

The clock speed of the CPUs of the computers was rising 

quite fast until 2002 when it reached 3GHz (see Intel Pentium 

4), but it is rising much slowly since then and the increase of 

the computing power of CPUs comes from other sources such 

as parallelism. The current proliferation of the multi-core CPUs 

makes parallel and distributed simulation even more relevant 

research topic. 

The global recession influences also the availability of 

computing resources for the purpose of simulation. It means 

not only that clusters of less expensive computers should be 

used instead of a supercomputer, but it may also mean that 

even the purchase of a new cluster of workstations with iden-

tical configuration is not possible, rather the already existing 

computers should be used, which are possibly differ from 

each other in certain parameters or perhaps also in their archi-

tecture. 

The aim of this paper is to show how to exploit the compu-

ting power of multiple computers for simulation of telecom-

munication systems even if the computers are of different 

types. That is, how to use a heterogeneous execution envi-

ronment for the simulation of telecommunication systems. 

The rest of this paper is organized as follows. First, a brief 

summary of the synchronization methods of parallel and dis-

tributed simulation is given focusing on what method(s) can 

be used in the field of telecommunication systems. Second, 

our view of the most general model of the components of tele-

communication systems is introduced. Third, our practical 

modeling concept for simulation in a heterogeneous execution 

environment is presented. Fourth, our test environment is 

described. Fifth, our experiments and results are presented 

and discussed. Sixth, the related work of other researchers is 

summarized. Finally, our conclusions are given. 

II. PARALLEL AND DISTRIBUTED SIMULATION 

A. Basic Concepts 

1) Event-Driven Discrete-Event Simulation  

The event-driven discrete-event simulation uses the so-

called Future Event Set (FES, also called event-list) for storing 

the events that are to happen at a given model time. At the 

beginning of the simulation, some events are inserted into the 

FES. The general step of the simulation removes the ‘first’ 
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event (that is the event with the smallest time stamp) from the 

FES. Then it sets the model time (also called virtual time) ac-

cording to the timestamp of the event and ‘plays’ the event. 

During this, some new event(s) may be produced and put into 

the FES. The algorithm can be formalized as follows: 

initialize, insert certain events into the FES; 

repeat 

   remove the first event from the FES; 

   CLOCK := the time of the event removed from 

the FES; 

   process the event, during this insert some 

event(s) into the FES if necessary; 

until (FES is empty) or (CLOCK > limit) or (for 

other reason, we must stop) 

How can this algorithm be parallelized? 

2) Possibilities for parallelization 

The computing power of multiple processors can be utilized 

for the same simulation in a number of ways  [3] using: 

 replicated trials 

 functional decomposition 

 time-parallel approach  

 space-parallel approach 

If the model has the complexity that it does not fit into the 

memory of one computer and/or its execution time is unac-

ceptable (e.g. weeks – depending on the situation) then the 

space-parallel approach should be used: the model is cut into 

segments, and the segments are assigned to processors that 

are executing them. This paper deals with this approach only. 

3) The hardship of parallelization 

Using one centralized FES for all the segments would be a 

bottleneck and the parallel simulation would not scale up well. 

Hence, the segments must use their own event sets. Thus, the 

first event is selected and executed independently in each 

segment: the segments (also called logical processes) have 

different local virtual times, which may result in causality 

errors. To avoid causality errors, the local virtual times of the 

segments must be synchronized.  

B. Synchronization Methods 

There are two well-known synchronization methods for 

parallel discrete-event simulation (PDES). They are described 

by [4]. 

1) Conservative Synchronization Method  

The causality is ensured by the rule that only safe events 

can be processed. An event is safe if it is guaranteed that no 

events with a smaller timestamp may arrive from any other 

segments. The so-called lookahead is a very important factor 

concerning the possible speed-up. If the local virtual time of 

segment A is tA, and the lookahead is τ then all the segments 

can be sure that no events will arrive from segment A with a 

timestamp smaller than tA+τ. The lookahead is the property of 

the simulation model. There may be a minimum time interval 

between events. Unfortunately, the models of telecommunica-

tion systems often use Poisson distribution for generating the 

timestamp of transactions, or exponential distribution for the 

length of the service time; they both result in zero lookahead. 

