
Testing the Channel Aggregation Capability

of the MPT Multipath Communication Library

Gábor Lencse

Department of Telecommunications

Széchenyi István University

Győr, Hungary

lencse@sze.hu

Ákos Kovács

Department of Telecommunications

Széchenyi István University

Győr, Hungary

kovacs.akos@sze.hu

Abstract—The MPT multipath communication library is a

promising solution for several problems including reliable data

transmission using TCP, real-time transmission using UDP and

also wireless network layer routing problems. MPT can

aggregate the capacity of multiple physical channels. In this

paper, the channel aggregation capability of the MPT library is

tested up to twelve channels with 100Mbps or 1000Mbps speed

each. Different scenarios are used: both IPv4 and IPv6 are used

as the underlying and also as the encapsulated protocols. For the

throughput measurements, two high performance Linux

workstations having each three quad-port gigabit Ethernet NICs

are used with the iperf industrial de facto standard network

testing tool. First, the speed of the NICs is limited to 100Mbps by

a switch to be able to test the aggregation of high number of

channels but then the bare gigabit speed channels are also

tested. The aggregate throughput results are presented as

graphs in the function of the number of 100Mbps or 1000Mbps

channels. The results are interpreted and discussed. Several

directions of our future research are outlined and two

recommendations are given for the further development of the

MPT library.

multipath communication; performance testing; channel

capacity aggregation

I. INTRODUCTION

Many of our ICT devices (e.g. smart phones, tablets,
notebooks) have multiple communication interfaces (e.g.
Ethernet, WiFi, HSDPA/LTE) but we can use only one of
them at a time due to technical reasons: the endpoint of a
TCP/IP communication is identified by an IP address plus a
port number and the IP addresses are always bound to the
network interfaces [1]. The MPT multipath communication
library [2] was developed at the Faculty of Informatics,
University of Debrecen, Debrecen, Hungary. It makes possible
to aggregate the transmission capacity of the multiple
interfaces of a device. Its performance, especially its channel
aggregation capability for two channels was analyzed in [3]
and for four channels in [4] using serial links with the speed of
a few megabits per second. As the MPT library may be useful
for many different purposes including stream transmission [4],
cognitive info-communication [5] and wireless network layer
roaming problems [6], we decided to do further tests of its

channel aggregation capability increasing both the number of
physical channels up to 12 and their bandwidth to 100Mbps or
even to 1000Mbps.

The remainder of this paper is organized as follows. First,
a brief introduction is given to the MPT multipath
communication library. Second, our test environment is
described. Third, our experiments are presented and our results
are interpreted. Finally, our conclusions are given.

II. MPT IN A NUTSHELL

A. The architecture of MPT

The innovation of the MPT multipath communication
library can be highlighted by a comparison with the much
more well-known Multipath TCP [7].

MPTCP uses multiple TCP sub-flows on the top of
potentially disjoint paths, see Fig. 1. This is a good solution
for the aggregation of the transmission capacity of the
underlying paths. The reliable byte stream transmission
offered by TCP is a proper solution for a class of applications
such as web browsing, sending or downloading e-mails, etc.
However, it is undesirable for another class of applications
such as IP telephony, video conference or other real-time
communications where some packet loss (with low ratio) can
be better tolerated than high delays caused by TCP
retransmissions.

The MPT multipath communication library uses UDP/IP
protocols on the top of each link layer connection and creates
an IP tunnel on top of them. Thus both TCP and UDP can be
used over the IP tunnel, see Fig. 2. Therefore retransmissions
can be omitted if they are not required. This design makes
MPT more general than MPTCP thus permitting MPT more
areas of applications.

Application

MPTCP

TCP subflow TCP subflow

IP IP

Figure 1. The architecture of the MPTCP protocol stack

Figure 2. The layered architecture of the MPT software [3]

B. The configuration and usage of the MPT library

MPT is multipath communication library developed under
Linux and can be downloaded from [8]. The distribution
contains an easy to follow user manual. When setting up MPT,
the software must be present at both endpoints. One of them
should be configured as server and the other one as client, but
the applications see it completely symmetrical. It has simple
and straight forward configuration files where the details must
be given (e.g. the number of physical connections, the Linux
network interface names and IP addresses for each channel,
name of the tunnel interface, etc.), see more details later on.
When both sides are configured and the MPT software is
started on both computers, the applications can use the tunnel
interfaces for communication in the ordinary way. It is the task
of the MTP library to distribute the user’s traffic for all the
physical channels to be able to take the advantage of the
multiple network interfaces.

