
Performance Analysis and Comparison … See last page for copyright! TSP 2013, Rome, Italy

Performance Analysis and Comparison of the

TAYGA and of the PF NAT64 Implementations
Gábor Lencse and Sándor Répás

Abstract—The transition mechanisms for the first phase of IPv6

deployment are surveyed and the most important NAT64 solu-
tions are selected. The test environment and the testing method

are described. As for the selected NAT64 implementations, the

performance of the TAYGA running under Linux and of the

Packet Filter (PF) of OpenBSD was measured and compared.

The stability of the tested NAT64 solutions was analyzed under
serious overload conditions to test if they may be used in pro-

duction environments with strong response time requirements.

Keywords—IPv6 deployment, IPv6 transition solutions, NAT64,

performance analysis, PF, TAYGA.→

I. INTRODUCTION

The performance and stability of the different NAT64 [1]

implementations will be an important topic for network opera-

tors in the following years because on the one hand the global

IPv4 Address Pool is being depleted
1
 and on the other hand

the vast majority of the Internet still uses IPv4 only. Thus

from the many issues of the co-existence of IPv4 and IPv6,

the communication of an IPv6 only client with an IPv4 only

server is the first practical task to solve in the upcoming phase

of the IPv6 deployment because internet service providers

(ISPs) can still supply the relatively small number of new

servers with IPv4 addresses from their own pool but the huge

number of new clients can get IPv6 addresses only. DNS64

[2] and NAT64 are the best available techniques that make it

possible for an IPv6 only client to communicate with an IPv4

only server. (A brief description of their operation will be

provided later.)

Different free NAT64 implementations were considered

and two of them were selected for testing. The aim of our

research was to compare the performance of the selected im-

plementations running on different free operating systems and

to analyze their behavior under heavy load conditions.
Note that the performance analysis and comparison of

some selected DNS64 implementations under Linux, Open-

→ Manuscript received February 11, 2013. This research was supported by

the TÁMOP-4.2.2.C-11/1/KONV-2012-0012: “Smarter Transport” – IT for

co-operative transport system – The Project is supported by the Hungarian
Government and co-financed by the European Social Fund. This publication
was supported by the TÁMOP-4.2.2/B-10/1-2010-0010 project and by the
Széchenyi István University.

Gábor Lencse is with the Department of Telecommunications, Széc-
henyi István University, 1 Egyetem tér, Győr, H-9026, Hungary (phone:
+36-30-409-56-60, fax: +36-30-96-613-636, e-mail: lencse@sze.hu).

Sándor Répás is with HunNet-Média Ltd. 18-22. Victor Hugo, Buda-

pest, H-1132, Hungary (e-mail: RSandor@AHOL.co.hu)

1
 IANA delegated the last five “/8” IPv4 address blocks to the five Regional

Internet Registries in 2011 [3], of which APNIC has already depleted its
IPv4 address pool in 2011 and RIPE NCC did so during the writing of this
paper on September 14, 2012 [4]. It means that RIPE NCC also uses a more
strict allocation policy for its very last /8 block.

BSD and FreeBSD was also a part of our research and our
results were presented in [5].

The remainder of this paper is organized as follows: first,
some possible techniques are mentioned for the communica-

tion of an IPv6 only client with an IPv4 only server, then the

operation of the DNS64+NAT64 solution is introduced and a
short survey of the results of the most current publications is

given, second, the selection of the NAT64 implementations is
discussed, third, our test environment is described, fourth, the

performance measurement method of the NAT64 implemen-
tations is detailed, fifth, the NAT64 results are presented and

discussed, and finally, our conclusions are given.

The volume of the IPv6 traffic of the Internet is low in
many countries of the western world now and it will probably

grow slowly for some years, but its volume may exp lode later
on and the networks should be ready to cope with it. Thus our

results are expected to give valuable information to many
network administrators when selecting the appropriate IPv6

transition solution for their networks.