However a positive and sometimes even large lookahead may 

come from the delay of communications lines. Its value is pro-

portional to the length of the lines and its relative value 

increases with the speed of the networks: the faster the net-

works are the more events may happen during the time that is 

necessary for a packet to travel for a given distance. This 

phenomenon makes the conservative synchronization method 

more usable now than it was decades before. This method is 

used in our paper. 

2) Optimistic Synchronization Method 

Any first events from the FES of a segment can be pro-

cessed and the causality errors are detected when an event 

arrives to a segment with smaller timestamp than the local vir-

tual time of the segment. This message is called struggler. A 

rollback  is done: all the state changes happened in the sys-

tem later than the timestamp of the struggler are reverted and 

anti-messages are sent for all the messages that were sent out 

with greater timestamp than that of the struggler. 

There are two problems with this approach. The method 

does not scale up well: as the number of segments increases, 

the rollbacks cause larger and larger load and there will be no 

good speed-up. The other problem is more technical. This is 

the implementation of the rollback. It can be done by periodic 

state savings, but that may take too much time and may con-

sume too much memory. Dynamic memory allocation may also 

cause problems so it should be done with the support of the 

simulation kernel. 

As the optimistic synchronization method causes extra 

work for the writers of both the simulation kernels and the 

models it is not popular in practice. This method is not tested 

in our paper. 

3) Statistical Synchronization Method 

The Statistical Synchronization Method [5] is less well-

known. It does not exchange individual messages between the 

segments but rather the statistical characteristics of the mes-

sage flow.  The method can produce excellent speed-up [6] 

but has a limited area of application [7]. However, it may be 

successfully used in the performance analysis of telecommu-

nication systems therefore we plan to test it in a later research. 

III. GENERAL MODEL OF TELECOMMUNICATION SYSTEMS 

Even though the wired and wireless telecommunication 

systems can contain many types of elements , for the purpose 

of performance analysis, they can be modeled by a graph built 

of nodes and lines. In the simplest model, the nodes can be 

characterized by the number of packets they can forward in a 

second, and the lines can be described by their transmission 

speed (e.g. in Mbps) and their transmission delay. More s o-

phisticated models may more or less precisely follow the 

different protocols that are used in the network. 

The queue is a typical modeling element in discrete-event 

simulators. It can represent for example a router. A router 

stores the arriving packets in a buffer and forwards them into 

the right direction on the bases of the routing decision. The 

routing decision may take a fixed amount of time or if the rout-

ing table is ordered in the decreasing probability 

(approximated by their frequency in the past) of the routes 

then the popular routes are found faster and the less popular 

ones are found slower. Using a queue as a model of the router, 

service time can be fixed or may follow a certain distribution. 
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Telecommunication models typically use exponential distribu-

tion for modeling the service time. A queue can also represent 

a transmission line. Here, the service time is determined by the 

length of the packets divided by the speed of the line. Thus 

the distribution of the service time follows the distribution of 

the packet length. In addition to that, the delay of the line 

must be modeled too.  

IV. DISTRIBUTED MODEL CONSTRUCTION FOR 

SIMULATION IN HETEROGENEOUS EXECUTION 

ENVIRONMENTS 

A. Our Concept of Heterogeneous Execution Environments 

Theoretically, many levels of hierarchy and many kinds of 

topologies could be used. To be practical, we recommend a 

logical topology of two levels only: a star shaped network  of 

homogeneous clusters. This model is simple enough and can 

describe a typical heterogeneous execution environment . 

What is logically described as a homogeneous cluster, it can 

be physically, for example, a cluster of PCs with identical con-

figuration interconnected by a switch or it may also be a 

chassis based computer build up by several main boards, etc. 