III. TEST ENVIRONMENT

A. Hardware and basic configuration

Two DELL Precision Workstation 490 computers were
used for our tests. Their basic configuration was:

 DELL 0GU083 motherboard with Intel 5000X chipset

 Two Intel Xeon 5140 2.33GHz dual core processors

 8x2GB 533MHz DDR2 SDRAM (accessed quad
channel)

 Broadcom NetXtreme BCM5752 Gigabit Ethernet
controller (PCI Express, integrated)

Three Intel PT Quad 1000 type four port Gigabit Ethernet
controllers were added to each computers, thus they both had
3x4+1=13 Gigabit Ethernet ports, from which the integrated
one was used for control purposes and the other ones were
used for the measurements. The computers were
interconnected by a Cisco Catalyst 2960 switch limiting the
transmission speed to 100Mbps and separating the 12 physical
connections from each other by VLANs. Different versions of
IP (v4 or v6) were used for our experiments. Fig. 3 shows the
network that was used in the IPv4 tunnel over IPv4
connections tests.

Debian wheezy 7.4 GNU/Linux operating system was
installed on both computers. For the first series of
experiments, the network interfaces of the computers were
configured as shown in Fig. 3.

B. Configuration of the MPT software

The version of the MPT library can be identified by the
name of the file which contains the date in the YYYY-MM-
DD format: mpt-lib-2014-03-25.tar.gz. This version
of the MPT library contained precompiled 32-bit executables
with statically linked libraries thus we did not need to compile
it. We set it up following the instructions of the user manual
[2]. It was a simple and straight forward task. The contents of
the following two configuration files were set as follows.
(Their path is relative to the installation directory of MPT.)

The beginning of the conf/interface.conf file was:

################ Interface Information: ################
12 # The number of the interfaces
65020 # The local cmd port number
1 # Accept remote new connection request

VLAN1

VLAN2

VLAN3

VLAN4

VLAN5

VLAN6

VLAN7

VLAN8

eth1 10.0.0.1

eth2 10.1.1.1

eth3 10.2.2.1

eth4 10.3.3.1

eth5 10.4.4.1

 eth6 10.5.5.1

eth7 10.6.6.1

eth8 10.7.7.1

VLAN1

VLAN2

VLAN3

VLAN4

VLAN5

VLAN6

VLAN7

VLAN8

Cisco Catalyst 2960

Dell Workstation 490
3x Intel PT Quad 1000

Dell Workstation 490
3x Intel PT Quad 1000

tun0
192.168.200.2

eth1 10.0.0.2

eth2 10.1.1.2

eth3 10.2.2.2

eth4 10.3.3.2

eth5 10.4.4.2

 eth6 10.5.5.2

eth7 10.6.6.2

eth8 10.7.7.2

VLAN9

VLAN10

VLAN11

VLAN12

VLAN9

VLAN10

VLAN11

VLAN12

eth9 10.8.8.1

 eth10 10.9.9.1

eth11 10.10.10.1

eth12 10.11.11.1

eth9 10.8.8.2

 eth10 10.9.9.2

eth11 10.10.10.2

eth12 10.11.11.2

tun0
192.168.200.1

eth0
192.168.100.115/24

eth0
192.168.100.116/24

Figure 3. The topology of the test network (IPv4 tunnel over IPv4 connections)

################ Tunnel interface ################
tun0 # INT. NAME, the first int. must be the tunnel int.
192.168.200.1/24 # IPv4 address and pref. length
fd00:de:200::1/64 # IPv6 address and pref. length
################ ETH1 interface ################
eth1
10.0.0.1/24
fd00:de:201::1/64
################ ETH2 interface ################
eth2
10.1.1.1/24
fd00:de:202::1/64

And it was similar for all the other interfaces, which we do
not list due to space limitations.

While the IP setting of the interfaces could be described in
a common file for IPv4 and IPv6, the different types of tunnels
are to be given in separate connection files.