II. IPV6 TRANSITION MECHANISMS FOR THE FIRST PHASE

OF IPV6 DEPLOYMENT

A. The Most Important Solutions

The authors conceive that the deployment of IPv6 will

take place by a long co-existence of the two vers ions of the

Internet Protocol and in the first phase of the IPv6 transition,

the main issue will be the communication of an IPv6 only

client with an IPv4 only server. Several mechanisms can be

used for this task, of which the most notable ones are:

1. NAT-PT/NAPT-PT [6] started its life as a proposed

standard in 2000 but due to several issues it was put

to historic status in 2007 [7].

2. The use of an Application Level Gateway [8] is an

operable alternative, however it is rather expensive as

ALGs have to be both developed and operated for all

the different applications.

3. The most general and flexible solution is the use of a

DNS64 server and a NAT64 gateway.

B. The Operation of DNS64 and NAT64

To enable an IPv6 only client to connect to an IPv4 only

server, one can use a DNS64 server and a NAT64 gateway.

The DNS64 server should be set as the DNS server of the

IPv6 only client. When the IPv6 only client tries to connect to

any server, it sends a recursive query to the DNS64 server to

find the IPv6 address of the given server. If the given server

has an IPv4 address only then the DNS64 server constructs

and returns a special IPv6 address called IPv4-Embedded IPv6

Address [9] containing the IPv4 address of the server in the

last 32 bits. In the first 96 bits, it may contain the NAT64

Well-known Prefix or a network specific prefix from the net-

work of the client.

Performance Analysis and Comparison … See last page for copyright! TSP 2013, Rome, Italy

The route towards the network with the given IPv6 prefix

should be set in the IPv6 only client (and in all of the routers

along the route from the client to the NAT64 gateway) so that

the packet go through the NAT64 gateway.

The IPv6 only client uses the received IPv6 address to set

up a connection to the desired (IPv4 only) server. The client

sends an IPv6 packet to the received IPv6 address. When its

packet arrives to the NAT64 gateway, the gateway builds an

IPv4 packet using the payload (and some header fields) of the

IPv6 packet and it sets the destination address of the IPv4

packet according to the rightmost 32 bits of the destination

address of the IPv6 packet. These 32 bits contain exactly the

IPv4 address of the desired server. The source address of the

IPv4 packet is set to be the IPv4 address of the NAT64 gate-

way. The NAT64 gateway sends out the IPv4 packet and the

packet arrives to the IPv4 only server. The IPv4 only server

responds the normal way using the source address of the re-

ceived IPv4 packet as the destination address of its answer

and in this way the server sends its response to the NAT64

gateway. The gateway receives the IPv4 packet and builds an

IPv6 packet using the payload (and some header fields) of the

IPv4 packet and its own data about the given connection. (The

NAT64 gateway uses stateful NAT or some other method to

track the IPv6 – IPv4 mapping.) Finally, the NAT64 gateway

sends the IPv6 packet back to the client.

For a more detailed but still easy to follow introduction,

see [10] and for the most accurate and detailed information,

see the relating RFCs [1] and [2].

C. A Short Survey of the Current Research Results

Several papers were published in the topic of the perfor-

mance of DNS64 and NAT64 in 2012. The performance of

the TAYGA NAT64 implementation (and implicitly of the

TOTD DNS64 implementation) is compared to the perfor-

mance of NAT44 in [11]. The performance of the Ecdysis

NAT64 implementation (that has its own DNS64 implementa-

tion) is compared to the performance of the authors’ own

HTTP ALG in [12]. The performance of the Ecdysis NAT64

implementation is compared to the performance of both the

NAT-PT and an HTTP ALG in [13]. All of these papers deal

with the performance of a given DNS64 implementation with

a given NAT64 implementation. On the one hand this is natu-

ral, as both services are necessary for the operation, on the

other hand this is a kind of “tie-in sale” that may hide the real

performance of a given DNS64 or NAT64 implementation by

itself. Even though both services are necessary for the com-

plete operation, in a large network they are usually provided

by separate, independent devices; DNS64 is provided by a

name server and NAT64 is performed by a router. Thus the

best implementation for the two services can be – and also

should be – selected independently. The performance of the

BIND DNS64 implementation and performance of the

TAYGA NAT64 implementation are analyzed separately and

also their stability is tested in [14]. However, only one imple-

mentation was considered for each service, so even if they

were proved to be stable and fast enough, more research is

needed for the comparison of the performance (and also the

stability) of multiple DNS64 and NAT64 implementations.