The main point is that a homogeneous cluster is built up by 

identical configuration elements especially concerning CPU 

type and speed as well as memory size and speed. The differ-

ent homogeneous clusters are interconnected logically in a 

star shaped topology. The physical connection can be a 

switch or the topology may be different but our model consid-

ers it to be a star for simplicity. 

Notes: 

1. The above definition allows a homogeneous cluster to 

be built up by a single element only. 

2. The elements of the homogeneous clusters can share 

the same type of executable code and they provide the 

same performance. 

B. Constructing models to achieve a good speed-up 

1) Load Balancing Criterion 

The basic idea is very simple: all the CPUs (or CPU cores) 

should get a fair share from the execution of the s imulation. A 

fair share is proportional to the computing power of the CPU 

concerning the execution of the given simulation model. 

(This is very important, because, for example, using different 

benchmark programs for the same set of computers one can 

get seriously different performance results.) Thus, for the fair 

division of a given simulation model among the CPUs, the 

CPUs should be benchmarked by the same type of simulation 

model that is to be executed by them (but smaller in size, of 

course). See more details later at the discussion of our test 

simulations. 

Note that real life models cannot be arbitrarily cut into seg-

ments. Models usually can be cut along the boundaries of 

logical building blocks. 

2) Lookahead or Coupling Factor Criterion 

As the lookahead of telecommunication systems usually 

comes from the delay of transmission lines, the model should 

be cut into segments at the long distance lines. 

At this point, some important questions come up: 

 How many segments should be made? 

 Is it worth using all the available computers? 

To be able to answer these questions, some earlier research 

results should be recalled. The so-called coupling factor can 

be calculated from values that can be easily measured in a 

sequential simulation or directly in the execution environment 

[8]. The order of magnitude of the coupling factor gives a 

good hint if there is a chance for a good speed-up [9]. The 

available parallelism can be assessed using the following 

quantities (description is taken from [9]): 

 P performance represents the number of events pro-

cessed per second (ev/sec). P depends on the 

performance of the hardware and the amount of com-

putation required for processing an event. P is 

independent of the size of the model. 

 E event density is the number of events that occur per 

simulated second (ev/simsec). E depends on the model 

only and not on the hardware and software environ-

ment used to execute the model. E is determined by the 

size, the detail level and also the nature of the simulat-

ed system. 

 R relative speed measures the simulation time advance-

ment per second (simsec/sec). Note that R = P/E.  

 L lookahead is measured in simulated seconds (simsec). 

When simulating telecommunication networks and us-

ing link delays as lookahead, L is typically in the 

microsimsec–millisimsec range. 

 τ latency (sec) is the latency of sending a message from 

one segment of the simulation model to another. This 

value is usually in the µs -ms range, and is largely de-

termined by the hardware and software on which the 

simulation runs. 

 λ coupling factor can be calculated as the ratio of LE 

and τP:  

 
P

EL
 (1) 

The value of λ decreases with the number of segments . If 

we use N number of segments then: 

 
N

N
 (2) 

Ref. [9] states that if λ is in the order of a couple times 100 

or higher then we may expect good speed-up. It may be nearly 

linear even for higher number of segments  if λN is also at least 

in the order of a couple of hundreds. 

More details and our measured values will be given later 

when discussing the experiments. 

V. TEST ENVIRONMENT  

A. Available Hardware Base 

The following servers, workstations and PCs were available 

for our experiments at the Info-communications Laboratory of 

the Department of Telecommunications, Széchenyi István 

University.  
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1) Sun Server SunFire X4150 

 Two Quad Core Intel Xeon 2.83GHz CPU 

 8GB DDR2 800MHz RAM 

 Two near-line SAS 160GB HDD 

 Two Intel 82571EB Gigabit Ethernet NIC  

 Two Intel 80003ES2LAN Gigabit Ethernet NIC  

Altogether it means a homogeneous cluster of 8 nodes. 

2) Three LS21 Blades (in IBM BladeCenter E Chassis) 

 Two Dual Core Opteron 280 2.4GHz CPU 

 4GB DDR2 667MHz RAM 

 73GB SCSI Ultra 320 HDD 

 Broadcom NetXtreme BCM5704S Gb. Eth. NIC  

Altogether it means a homogeneous cluster of 12 nodes. 