The IPv4 tunnel over IPv4 paths was defined in the
conf/connections/IPv4overIPv4.conf file:

######## Multipath Connection Information: ########
1 # The number of the connections
################ New Connection ################
TILB # CONNECTION NAME
3 # SEND(1)/RECEIVE(2) CONNECTION UPDATE
4 # IP VERSION
192.168.200.1 # LOCAL IP
65022 # LOCAL DATA PORT
192.168.200.2 # REMOTE IP
65022 # REMOTE DATA PORT
65020 # REMOTE CMD PORT
12 # NUMBER OF PATHS
0 # NUMBER OF NETWORKS
2 # KEEPALIVE TIME (sec)
5 # DEAD TIMER (sec)
0 # CONNECTION STATUS
0 # AUTH. TYPE
0 # AUTH. KEY
################ Path 0 information: ################
eth1 # INT. NAME
4 # IP VERSION
00:15:17:54:d7:30 # LOCAL MAC ADDR
10.0.0.1 # LOCAL IP
00:00:00:00:00:00 # GW MAC ADDR
0.0.0.0 # GW IP
10.0.0.2 # REMOTE IP
100 # WEIGHT IN
100 # WEIGHT OUT
1 # PATH WINDOW SIZE
0 # PATH STATUS
################ Path 1 information: ################
eth2 # INT. NAME
4 # IP VERSION
00:15:17:54:d7:31 # LOCAL MAC ADDR
10.1.1.1 # LOCAL IP
00:00:00:00:00:00 # GW MAC ADDR
0.0.0.0 # GW IP
10.1.1.2 # REMOTE IP
100 # WEIGHT IN
100 # WEIGHT OUT
1 # PATH WINDOW SIZE
0 # PATH STATUS

It was also set in the same manner for all the other paths of
this connection and for the other connections as well.

Note that the configuration files follow strict format, even
the comment only lines must be present. (We experienced
fatal errors when the format was not precisely followed.)

IV. EXPERIMENTS AND RESULTS

The channel aggregation capability of the MPT library was
measured by using the industrial de facto standard iperf.
Both IPv4 and IPv6 were used as the IP protocol for the tunnel
and also as IP protocol for the underlying channels. It means
altogether 2x2=4 series of measurements, were the number of
physical channels were increased from 1 to 12. Thus we
performed 4x12=48 different tests. The tests were automated
by scripts. Due to space limitations, we cannot include the
complete measurement scripts, but the key commands only.
The ones below belong to the IPv4 tunnel over IPv4 measure-
ments. The iperf command was:

iperf -c 192.168.200.1 -t 100 -f M

This command performed a 100 seconds long test and
printed the throughput in MBytes/s units. This is called the
client side in iperf terminology. On the other side, the server
was started with the following command line:

iperf –s

The results will follow ordered by the IP versions.

A. Performance of the IPv4 tunnel over IPv4

The results of the iperf test are shown in Fig. 4. The
throughput aggregation capability of the MPT library proved
to be very good, the performance scaled up nearly linearly up
to 12 NICs.

B. Performance of the IPv6 tunnel over IPv4

Our next scenario was the IPv6 tunnel over IPv4 paths.
Fig. 5 shows the throughput results. The graph is linear up to
12 NICs.

Note that these results are not at all trivial, as before our
experiments, MPT has been tested up to 4 physical channels
having only a few Mbps speed.

Figure 4. The throughput results of the iperf test of an IPv4 tunnel over

IPv4

Figure 5. The throughput results of the iperf test of an IPv6 tunnel over

IPv4

Figure 6. The throughput results of the iperf test of an IPv4 tunnel over

IPv6

Figure 7. The throughput results of the iperf test of an IPv6 tunnel over

IPv6

C. Performance of the IPv4 tunnel over IPv6

The throughput on Fig. 6 reached its maximum value at 7
NICs, it could not increase for 8 NICs and it showed
somewhat degradation for higher number of NICs.

D. Performance of the IPv6 tunnel over IPv6

Our next scenario was the IPv6 tunnel over IPv6 paths.
Fig. 7 shows the throughput results. Here, the throughput has a
definitive maximum at 7 NICs and shows a bit more degrada-
tion than in the previous case.