A good survey of the most recent DNS64 and NAT64 re-

search results is given in [15]. They also demonstrated that the

DNS64+NAT64 system is a viable solution for an internet

service provider. However the stability of the different

DNS64 and NAT64 implementations under heavy load condi-

tions and the comparison of their performance were not ad-

dressed there.

Due to the space limitations of our (before mentioned)

previous paper about the stability and performance of differ-

ent DNS64 implementations [5], our results concerning

NAT64 implementations are now published here.

III. THE SELECTION OF NAT64 IMPLEMENTATIONS

Only free software [16] (also called open source [17]) im-

plementations were considered.

Ecdysis [18] could have been a choice, as it was the first

NAT64 implementation, and it also contains DNS64 support.

However, Ecdysis contains a non-official Linux kernel mod-

ule and it is unfortunately not stable. Ecdysis was tested with

version 2.6.32, 2.6.35, 2.6.37 and 3.0.1 kernels and it froze

many times. In addition to that, the home page of the project

does not reflect any development since November 17, 2010.

For these reasons, two other NAT64 implementations were

selected for performance analysis : TAYGA and PF.
TAYGA [19] is a free software under GPLv2 license and

according to its developers it was intended to provide produc-

tion quality NAT64 service. TAYGA is a stateless NAT64

solution for Linux. It means that by itself it can create only a

one-to-one mapping between IPv6 and IPv4 addresses. For

this reason TAYGA is used together with a stateful NAT44

packet filter (iptables under Linux): TAYGA maps the

source IPv6 addresses to different IPv4 addresses from a suit-

able size of private IPv4 address range, and from the private

IPv4 addresses the stateful NAT44 packet filter performs an

SNAT (Source Network Address Translation) to the public

IPv4 address of the NAT64 gateway (sometimes also called

Port Address Translation, PAT). In the reverse direction, the

stateful NAT44 packet filter “knows” which private IPv4

address belongs to the reply packet arriving to the IPv4 inter-

face of the NAT64 gateway. After the NAT44 translation

TAYGA can determine the appropriate IPv6 address using its

one-to-one address mapping and then it rewrites the packet to

IPv6.

Note that TAYGA is able to store the one-to-one IPv6 –

IPv4 address mappings on disk, therefore, in case of a system

crash TAYGA can continue using these after restart. (On the

basis of our experiences with TAYGA, we do not think this

functionality would be much used.)

When configuring TAYGA, a suitably large private IPv4

address range should be provided.
The Packet Filter (PF) of OpenBSD 5.1 [20] includes

NAT64 support that is based on the Ecdysis program code

[21]. PF is a free software under the BSD license.

PF [22] was first released in OpenBSD v3.0 in 2001. PF is

a very powerful tool to filter and manipulate IP packets in

modern BSD systems. It can be configured by editing

/etc/pf.conf, and packets can be manipulated by many

attributes. PF supports NAT, load balancing, logging and it

can also operate as stateless and stateful packet filter at the

same time.

PF supports IPv4 and IPv6 stateful NAT for many years,

and now it supports NAT64, too. This feature of PF is called

Performance Analysis and Comparison … See last page for copyright! TSP 2013, Rome, Italy

address family translation. PF in stateful mode can translate

many IPv6 client addresses to one outgoing IPv4 address via

address family translation. Because of stateful translation, PF

needs to build a “states table” to find the correct IPv6 destina-

tion address of the incoming IPv4 packets. There is no need to

use stateless and stateful NAT one after the other. In this case,

a single state table is enough for perfect system operation

against TAYGA’s two-table solution. Therefore PF generates

lower load for the NAT64 gateway.

IV. THE TEST ENVIRONMENT FOR NAT64 PERFORMANCE

MEASUREMENTS

The aim of our tests was to examine and compare the per-

formance of the selected NAT64 implementations. We were

also interested in their stability and behavior under heavy load

conditions. (For testing the software, some hardware had to be

used, but our aim was not the performance analysis of any

hardware.)