3) Six Dell Precision 490 Workstations 

 Two Intel Xeon 5140 Dual Core 2.33GHz CPU 

 4x1GB DDR2 533MHz RAM (quad channel) 

 80GB SATA HDD 

 Four Intel 82571EB Gigabit Ethernet NIC  

 Broadcom NetXtreme BCM5752 Gb. Eth. NIC  

Altogether it means a homogeneous cluster of 24 nodes. 

4) Ten AMD PCs 

 AMD Athlon 64 X2 Dual Core 4200+ 2.2GHz CPU  

 2GB DDR2 667 MHz RAM 

 Two 320 GB SATA HDD 

 nVidia CK804 Gigabit Ethernet NIC  

Altogether it means a homogeneous cluster of 20 nodes. 

Switches for Interconnection 

 3Com Baseline Switch 2948 SFP Plus (3CBLSG48) 

 Cisco Intelligent Gigabit Ethernet Switch Module, 4 

ports (Part Number 32R1894) in the BladeCenter 

B. Software Environment 

1) Operating Systems 

Linux was used on all the computers. 

Sun Server and LS21 Blades: Ubuntu 12.04 LTS x86-64 

Dell Precision 490 Workstations and AMD PCs: Debian 

Squeeze (x86_64) 

2) Cluster Software 

OpenMPI 1.6.2 (x86_64) 

3) Discrete-event simulation software 

The widely used, open source OMNeT++ 4.2.2 discrete-

event simulation environment was chosen [10]. It supports the 

conservative synchronization method (the Null Message Al-

gorithm) since 2003 [11]. 

VI. EXPERIMENTS AND RESULTS 

A. The Simulation Model 

The Parallel CQN (Closed Queueing Network) sample s imu-

lation model of OMNeT++ was used for our experiments. We 

considered this model appropriate because it is built up by 

queues, lines and routing decision points, which ones are the 

typical elements of the models of telecommunication net-

works. The same model was used in [9]. The below description 

of the model is taken from there. 

This model consists of M tandem queues where each tan-

dem consists of a switch and k  single-server queues with 

exponential service times (Fig. 1). The last queues are looped 

back to their switches. Each switch randomly chooses the first 

queue of one of the tandems as destination, using uniform 

distribution. The queues and switches are connected with 

links that have nonzero propagation delays. The OMNeT++ 

model for CQN wraps tandems into compound modules. 

To run the model in parallel, the tandems should be as-

signed to different segments (Fig. 2). Lookahead is provided 

by delays on the marked links. 

As for the parameters of the model, the preset values 

shipped with the model were used unless it is stated other-

wise. Configuration B was chosen, the one that promised 

good speed-up.  

 

Fig. 1.  M=3 Tandem Queues with k=6 Single Server Queues in Each 

Tandem Queue 

 

Fig. 2.  Partitioning the CQN Model 

B. Experimenting on a Homogeneous Cluster 

As an introduction, series of experiments were performed 

on the Sun server. The main parameters of the CQN model 

were set to the same as in [9]: M=24 tandem queues, k=50 

queues in each tandem queue, exponential service time of the 

queues with expected value of 10 seconds , the delay between 

the tandem queues L=100 seconds. A single processor simula-

tion was executed to measure the E and P variables necessary 

for the calculation of λ. (OMNeT++ directly displays these 

values both in its GUI and command line environment.) The 

communication latency between the cores was measured by 

the pingpong OpenMPI test program. We got 10-6 seconds 

for the value of latency. 

The value of λ was calculated as follows: 

 33000
sec/ev468192sec10

secsim/ev156secsim100
6

 (3) 

Series of experiments were performed executing the CQN 

model divided into N segments running each segment on its 

own CPU core. The values of N were: 1, 2, 4, and 8. N=1 means 

that there was only a single segment. The length of the simu-

lation was set as 106 seconds in model time (simsec) in order 

to have a reasonably long execution time. (All the experiments 
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were performed 11 times and the average and the standard 

deviation of the execution time were calculated. This applies 

to all the later series of experiments .) Table I shows the re-

sults. They show an excellent speed-up. 

