INTRODUCTION

This application note describes how to implement an Analog-to-Digital (A/D) Converter function using a member of the PIC16C6XX series of microcontrollers. Although these microcontrollers do not have a built-in A/D Converter like other controllers from Microchip, the comparator function, internal voltage reference and timers can be used to digitize an analog signal.

Some of the standard PICmicros have a comparator module, consisting of two comparators, both of which can be connected to PORTA in a variety of configurations. The internal voltage reference divider can be used with the comparators to establish thresholds. Additionally, one of the comparator inputs can be configured to the RA2 port allowing for the use of an external voltage reference. By combining these elements, a first order modulator and first order filter can be designed, emulating the function of an analog-to-digital delta-sigma conversion.

DELTA-SIGMA THEORY

The function of the classical Delta-Sigma Analog-to-Digital Converter is modeled with two circuit segments: a modulator and a digital filter. The modulator section acquires an input signal as shown in Figure 1. The input signal is added to a signal from a Digital-to-Analog (D/A) Converter in the negative feedback loop. This differentiated signal then passes through an integrator and finally to one of the two inputs of a comparator. The comparator acts like a one-bit quantitizer. The output of the comparator is sent back to the differentiator via a one-bit Digital-to-Analog Converter. Additionally, the output of the comparator passes through a digital filter. With time, the output of the digital filter provides a multi-bit conversion result.

FIGURE 1: First Order Delta-Sigma A/D Converter Block Diagram.
This fundamental circuit concept has been used to generate a large variety of the converters that provide high resolution, relatively inexpensively. The next logical step for this type of A/D Converter is to move it into the controller. A basic controller is not able to execute this type of function, however, a few additional peripherals make it possible. The circuit diagram for this type of implementation is shown in Figure 2.

![Circuit Diagram](image)

FIGURE 2: A microcontroller can be configured as a Delta-Sigma Converter with two additional external resistors and one capacitor. In this configuration, a low pass filter is also implemented as part of the input network.

In the circuit shown in Figure 2, the integrator function of the delta-sigma function is implemented with an external capacitor, C_{INT}. The absolute accuracy of this external capacitor is not critical, only its stability from integration to integration, which occurs in a relatively short period of time. When RA3 of the PIC16C6XX is set high, the voltage at RA0 increases in magnitude. This occurs until the output of the comparator ($C1\text{OUT}$) is triggered low. At this point the driver to the RA3 output is switched from high to low. Once this has occurred, the voltage at the input to the comparator (RA0) decreases. This occurs until the comparator is tripped high. At this point, RA3 is set high and the cycle repeats. While the modulator section of this circuit is cycling, two counters are used to keep track of the time and of the number of ones versus zeros that occur at the output of the comparator.

If this circuit were compared to the classical Delta-Sigma Converter, the integrator would be C_{INT}. The comparator is part of the controller, as well as its voltage reference. The one-bit D/A Converter is implemented in firmware by driving RA3 in accordance with the output of the comparator ($CMCON<6>$). The firmware drives the D/A Converter output at RA3. The digital filter is implemented with two counters.

IMPLEMENTATION WITH THE CONTROLLER

With the circuit in Figure 2, it is possible to conceptualize the delta-sigma function. The controller implementation of this circuit is summarized in the flow chart in Figure 3.

![Flow Chart](image)

FIGURE 3: A Delta-Sigma A/D Conversion Flow Chart implemented with circuit shown in Figure 2. Care should be taken to make the time required for every cycle taken through the flow chart to be a constant. This code is implemented until a conversion is complete.

Normally the output of the comparator is directly connected to RA3 which keeps the voltage at RA0 equal to the reference voltage of the comparator in preparation for the next conversion.

When function “DeltaSigA2D” (Appendix A) is called to perform a conversion, the result and counter variables are cleared. Then the comparator is set to disconnect the output from RA3. This puts RA3 under active program control.

The comparator is checked at the beginning of each loop. If the voltage on the capacitor is less than the input voltage, RA3 is set high, which will put charge into the capacitor raising the voltage. If the voltage on the capacitor is greater than the input voltage, RA3 is set low, taking charge out of the capacitor lowering the capacitor voltage and the result register is incremented.