A. The Structure of the Test Network

The topology of the network is shown in Fig. 1. The cen-

tral element of the network is the NAT64 gateway. The eight

DELL IPv6 only workstations at the bottom of the figure

played the role of the clients for the NAT64 measurements.

The number i
th

 client (i=1..8) imitated to reach all the hosts in

the 10.i.0.0/16 IPv4 only network. No DNS64 servers were

used for the mapping, rather the IPv4-embedded IPv6 ad-

dresses were constructed ‘manually’ by the test script append-

ing the 32 bits of the given IPv4 address to the

2001:738:2c01:8001:ffff:ffff::/96 network specific prefix.

Dell Precision 490

8x Dell Precision 490

193.225.151.70/28

193.225.151.75/28
2001:738:2c01:8000::69/64

2001:738:2c01:8001::1/64

2001:738:2c01:8001::111/64 2001:738:2c01:8001::118/64

Intel PIII 800MHz

. . .

‘next hop’ towards
10.0.0.0/8

+
‘responder’ in the

NAT64 tests

client computers
for all the tests

NAT64
gateway

client1 client8

3com Baseline Switch
2948-SFP Plus

Figure 1. Topology of the NAT64 test network.

At the NAT64 gateway, the address of the next hop router

towards the 10.0.0.0/8 network was set to 193.225.151.70.

The DELL workstation with this IP address responded instead

of all of the hosts with IP addresses from the 10.0.0.0/8 net-

work, see more details later on.

B. The Configuration of the Computers

A test computer with special configuration was put togeth-

er for the purposes of the NAT64 gateway in order that the

clients will be able to produce high enough load for overload-

ing it. The CPU and memory parameters were chosen to be as

little as possible from our available hardware base in order to

be able to create an overload situation with a finite number of

clients, and only the network cards were chosen to be fast

enough. The configuration of the test computer was:

 Intel D815EE2U motherboard

 800MHz Intel Pentium III (Coppermine) processor

 256MB, 133MHz SDRAM

 Two 3Com 3c940 Gigabit Ethernet NICs

For all the other purposes (the 8 client computers and the

next hop router towards the 10.0.0.0/8 network) standard

DELL Precision Workstation 490 computers were used with

the following configuration:

 DELL 0GU083 motherboard with Intel 5000X chip-

set

 Two Intel Xeon 5130 2GHz dual core processors

 2x2GB + 2x1GB 533MHz DDR2 SDRAM (accessed

dual channel)

 Broadcom NetXtreme BCM5752 Gigabit Ethernet

controller (PCI Express)

Debian Squeeze 6.0.3 GNU/Linux operating system was

installed on all the computers (including the Pentium III test

computer when it was used under Linux). The version of the

OpenBSD operating system installed on the test computer was

5.1.

V. NAT64 PERFORMANCE MEASUREMENT METHOD

A. NAT64 Gateway Settings

1) Preparation of the TAYGA system

The network interfaces of the freshly installed Debian

Squeeze Linux operating system on the Pentium III computer

were set according to Fig. 1.

In order to facilitate the IPv6 SLAAC (Stateless Address

Autoconfiguration) of the clients, radvd (Router Advertise-

ment Daemon) was installed on the test computer.

The settings in the file /etc/radvd.conf were the follow-

ing ones:

interface eth2
{
 AdvSendAdvert on;
 AdvManagedFlag off;
 AdvSendAdvert on;
 prefix 2001:738:2c01:8001::/64
 {
 AdvOnLink off;
 };
 RDNSS 2001:738:2c01:8001::1 {};
};

Then the TAYGA system was installed on the Pentium III

test computer and it was configured as a NAT64 gateway. The

Performance Analysis and Comparison … See last page for copyright! TSP 2013, Rome, Italy

following modifications were done in the /etc/tayga.conf

file:

tun-device nat64
ipv4-addr 172.16.0.1
dynamic-pool 172.16.0.0/12
prefix 2001:738:2c01:8001:ffff:ffff::/96

The further settings were done by the following script:

#!/bin/bash
tayga --mktun
ip link set nat64 up
ip addr add 172.16.0.1 dev nat64
ip addr add 2001:738:2c01:8001::2 dev nat64
ip route add 172.16.0.0/12 dev nat64
ip route add 2001:738:2c01:8001:ffff:ffff:/96 dev nat64
tayga
echo 1 > /proc/sys/net/ipv4/ip_forward
echo 1 > /proc/sys/net/ipv6/conf/all/forwarding
iptables -t nat -A POSTROUTING -o eth2 -j MASQUERADE
ip route add 10.0.0.0/8 via 193.225.151.70

During the preliminary tests , the kernel of the NAT64

gateway sent “Neighbour table overflow” messages. (The

neighbour table is the IPv6 counterpart of the IPv4 ARP

cache.) The different limits for the size of the neighbour table

were raised as follows:

cd /proc/sys/net/ipv6/neigh/default/
echo 4096 > gc_thresh1
echo 8196 > gc_thresh2
echo 16384 > gc_thresh3

2) Preparation of the PF system

The same PIII computer was used to test the PF NAT64

solution as with the TAYGA system.

The network interfaces of the OpenBSD 5.1 operating sys-

tem on the test computer were set according to Fig. 1.

The following modifications were performed in the

/etc/pf.conf file:

set limit states 40000
pass in on sk1 inet6 from any to \
 2001:738:2c01:8001:ffff:ffff::/96 af-to inet from \
 193.225.151.75

The first command line generated such a large state table

which is able to handle all the states of NAT64. The second

line (actually broken into three lines in the paper) enabled

NAT64 function.

The IPv4 and IPv6 packet forwarding were enabled in the

/etc/sysctl.conf file:

net.inet.ip.forwarding=1
net.inet6.ip6.forwarding=1

B. The Settings of the ‘Responder’ Computer

For the testing of the NAT64 gateway, “someone” had to

answer in the name of the IPv4 only hosts. A DELL computer

(the same configuration as the clients) was used for this pur-

pose. This host had the 193.225.151.70 IP address. At the

DELL computer, the packets towards the 10.0.0.0/8 network

were redirected to the computer itself by the fo llowing

iptables rule:

iptables -t nat -A PREROUTING -d 10.0.0.0/8 \
 -j DNAT --to-destination 193.225.151.70

As the DELL computer had much more computing power

than that of the Pentium III test computer, it was able to an-

swer instead of the IPv4 only computers easily. E.g. in the

case of the below described performance measurements with

8 clients, the CPU utilization of the DELL computer was

under 5%.

C. Client Settings

The DELL computers were used as clients. For the sim-

plicity of the accounting of their addresses, they were config-

ured manually from the 2001:738:2c01:8001::111-118 range

but they received all the other settings from the radvd. The

next hop towards the 2001:738:2c01:8001:ffff:ffff::/96 net-

work was set to the IPv6 address of the NAT64 gateway in the

client computers:

route add -A inet6 2001:738:2c01:8001:ffff:ffff::/96 \
 gw 2001:738:2c01:8001::1

D. NAT64 Performance Measurements

The script below was executed by 1, 2, 4 and 8 clients to

produce an increasing load for the performance measure-

ments.

#!/bin/bash
i=`cat /etc/hostname | grep -o .$̀
for b in {0..255}
do
 rm -r $b
 mkdir $b
 for c in {0..63..4}
 do
 ping6 -c11 -i0 -q \
 2001:738:2c01:8001:ffff:ffff:10.$i.$b.$c \
 >> $b/nat64p-10-$i-$b-$c &
 ping6 -c11 -i0 -q \
 2001:738:2c01:8001:ffff:ffff:10.$i.$b.$((c+1)) \
 >> $b/nat64p-10-$i-$b-$((c+1)) &
 ping6 -c11 -i0 -q \
 2001:738:2c01:8001:ffff:ffff:10.$i.$b.$((c+2)) \
 >> $b/nat64p-10-$i-$b-$((c+2)) &
 ping6 -c11 -i0 -q \
 2001:738:2c01:8001:ffff:ffff:10.$i.$b.$((c+3)) \
 >> $b/nat64p-10-$i-$b-$((c+3))
 done
done

Using the ping6 -c11 command, eleven echo request

ICMPv6 messages were sent to all of the generated IPv6 ad-

dresses. To provide a high enough load, four ping6 com-

mands were started in (quasi) parallel
2
 utilizing the capabili-

ties of the two dual core CPUs of the DELL computers .