 

TABLE I 

EXECUTION T IME AND SPEED-UP IN THE FUNCTION OF THE NUMBER OF 

SEGMENTS WITH L=100S LOOKAHEAD – SUN SERVER ONLY 

Number of segments 1 2 4 8 

Average execution time 

(sec) 
332,50 183,18 91,33 48,70 

Std. dev. of the execution 

time  
2,75 4,41 3,85 1,96 

Speed-up - 1,82 3,64 6,83 

Relative speed-up - 0,91 0,91 0,85 

 

To demonstrate a case with a poor speed-up, the lookahead 

was decreased from 100s to 1s (in model time). This change 

results in approximately 100 times smaller lambda (but not ex-

actly, because the values of the lookahead influenced also the 

event density in the model): 

The value of λ was calculated as follows: 

 350
sec/ev453739sec10

secsim/ev160secsim1
6

 (4) 

This value still anticipates a good speed-up for two seg-

ments, however the situation is different for 8 segments: 

 44
8

350

8
8  (5) 

The results in Table II show to support the theory present-

ed in [8] and [9]. The simulation produced longer execution 

time using 8 cores than using 4 cores. 

C. Experimenting with Load Balancing 

The simplest inhomogeneous execution environment con-

tains two homogeneous “clusters” – each of which is actually 

a single computer (or CPU core). Our test system had one core 

from the Sun server and one core from the IBM BladeCenter 

interconnected by a 3Com Baseline 2948SFP Plus switch. The 

value of τ between the two computers was 25µs . The simula-

tion model was the same as before with L=100s lookahead. 

First, the computers (the CPU cores) were benchmarked with 

the simulation model (performed as sequential simulation). 

Table III shows the results  (also for the two other CPU types  

which were used later on). 

Next, the following series of experiments were performed: 

the CQN model was cut into two segments: N and 24-N tan-

dem queues were put into the segment executed by the Blade 

and the Sun, respectively, where N took the values form 1 to 

23. For the purpose of comparison, the N=0 and N=24 cases 

were also executed, that is the simulation was executed se-

quentially by the Sun and the Blade, respectively. Fig. 3 

shows the results.  

The measurement results show that the partitioning was the 

best when 9 and 15 tandem queues were put into the seg-

ments executed by the Blade and the Sun servers, 

respectively, but the results for 8 and 16 tandem queues are 

also very close. The exactly performance proportional parti-

tioning would result in the assignment of 8.1 and 15.9 tandem 

queues. The computed “optimal partitioning” is quite close to 

the results of the experiments. 

 

Fig. 3.  Execution T ime of the CQN Model in the Function of the Par-

tit ioning: there were N and 24-N tandem queues put into the segment 

executed by the Blade and the Sun servers, respectively.  

TABLE II 

EXECUTION T IME AND SPEED-UP IN THE FUNCTION OF THE NUMBER OF 

SEGMENTS WITH L=1S LOOKAHEAD – SUN SERVER ONLY 

Number of segments 1 2 4 8 

Average execution time 

(sec) 
352.22 220.16 190.15 242.54 

Std. dev. of the execution 

time  
2.13 1.47 1.34 2.24 

Speed-up - 1.60 1.85 1.45 

Relative speed-up - 0.80 0.46 0.18 

 

TABLE III 

T HE PERFORMANCE OF T HE SUN, IBM, DELL AND AMD COMPUTERS 

(EVENTS/SECOND) 

Core Type Sun IBM Dell AMD 

Average 468 192 238 174 373 787 235 861 

Std. dev. 5 581 6 049 4 908 2 726 

 

D. Looking for the Best Available Speed-Up 

A large heterogeneous system was set up including 8 Sun 

cores, 12 Blade cores, 24 Dell cores and 20 AMD cores that is 

altogether 64 cores from four types . Fig. 4 shows the topology 

of the system. The number of the tandem queues was in-

creased in the CQN model from 24 to 480 to be able to utilize 

all the CPU cores. The value of the lookahead was increased 

from 100s to 1000s to ensure a large enough value for λ64. 