This continues as long as necessary to get the required resolution. For ten bits of resolution, $2^{10} (1024)$ laps through the loop are required. Each lap through the loop takes 17 instruction cycles. Padding is used to keep all paths through the code equal. A conversion cycle takes 17.5mS when using a 4 MHz clock.
When finished, the comparator output is fed directly to RA3, and the conversion is returned in result_l and result_h.

The sample code provided calls the DeltaSigA2D function and prints the result in an infinite loop. The output is transmitted at 9600 baud via RB7. The answers can be displayed on a dumb terminal program such as Hyperterm included with Windows '95.

![Figure 4: Conversion time versus bits of resolution assuming a 20μs integration time.](image)

Each integration result is taken at a regular time interval. If it is assumed that the time interval of a conversion is 20μs, the conversion time versus bits can easily be calculated. This relationship is shown graphically in Figure 4. For instance, a 10-bit conversion would require \(2^{10}\) or 1024 samples. If the microcontroller conversion loop is 20μs, one complete conversion would take 20.48ms.

Room temperature test data for the circuit shown in Figure 2 is graphed in Figure 5. In Figure 5, the voltage input is plotted versus the output code on the left axis and the output error on the right axis. This data was taken with the 1024 laps through the flow chart in Figure 3. The expected resolution of this configuration is 10-bits. The maximum code error for this test was ±2 counts or 2-bits of uncertainty. Consequently, the effective number of bits of this A/D Converter is 8-bits. The core portion of the code that was used to perform this conversion is listed at the end of the application note.

![Figure 5: Room temperature test data for the circuit shown in Figure 2. The input voltage range is 0.003 to 4.99V. The maximum error found in the test was ±2 counts. In this 10-bit system that is equivalent to ±9.8mV. This test was performed using one sample. Results may vary from part to part. VDD = 5V, calibration performed at 0.5V and 4.99V. The A/D error was calculated assuming the codes for Vin = 0.5V and Vin = 4.5V are ideal. This test was performed with one microcontroller at room temperature. These result may vary from part to part.](image)
ERROR ANALYSIS

This high resolution, low cost Delta-Sigma Converter provides a good solution for ratiometric applications where having the absolute results is not critical. Additionally, the function of analog gain is replaced by the inherent digital filtering that this technique utilizes.

In this example, \(V_{\text{DD}} \) is 5V and the reference voltage is \(V_{\text{REF}} \). The resistors are 47k\(\Omega \), which are chosen to minimize the leakage errors across the resistors versus the R\(\text{DS}_{\text{ON}} \) error of the output pin, RA3. The capacitor has a value of 100nF.

R\(\text{DS}_{\text{ON}} \) Error

This error comes from the drain-source resistance of the output FETs on the output pin, RA3. At room temperature, this resistance error is typically less than 100\(\Omega \). Compared to \(R_2 \), R\(\text{DS}_{\text{ON}} \) introduces about 0.2% gain error. This is easily compensated for by increasing the resistor, \(R_1 \), by approximately 100\(\Omega \). Additionally, the value of the R\(\text{DS}_{\text{ON}} \) resistance will increase with rising temperature. Assuming a temperature change from 20°C to 70°C, R\(\text{DS}_{\text{ON}} \) will change from ~100\(\Omega \) to ~200\(\Omega \) which adds an additional 0.2% error.

RA0 Port Leakage Current

This leakage current is specified at 1nA at room temperature and 0.5\(\mu \)A (max) over temperature. The leakage current from the port at RA0 causes a voltage drop across the parallel combination of \(R_1 \) and \(R_2 \). With these two resistors equaling 47k\(\Omega \), the error caused by this leakage current is ~11mV. This is also close to a 0.2% error. At room temperature this error is negligible. Leakage current does increase with temperature.

Non-Symmetrical Output Port (RA3)

When the output port is high the FET resistance is dependent on the p-channel on resistance. When the output port is low the FET resistance is dependent on the n-channel on resistance. The p-channel on resistance is usually greater than the on resistance of the n-channel FET. As a consequence, there is an additional offset contribution of 5.5mV at room and over temperature.

Voltage Reference

The internal voltage reference to the comparator is implemented with a simple voltage divider. The absolute value of this voltage is dependent on internal resistor matching and power supply voltage. Assuming the power supply is an accurate 5V, the voltage error of this reference, part to part is significant. However, once the initial error of the internal voltage reference is removed with calibration, it is ratiometric to the power supply.

This is the biggest error in the circuit, but easily reduced with an external voltage reference.