The synchronized start of the client scripts was done by

using the “Send Input to All Sessions” function of the termi-

nal program of KDE (called Konsole).

Every single client was used to simulate the load of a high

number of clients and in every series of measurements, the

number of clients was increased from one to eight using the

values for the number of clients: 1, 2, 4 and 8 to be able to

double the load of the clients.

The response times of the ping6 commands were meas-

ured. The CPU and memory utilization were also measured on

the test computer running NAT64.

The following command line was used under Linux:

dstat -t -c -m -l -p --unix --output load.csv

The command line was the following under OpenBSD:

vmstat -w 1 >load.txt

2
 The first three ones were started in a so-called asynchronous way using the

& sign at the end of the command lines thus the four commands were running
nearly parallel.

Performance Analysis and Comparison … See last page for copyright! TSP 2013, Rome, Italy

VI. NAT64 PERFORMANCE RESULTS

The outer for cycle of the test script using variable b was

executed 256 times and average and standard deviation of the

measured values were calculated. The results are displayed in

similar tables for both test cases, and only the first table is

exp lained in detail.

A. NAT64 Performance Results of TAYGA

The results can be found in Table I. Row 1 shows the

number of clients that executed the test script. (The load of the

clients is proportional with the number of the clients.) The

packet loss ratio is displayed in the second row. Rows 3, 4 and

5 show the average, the standard deviation and the maximum

values of the response time (expressed in milliseconds), re-

spectively. The following two rows show the average and the

standard deviation of the CPU utilization of the test computer.

Row 8 shows the number of forwarded packets per seconds

that was calculated from the average traffic arriving to the test

computer from the direction of the clients measured in bytes.

(In the calculations, the size of the messages carrying the

ICMPv6 echo requests was always 100 bytes.) The last row

shows the memory consumption measured at the test comput-

er.

Evaluation of the results:

 Though packet loss occurred even for a single client,

the packet loss ratio was always very low (under 0.03

percent, which means that 3 packets were lost from

10,000 packets).

 The response time showed nearly linear increase in

the function of the load: the doubling of the load ap-

proximately doubled the response time as well.

 The number of packets served per second could in-

crease in a certain extent until there was free CPU ca-

pacity. For four clients, the CPU was nearly fully uti-

lized and for eight clients, TAYGA could not serve

more packets due to the lack of CPU capacity; the

number of packets served per second even decreased

from 7,085 to 6,890 by less than 3%.

 The memory consumption was always low and it was

only very slightly increasing in the function of the

load.

To sum up the findings above, we can lay down that

TAYGA performed well, its memory consumption was found

to be low and its response time increased approximately line-

arly with the load, that is, TAYGA complied with the graceful

degradation principle [23].

B. NAT64 Performance Results of PF

The results can be found in Table II. Evaluation of the re-

sults:

 The packet loss rate was very low (0.02 percent).

 The response time showed less then linear increase in

the function of the load while there was free CPU ca-

pacity. It increased approximately linearly with the

load when the number of clients was increased from

four to eight.

 The number of packets served per second could seri-

ously increase with the number of clients. From one

to two clients, it was nearly doubled, and for eight cli-

ents, it likely come close to saturation, however the

CPU utilization was still about 90% for eight clients,

so PF may forward even a little more than 22,800

packets per second.

 The memory consumption was very low and in-

creased less than linearly with the load.

As far as we could test, PF complied with the graceful

degradation principle, but even with eight clients it had some

free CPU capacity. It had also very low memory consumption.

C. Comparison of the performance of TAYGA and PF

Comparing the performance results of TAYGA and PF,

we can state that their response time and the number of for-

warded packets per seconds were similar at moderate load.

However at serious overload conditions , PF could handle

22,886 packets per seconds with an average response time of

1.2 milliseconds while TAYGA could do only 6,890 packets

per second with an average response time of 4.4 milliseconds.