Before experimenting with the heterogeneous system, the 

CQN model was executed by all the possible maximum size 

homogeneous clusters in order to have references for the cal-

culation of the speed-up of the heterogeneous system. It 

means that the 480 tandems were divided into 8, 12, 24 and 20 

partitions and they were executed by the homogeneous Sun, 

IBM, Dell and AMD clusters, respectively. The results are 

shown in table IV. 
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Fig. 4.  The Heterogeneous Distributed Execution Environment for 

Testing 

TABLE IV 

T HE EXECUTION T IME OF THE 480 T ANDEM QUEUES BY DIFFERENT 

HOMOGENEOUS CLUSTERS 

Cluster type Sun IBM Dell AMD 

Number of cores   8 12 24 20 

Average execution 

time 
1 170.83 1 241.19 359.96 658.20 

Std. dev. of exec. t ime 52.52 20.91 4.82 4.95 
 

For experimenting with the heterogeneous system, the tan-

dem queues were divided into partitions proportionally with 

the performance of the cores. As the model was formally 

“changed”, the CPU cores could be benchmarked again, but 

as the nature of the model remained the same, the performance 

values of the CQN model with 24 tandem queues were used. 

Note that it must be done in the same way when simulating 

real life systems: the model for benchmarking the CPUs must 

be much smaller in size than the real model to be executed oth-

erwise the benchmarking would take too much time. 

Theoretically, if the number of the CPU core types is denot-

ed by NCT, the number and the performance of CPU cores 

available from core type i are denoted by Ni and Pi, respective-

ly then the ni number of tandems to put into a segment 

executed by a core from type i should be: 

 
iNCT

j

ii

i
i P

NP

P
n 5-

1

102.364
480

 (6) 

However, the number of the tandem queues per segments 

must be an integer, thus the division of the tandems could not 

be fully precise, some “roundings” were done manually and 

there were differences made even between the load of the 

cores from the same core type (16 AMD cores had 5 tandem 

queues each but 4 AMD cores had 6 tandem queues each). 

Table V shows the division of the tandems among the cores.  

The results of the execution of the simulation by the 64 

cores of the heterogeneous system are shown in Table VI. 

They show different but significant speed up compared to any 

of the homogeneous clusters as references, thus we can con-

clude that it is worth using the heterogeneous system instead 

of any of the homogeneous clusters. 

TABLE V 

T HE DIVISION OF THE 480 T ANDEM QUEUES AMONG THE CORES 

Core 

type 
Pi Ni ni 

no. of 

cores 

tandems 

/core 

cumulated 

tandems 

Sun 468 192   8 11.08   8 11   88 

IBM 238 174 12   5.63 12 6   72 

Dell 373 787 24   8.84 24 9 216 

AMD 235 861 20   5.58 16 5   80 

      4 6   24 

Number of tandems in the whole system: 480 

 

TABLE VI 

T HE EXECUTION T IME OF THE 480 T ANDEM QUEUES BY THE 

HETEROGENEOUS CLUSTER – T HE SPEED-UP CALCULATED AGAINST 

THE DIFFERENT HOMOGENEOUS CLUSTERS 

Execution time (s) Speed-up against  

average std. dev. Sun IBM Dell AMD 

197.86 9.06 5.92 6.27 1.82 3.33 

 

E. Further Experiments 

We have carried out further experiments after the submis-

sion of this paper. The results of those experiments can be 

found in [12]. 

 

F. Discussion of the Validity of the Results 

Our model was built up by queues , the typical elements 

used for modeling telecommunication networks. However the 

values of the parameters are questionable. In some of our ex-

periments, the lookahead was chosen as 1000 seconds while 

the expected value of the service time of the elementary 

queues of the tandem queues was 10 seconds. That is the 

lookahead between the segments was chosen 100 times more 

than the typical service time of a packet. Is it a realistic as-

sumption for a telecommunication network? 