Integration Capacitor

Any leakage errors of the capacitor will contribute to the overall error of the system. If the RC time constant of the circuit is greater than the sample frequency, the non-linearity of this time response will cause a linearity error in the system.

In this case the RC time constant is equal to:

\[
\tau_{\text{RC}} = \frac{R_1 || R_2}{C_{\text{INT}}}
\]

The dielectric absorption is not critical. This is due to the fact that the capacitor voltage is held at a relative constant level.

In this example, the maximum voltage deviation due to the non-linearity of the RC network is ~8mV. This is also below a 0.2% error. If a lower sampling frequency is used, the integrating capacitor must be increased in value.

Comparator Offset

The offset of the comparator is specified at 10mV (max). With a \(V_{\text{DD}} \) of 5V, the error caused by the comparator is ~0.2%.

<table>
<thead>
<tr>
<th>Error Source</th>
<th>Contribution at Room Temp</th>
<th>Error Due to Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Offset</td>
<td>Gain</td>
</tr>
<tr>
<td>R(\text{DS}_{\text{ON}}) or RA3 (with (R_1 = 47k\Omega + 100\Omega))</td>
<td>negligible</td>
<td>negligible</td>
</tr>
<tr>
<td>Port Leakage</td>
<td>negligible</td>
<td>N/A</td>
</tr>
<tr>
<td>FET Symmetry of RA3</td>
<td>5.5mV</td>
<td>negligible</td>
</tr>
<tr>
<td>Internal Voltage Reference</td>
<td>49mV</td>
<td>N/A</td>
</tr>
<tr>
<td>Comparator Offset</td>
<td>10mV</td>
<td>N/A</td>
</tr>
<tr>
<td>Most Probable Total Error</td>
<td>52mV*</td>
<td>0.2%</td>
</tr>
</tbody>
</table>

* the offset error of the internal voltage reference can be reduced significantly with an external reference.

TABLE 1: Error contribution of all of the error sources at room and at temperature (-40 to 85°C) for \(R_2 = 47k\Omega \). The “Most Probable Error Over Temperature” is calculated as the square root of the sum of the squares.

Out of Range Inputs

In the event that the input signal goes to the maximum, minimum, or beyond the design limits, the converter will produce erroneous results. This problem can be corrected by decreasing \(R_2 \) by 10% to 20%.

Offset Adjustment

If the application requires that the effect of the system be nulled, this can be done by leaving \(V_{\text{DD}} \) open and running a conversion cycle. The results of this conversion will be equal to the offset voltage of the microprocessor system plus the external reference (if used).
OTHER INPUT RANGES

The configuration shown in Figure 2 is designed for a 0 to 5V input range. The input range for this circuit is determined by the resistor network (comprising of R_1 and R_2) and the reference voltage to the non-inverting input of the comparator. If the ratio of R_1 and R_2 is changed, the input range can be increased or decreased in accordance with the relationship between R_1 and R_2. Further adjustments can be implemented with an additional resistor added to this input structure that is biased to ground or the power supply.

Input Range of 2V to 3V

By adjusting the ratio of R_1 and R_2, the input range of this converter can be increased or decreased. The resistors that are selected for the circuit in Figure 6 reduces the input range from ±2.5V as in Figure 2 to +/-500mV. In both cases, the input range is centered around the reference voltage to the comparator, 2.5V. This type of input range is best suited for sensors with smaller output voltage ranges, such as the buffered output of a pressure sensor or load cell.

The resistors are determined by comparing the desired input range to the voltage range of RA3. Assuming that the reference voltage in this problem is 2.5V, the input range changes ±/500mV and the voltage at RA3 changes by ±/2.5V. The ratio of these two voltage ranges is 5:1. Consequently, during one integration period the difference between the current through R_2 and R_1 must always be less than zero. In this manner, the RA3 gate will be capable of driving the capacitor, C_{INT}, past the reference voltage applied to the non-inverting input of the comparator.