TABLE I. NAT64 PERFORMANCE: TAYGA

1 number of clients 1 2 4 8
2 packet loss (%) 0.01 0.01 0.03 0.03

3
response time
of ping6 (ms)

average 0.447 0.957 1.986 4.406
4 std. deviation 0.103 0.158 0.321 0.474

5 maximum 5.202 5.438 8.057 13.965

6 CPU utiliza-
tion (%)

average 69.8 84.3 97.8 100.0
7 std. deviation 3.3 1.7 2.2 0.1

8 traffic volume (packets/s) 5,721 6,614 7,085 6,890

9 memory consumption (MB) 10.8 11.4 11.9 12.9

TABLE II. NAT64 PERFORMANCE: PF

1 number of clients 1 2 4 8
2 packet loss (%) 0.02 0.02 0.02 0.02

3
response time
of ping6 (ms)

average 0.405 0.486 0.606 1.194
4 std. deviation 0.050 0.073 0.127 0.250
5 maximum 1.770 1.433 3.904 7.055

6 CPU utiliza-
tion (%)

average 31.7 50.1 80.1 90.3
7 std. deviation 5.4 5.0 5.1 4.7

8 traffic volume (packets/s) 5,909 11,091 18,367 22,886

9 memory consumption (MB) 2.4 3.5 5.5 7.9

Figure 2. Number of forwarded pacekts per second in the function of the
number of clients

5 909

11 091

18 367

22 886

5 721
6 614 7 085 6 890

0

5 000

10 000

15 000

20 000

25 000

1 2 4 8

Packets sent
(p/s)

Number of clients

PF

TAYGA

Performance Analysis and Comparison … See last page for copyright! TSP 2013, Rome, Italy

Figure 3. Response time in the function of the number of clients

This is a very large difference in their performance. At

least two reasons can be identified.

1. As TAYGA is a stateless NAT64 solution and anoth-

er stateful NAT44 solution had to be used thus every

packet were touched twice.

2. As TAYGA runs in user space, every packet had to be

copied first from kernel space to user space and then

back from user space to kernel space.

In spite of this difference of their performance under

heavy load conditions, we can lay down that both TAYGA

and PF are stable and can be used as a NAT64 solution –

probably for many years. System administrators anticipating

high traffic volume fro m their IPv6 only clients towards the

IPv4 Internet are encouraged to use PF.

VII. CONSLUSIONS

Due to the exhaustion of the IPv4 address pool, the inter-

net service providers will not be able to provide IPv4 addres s-

es to an increasing number of clients. The application of a

DNS64 server and a NAT64 gateway is found to be the best

solution for the IPv6 only clients to access the IPv4 Internet.

The appropriate choice of a stable and high performance

NAT64 implementation can be crucial for an ISP. Two free

NAT64 imp lementations were tested concerning their stability

and performance. Both TAYGA under Linux and PF under

OpenBSD proved to be stable thus they both can be used in a

production environment like the network of an ISP. Their

performance was found to be similar under moderate load

conditions but PF 3.3 times outperformed TAYGA under

heavy overload conditions. The PF of OpenBSD is our num-

ber one recommendation for a NAT64 solution.

This is the author’s version of the paper. For personal use only, not for

redistribution. The definitive version can be found in the Proceedings of the
36th International Conference on Telecommunications and Signal Processing
(TSP 2013), (Rome, Italy, 2013. July, 2-4.) pp. 71-76. © IEEE

REFERENCES

[1] M. Bagnulo, P. Matthews and I. Beijnum, “Stateful NAT64: Network
address and protocol translation from IPv6 clients to IPv4 servers”,
IETF, April 2011. ISSN: 2070-1721 (RFC 6146)

[2] M. Bagnulo, A Sullivan, P. Matthews and I. Beijnum, “DNS64: DNS
extensions for network address translation from IPv6 clients to IPv4
servers”, IETF, April 2011. ISSN: 2070-1721 (RFC 6147)

[3] The Number Resource Organization, “Free pool of IPv4 address space
depleted” http://www.nro.net/news/ipv4-free-pool-depleted

[4] RIPE NCC, “RIPE NCC begins to allocate IPv4 address space from the
last /8”, http://www.ripe.net/internet -coordination/news/ripe-ncc-
begins-to-allocate-ipv4-address-space-from-the-last-8

[5] G. Lencse and S. Répás, “Performance analysis and comparison of
different DNS64 implementations for Linux, OpenBSD and FreeBSD”,
Proc. 27th IEEE International Conference on Advanced Information
Networking and Applications (AINA-2013, March 25-28, 2013) Barce-
lona, Spain, pp. 877-884.