Now let us examine it in a short case study. The majority of 

the traffic of modern telecommunication networks comes from 

computer networks. Let us consider a system that intercon-

nects three computer networks each of which resides in one of 

the following capitals: Budapest, Prague and Rome. If Gigabit 

Ethernet is used in the computer networks, the service time of 

the smallest (64bytes long) packets and the largest (1518bytes 

long) packets are 5.12x10
-7

 seconds and 1.2144x10
-5

 seconds, 

respectively. Even the shortest distance between Budapest 

and Prague is longer than 500km. If optical communication is 

used, the delay between these two sites is about 2.5x10
-3

 se-

conds, which is at least two orders of magnitude higher than 

the service time of any packet. Therefore, the model of the 

three sites can be efficiently executed in parallel by three pro-

cessors as the delays of the long distance lines ensure the 

necessary values of the lookahead. 

Note that the situation would be different in the case of 

lower data speed and/or shorter distances. 

Thus the lookahead values used in our model can be realis-

tic in some real life simulations with high enough data speed 

and long enough distances. 
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VII. RELATED WORK 

To find appropriate methods for the performance improve-

ment of the execution of parallel and distributed simulation in 

heterogeneous cluster environment, there has been made a lot 

of relevant researches. The approaches which are related to 

the results introduced by the present paper can be divided 

into three groups. 

The first group of approaches  uses performance prediction 

of simulation in order to support planning and improving the 

efficiency. The method described in [13] interprets the effi-

ciency improvement task as a scheduling and assignment 

problem and tries to solve it by using linear programming ap-

proach. The most important result of this work is the 

description of the theoretical limit of the execution improve-

ment. Ref. [14] introduces an event-trace-based performance 

prediction tool which can be used for the practical planning of 

the simulation execution as a critical path analysis instrument. 

The use of methods described in [13] and [14] is strongly lim-

ited by the necessity of the application of special tools since 

they are tool based approaches. The method described in [15] 

is based on an analytical performance model of the conserva-

tive null message-based synchronization method. It may help 

to improve the partitioning of parallel simulation but it is not 

really convenient for a practical use. 

The second way of approaches concentrates on the dis-

covery of resources in the network that are suitable for the 

execution. Then, the results of the discovery process can be 

used in planning and scheduling of the execution process. For 

example, ref. [16] introduces methods of resource discovery 

and categorization for large-scale grid networks. 

The third group of related approaches focuses on the pro-

cess of autonomous load balancing in the network. Papers 

[17] and [18] introduce this approach well. Paper [17] proposes 

a bargaining based self-adaptive auction method for the load 

balancing while paper [18] looks at load balancing as the pro-

cess of distributed negotiations among autonomous self-

interested network computing peers. According to these ap-

proaches, there is no need for preliminary knowledge about 

the resources of the network, which is an advantage but the 

loss of control in the execution process may lead to efficiency 

decrease, which is a disadvantage. 

VIII. CONCLUSION 

A simple and practical modeling concept was proposed for 

simulation in heterogeneous execution environments. Its logi-

cal topology is a star shaped network of homogeneous 

clusters. The load balancing criterion and the coupling factor 

criterion were set up for building models of telecommunication 

systems so that the simulation may produce good speed-up in 

a heterogeneous distributed execution environment. Both 

criteria use the results of preliminary benchmarking the pro-

cessors of the execution environment with a smaller version of 

the given simulation model to be executed. 

The usability of the criteria was demonstrated on a hetero-

geneous execution environment built up by 64 CPU cores of 

four different types. Different test scenarios were conducted: 

good or poor speed-up was demonstrated depending on the 

size of the lookahead, the load balancing was justified by the 

measurement of the execution time of a model in the function 

of its partitioning and finally, it was demonstrated that a het-

erogeneous execution environment can overperform all its 

building homogeneous parts. 

We conclude that it is a promising idea to use a heteroge-

neous execution environment for the simulation of telecom-

munications systems and our criteria may help to achieve a 

good speed-up. 
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