![Figure 6: Configuration of the microcontroller for a delta-sigma conversion with a ±500mV range centered around 2.5V.](image)

The design equations for this circuit are:

$$V_{IN(CM)} = V_{RA0}$$

$$V_{IN(P TO P)} = V_{RA3(P TO P)} (R_1/R_2)$$

where

$$V_{IN(CM)}$$ is equal to

$$(V_{IN(MAX)} - V_{IN(MIN)}) / 2 + V_{IN(MIN)}$$

V_{RA0} is the voltage applied to the comparator’s inverting input

$$V_{IN(P TO P)}$$ is equal to

$$(V_{IN(MAX)} - V_{IN(MIN)})$$

$$V_{RA3(P TO P)}$$ is equal to

$$V_{RA3(MAX)} - V_{RA3(MIN)}$$
Input Range of 10V to 15V

By adding an additional resistor to the input structure of the A/D Converter, an offset adjustment can be applied to the input range. In Figure 7, \(R_1 \) and \(R_2 \) are equal and configured to allow for an input range of +/-2.5V as shown in Figure 2. The addition of \(R_3 \), which is referenced to ground, provides a level shift to the input range of 10V.

With this circuit configuration, a 5V (full-scale) current through \(R_1 \) is equal to \(V_{REF} / R_1 \). If \(R_3 \) is used to draw the same current to ground, the integrating capacitor will not be charged. In this manner, a 2.5V offset is implemented with \(R_3 = R_1 \). To achieve a 10V offset, \(R_3 \) must be equal to \(4R_1 \) as shown in Figure 7.

![Figure 7: Configuration of the microcontroller for a delta-sigma conversion with a ±2.5V range centered around 12.5V.](image)

The design equations for this circuit are:

\[
\begin{align*}
V_{IN(CM)} &= V_{RA0} (1 + R_1/R_3) \\
V_{IN(P TO P)} &= V_{RA3(P TO P)} (R_1/R_2)
\end{align*}
\]

where

\[
\begin{align*}
V_{IN(CM)} &= \text{equal to } (V_{IN(MAX)} - V_{IN(MIN)})/2 + V_{IN(MIN)} \\
V_{RA0} &= \text{voltage applied to the comparator's inverting input} \\
V_{IN(P TO P)} &= \text{equal to } (V_{IN(MAX)} - V_{IN(MIN)}) \\
V_{RA3(P TO P)} &= \text{equal to } V_{RA3(MAX)} - V_{RA3(MIN)}
\end{align*}
\]

Input Range of ±500mV

The circuit in Figure 8 using the scaling technique discussed in the circuit shown in Figure 5 and the offset shift technique discussed in the circuit shown in Figure 6. With this circuit, the input range is +/-500mV. This is achieved by making \(R_2 = 5R_1 \). Then the signal input range is level shifted by -2.5V. In the circuit in Figure 8 this is implemented with a resistor, \(R_3 \), to the positive supply. This level shift is achieved by making \(R_3 = R_1 \).

![Figure 8: Configuration of the microcontroller for a delta-sigma conversion with a ±500mV range centered around ground.](image)

The design equations for this circuit are:

\[
\begin{align*}
V_{IN(CM)} &= V_{RA0} (1 + R_1/R_3) \\
V_{IN(P TO P)} &= V_{RA3(P TO P)} (R_1/R_2)
\end{align*}
\]

where

\[
\begin{align*}
V_{IN(CM)} &= \text{equal to } (V_{IN(MAX)} - V_{IN(MIN)})/2 + V_{IN(MIN)} \\
V_{RA0} &= \text{voltage applied to the comparator's inverting input} \\
V_{IN(P TO P)} &= \text{equal to } (V_{IN(MAX)} - V_{IN(MIN)}) \\
V_{RA3(P TO P)} &= \text{equal to } V_{RA3(MAX)} - V_{RA3(MIN)}
\end{align*}
\]

This circuit can be used to measure the current through a shunt resistor. The main error term at room temperature is comparator offset. In systems with a known “zero-current” state, the offset can be measured and removed through calculation or removed by adding or subtracting the offset to the result counter.

REFERENCES

Cox, Doug, “Implementing Ohmmeter/Temperature Sensor”, AN512, Microchip Technology, Inc.