E. Evaluation of the results

Our results suggest that only the version of the underlying
IP protocol makes a significant difference in the channel
capacity aggregation performance of the MPT library and the
version of the encapsulated IP has only a minor influence on
it. When the underlying protocol was IPv4, the throughput was
linear up to 12 NICs, and thus we could not reach the limits of
MPT (see Fig. 4 and Fig. 5). When the underlying protocol
was IPv6, we reached the performance limit of the system at 7
NICs. The further increase of the number of NICs could not
result in the increase of the throughput, rather some degrada-
tion of the throughput can be observed.

At this point, we may only state that this is the
performance of our system composed of the above described
hardware and software. But we are interested in the limits of
the MPT library and not that of the hardware used for testing.
We have checked and logged the CPU utilization of the MPT
software during the measurements. We did so on both the
client and on the server during all the 4 series of
measurements thus we got 2x4=8 graphs. The CPU usage of
the MPT client and of the MPT server was practically the
same. The version of the upper IP protocol made no
significant difference. Therefore we include only two typical
ones of them. Fig. 8 shows the CPU utilization of the MPT
client during the IPv4 over IPv4 measurements. The gaps with
0% CPU usage can be well observed between the
measurements thus the 12 measurements can be easily
identified. Even though CPU utilization shows some
fluctuations, its near linear growth can be observed. It reached
160-180% at 12 NICs. Note that the CPU utilization of the
iperf program was always under 50% thus there was free
CPU capacity available from the 400% of the four CPU cores.

Fig. 9 shows the CPU utilization of the MPT client
computer in the IPv6 over IPv6 measurements. The CPU
utilization reached 160-180% at 7 NICs and it did not grow
any more. There is a visible correspondence between the CPU
utilization and the throughput, see Fig. 7.

Figure 8. MPT CPU utilization (out of 400%), IPv4 tunnel over IPv4

Figure 9. MPT CPU utilization (out of 400%), IPv6 tunnel over IPv6

Figure 10. The throughput results of the iperf test of an IPv6 tunnel over

IPv6 using 3GHz CPUs

F. Measurements with faster CPUs

The Intel Xeon 5140 2.33GHz dual core processors of the
test computers were replaced by Intel Xeon 5160 3GHz dual
core processors. The throughput of the IPv6 tunnel over IPv6
paths scenario was measured and Fig. 10 shows the results.
The faster CPUs made it possible to fully utilize the capacity
of 8 NICs and the degradation started from 9 NICs. This is an
important result because it convinced us that the aggregation
capability of MPT does not have a built in limit, rather it
depends on the performance of the CPUs.

It is another issue that MPT was written as a serial
program and thus it is not able to fully utilize the available
processing power of the multiple CPU cores. As for the
current trend of the evolution of the CPUs, it would be
desirable to improve MPT in this field.

G. Measurements with Gigabit Ethernet

We could not reach the throughput capacity limit of the
system in the two tests where the underlying protocol was
IPv4. As our Dell computers had only 3 PCI Express slots, we
could not insert more NICs. Therefore we removed the Cisco
switch and interconnected the 12 Ethernet ports of the two
computers directly, thus they were enabled to operate in
gigabit mode. (The original 2.33GHz CPUs were kept.)

Figure 11. The throughput results of the iperf test of an IPv4 tunnel over

IPv4 using Gigabit Ethernet

The results of the IPv4 over IPv4 tests are shown in
Fig. 11. The throughput reached 160Mbytes/s at two NICs and
it degraded for higher number of NICs, but it remained still
higher than the throughput of a single NIC. This is in a
correspondence with the values of the CPU utilization in
Fig. 12.

The results of the IPv6 over IPv4 tests are shown in
Fig. 13. The throughput reached its maximum value at two
NICs again, (it is now less than 160Mbytes/s) and it degraded
for higher number of NICs, but it remained still higher than
the throughput of a single NIC. The CPU utilization graph is
not included because it is undistinguishable from the one
shown in Fig. 12.