[6] G. Tsirtsis and P. Srisuresh, “Network Address Translation - Protocol
Translation (NAT-PT)”, IETF, February 2000. (RFC 2766)

[7] C. Aoun and E. Davies, “Reasons to Move the Network Address
Translator - Protocol Translator (NAT-PT) to Historic Status”, IETF,
July 2007. (RFC 4966)

[8] P. Srisuresh and M. Holdrege, “IP Network Address Translator (NAT)
Terminology and Considerations”, IETF, August 1999. (RFC 2663)

[9] C. Bao, C. Huitema, M. Bagnulo, M Boucadair and X. Li, “IPv6
addressing of IPv4/IPv6 translators”, IETF, October 2010. ISSN: 2070-
1721 (RFC 6052)

[10] M. Bagnulo, A. Garcia-Martinez and I. Van Beijnum, “The
NAT64/DNS64 tool suite for IPv6 transition”, IEEE Communications
Magazine, vol. 50, no. 7, July 2012, pp. 177-183.
doi:10.1109/MCOM.2012.6231295

[11] K. J. O. Llanto and W. E. S. Yu, “Performance of NAT64 versus
NAT44 in the Context of IPv6 Migration”, in Proc. International
MultiConference of Engineers and Compuer Scientists 2012 Vol I.
(IMECS 2012, March 14-16, 2012), Hong Kong, pp. 638-645

[12] C. P. Monte et al, “ Implementation and evaluation of protocols
translating methods for IPv4 to IPv6 transition”, Journal of Computer
Science & Technology, vol. 12, no. 2, pp. 64-70

[13] S. Yu, B. E. Carpenter, “Measuring IPv4 – IPv6 translation
techniques”, Technical Report 2012-001, Department of Computer
Science, The University of Auckland, January 2012

[14] G. Lencse and G. Takács, “Performance Analysis of DNS64 and
NAT64 Solutions”, Infocommunications Journal, vol. 4, no 2, June,
2012. pp. 29-36.

[15] E. Hodzic, S. Mrdovic, “IPv4/IPv6 Transition Using DNS64/NAT64:
Deployment Issues”, Proc. 2012 IX International Symposium on
Telecommunications (BIHTEL, Oct. 25-27, 2012), Sarajevo, Bosnia
and Herzegovina

[16] Free Software Fundation, “The Free Software Definition”,
http://www.gnu.org/philosophy/free-sw.en.html

[17] Open Source Initiative, “The Open Source Definition”,
http://opensource.org/docs/osd

[18] “Ecdysis: open-source implementation of a NAT64 gateway”
http://ecdysis.viagenie.ca

[19] “TAYGA: Simple, no-fuss NAT64 for Linux”
http://www.litech.org/tayga/

[20] Theo de Raadt, “The OpenBSD 5.1 Release”, May 1, 2012, ISBN 978-
0-9784475-9-5, http://www.openbsd.org/51.html

[21] Simon Perreault, “[Ecdysis-discuss] NAT64 in OpenBSD”,
http://www.viagenie.ca/pipermail/ecdysis-discuss/2011-
October/000173.html

[22] P. N. M. Hansteen, The Book of PF: A No-Nonsense Guide to the
OpenBSD Firewall, 2nd ed., San Francisco: No Starch Press, 2010.
ISBN: 978-1593272746

[23] NTIA ITS, “Definition of ‘graceful degradation’”
http://www.its.bldrdoc.gov/fs-1037/dir-017/_2479.htm

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

1 2 4 8

Response
time (ms)

Number of clients

PF

TAYGA