Richey, Rodger, “Resistance and Capacitance Meter Using a PIC16C622”, AN611, Microchip Technology, Inc.
APPENDIX A: SOURCE CODE = DeltaSig.asm

;***
;* Filename: DeltaSig.asm *
;***
;* Author: Dan Butler *
;* Company: Microchip Technology Inc. *
;* Revision: 1.00 *
;* Date: 02 December 1998 *
;* Assembled using MPASM V2.20 *
;***
;* Include Files: *
;* p16C622.inc V1.01 *
;***
;* Provides two functions implementing the Delta Sigma A2D. *
;* InitDeltaSigA2D sets up the voltage reference and comparator *
;* in the "idle" state. *
;* DeltaSigA2D runs the actual conversion. Results provided in result_l and result_h. *
;* See An700 figure 2 for external circuitry required. *
;***
;* What's changed *
;* * Date Description of change *
;* * #include <p16C622.inc> *
cblock
 result_l
 result_h
 counter:2
endcode

InitDeltaSigA2D
 bsf STATUS,RP0
 movlw 0xEC
 movwf VRCON
 bcf PORTA,3 ;set comparator pin to output
 bcf STATUS,RP0
 movlw 0x06 ;set up for 2 analog comparators with common reference
 movwf CMCON
 return

; Delta Sigma A2D
; The code below contains a lot of nops and goto next instruction. These
; are necessary to ensure that each pass through the loop takes the same
; amount of time, no matter the path through the code.
;
DeltaSigA2D
 clrf counter
 clrf counter+1
 clrf result_l
 clrf result_h
 movlw 0x03 ; set up for 2 analog comparators with common reference
 movwf CMCON
loop
 btfsc CMCON,C1OUT ; Is comparator high or low?
 goto complow ; Go the low route
 comphigh
 nop ; necessary to keep timing even
 bcf PORTA,3 ; PORTA.3 = 0
 incfsz result_l,f ; bump counter
 goto eat2cycles ;
 incf result_h,f ;
 goto endloop ;
complow

bsf PORTA,3 ; Comparator is low
nop ; necessary to keep timing even
goto eat2cycles ; same here

eat2cycles

goto endloop ; eat 2 more cycles

endloop

incfsz counter,f ; Count this lap through the loop.
goto eat5cycles ;
incf counter+1,f ;
movf counter+1,w ;
andlw 0x04 ; Are we done? (We're done when bit2 of
btfsc STATUS,Z ; the high order byte overflows to 1).
goto loop ;
goto exit ;

eat5cycles

goto $+1 ; more wasted time to keep the loops even
nop ;
goto loop ;

exit

movlw 0x06 ; set up for 2 analog comparators with common reference
movwf CMCON

return

end
Note the following details of the code protection feature on PICmicro® MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.
WORLDWIDE SALES AND SERVICE

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7943 Fax: 972-818-7944

Detroit
Tri-Atra Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48344
Tel: 248-538-2250 Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338

New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-0065 Fax: 631-273-0088

San Jose
941 Westlake, Suite 590
San Jose, CA 95131
Tel: 408-436-7955 Fax: 408-436-7955

Toronto
6285 Northdale Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Lawson Street
South Yarra, VIC 3141, Australia
Tel: 61-3-9688-6733 Fax: 61-3-9688-6755

China - Beijing
Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office
Unit 915
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu
Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office
No. 7911, Shuangliu Road, Chengdu, Sichuan 610001, China
Tel: 86-28-6766200 Fax: 86-28-6766599

China - Fuzhou
Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office
Unit 711, World Trade Plaza
Fuzhou 350001, China
Tel: 86-591-8700061 Fax: 86-591-8700062

China - Shanghai
Microchip Technology Consulting (Shanghai) Co., Ltd., Shanghai Liaison Office
No. 187, Fuxing Road, Shanghai, Shanghai, 200000, China
Tel: 86-21-6267-5700 Fax: 86-21-6267-5600

China - Shenzhen
Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office
Ruins 1315, 13/F, Shenzhen Kerry Centre, Rennminlu 518001, China
Tel: 86-755-2350361 Fax: 86-755-2360686

Hong Kong
Microchip Technology Hong Kong Ltd.
Unit 901-6, Tower 2, Metroploza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-22-1200 Fax: 852-22-1243-3413

India
Microchip Technology India
India Liaison Office
Divyasaare Chambers
1 Floor, Wing A (A3/A4)
No. 11, O' Shaugnessy Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 1F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471-6166 Fax: 81-45-471-6122

Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934

Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-334-8870 Fax: 65-334-8850

Taiwan
Microchip Technology Taiwan
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup høj 1-3
Ballorup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910

France
Microchip Technology SARL
Parc d'Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany
Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Tauro 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-02-699-6791-1 Fax: 39-039-6899883

United Kingdom
Arizona Microchip Technology Ltd.
505 Essdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

© 2002 Microchip Technology Inc.
01/18/02