Figure 12. MPT CPU utilization (out of 400%), IPv4 tunnel over IPv4,

Gigabit

Figure 13. The throughput results of the iperf test of an IPv6 tunnel over

IPv4 using Gigabit Ethernet

V. DIRECTIONS OF FURTHER RESEARCH AND RECOMMEN-

DATIONS FOR FURTHER DEVELOPMENT OF MPT

Instead of the precompiled 32-bit version of the MPT
library, we are intending to compile and test a 64-bit version.
This may include the IPv6 performance of the MPT library by
the more efficient handling of the 128 bits long IPv6
addresses.

Even though iperf is considered to be industrial standard,
we plan to test the performance of the MPT library with some
other tools, such as downloading files over http or ftp
protocols using wget.

We also plan to compare the performance and throughput
aggregation capability of the MPT library with that of the
standard MPTCP.

As unlike MPTCP, MPT uses UDP, therefore it is also
worth testing MPT with real time applications.

As for the further development of MPT, we have two
recommendations:

 Using keyword parsing in the configuration files
(instead of the current strict syntax) would make the
MPT library more user-friendly.

 Enabling MPT to fully utilize the computing power of
multiple CPU cores would improve its overall
performance when using it for the aggregation of
several high speed channels in multi-core
environments.

VI. CONCLUSIONS

We have tested the throughput aggregation capability of
the MPT multipath communication library up to twelve
100Mbps link layer network connections with all the possible
combinations of IPv4 and IPv6 as the underlying or the top
protocols.

When the underlying protocol was IPv4, the throughput
scaled up linearly up to 12 NICs regardless of the version of
the encapsulated IP (IPv4 or IPv6). It exceeded 120Mbytes/s
for 12 NICs.

When the underlying protocol was IPv6, the throughput
scaled up linearly up to 7 NICs regardless of the version of the
encapsulated IP, but there the throughput reached its

performance plateau (with a value higher than 70Mbytes/s)
and it showed somewhat degradation for higher number of
NICs.

We have shown that the above performance limit depends
on the computing power of the CPU and it is not a fixed built
in feature of the MPT library.

With the help of 12 Gigabit Ethernet connections, we have
also shown that the behavior of the system is similar also in
the case when IPv4 is applied as the underlying protocol: the
system reached its performance plateau at two NICs (its value
was about 160Mbytes/s) and then the throughput showed
somewhat degradation for higher number of NICs.

We conclude that the MPT multipath communication
library is a good tool for the aggregation of the capacity of
several channels.

We have given the directions of our future research and
two recommendations for the further development of the MPT
library.

REFERENCES

[1] B. Almási, A. Harman, “An overview of the multipath communication
technologies”, Proceedings of the Conference on Advances in Wireless
Sensor Networks 2013 (AWSN 2013), Debrecen University Press,
Debrecen, Hungary, ISBN: 978-963-318-356-4, 2013, pp. 7-11.

[2] B. Almási, “MPT Library User Guide”, can be downloaed from:
http://irh.inf.unideb.hu/user/almasi/mpt/

[3] B. Almási, Sz. Szilágyi, "Throughput Performance Analysis of the
Multipath Communication Library MPT", Proceedings of the 36th
International Conference on Telecommunications and Signal
Processing (TSP 2013), (Rome, Italy, July 2-4, 2013), pp 86-90.

[4] B. Almási, Sz. Szilágyi, “Multipath ftp and stream transmission
analysis using the MPT software environment”, International Journal of
Advanced Research in Computer and Communication Engineering,
Vol. 2, Issue 11, (November 2013) pp. 4267-4272.

[5] B. Almási, “Multipath Communication – a new basis for the Future
Internet Cognitive Infocommunication”, Proceedings of the
CogInfoCom 2013 Conference, (Budapest, Hungary, December 2-5,
2013), pp. 201-204.

[6] B. Almási, “A simple solution for wireless network layer roaming
problems”, Carpathian Journal of Electronic and Computer Engineering
Vol. 5, No. 1, (2012) pp. 5-8.

[7] A. Ford, C. Raiciu, M. Handley and O. Bonaventure, “TCP Extensions
for Multipath Operation with Multiple Addresses” IETF, January 2013,
ISSN: 2070-1721, RFC 6824.

[8] MPT source code, http://irh.inf.unideb.hu/user/almasi/mpt/

