
1

Analog Applications Journal February 2000 Analog and Mixed-Signal Products

A methodology of interfacing serial A-to-D
converters to DSPs

Introduction
Designers of DSP systems often have to rewrite
their interface software when a desired increase
in system performance requires the replacement
of the current A-to-D converter with a device of
higher speed or resolution. This article describes
a method for interfacing various types of serial ADCs
to the standard serial port of a DSP (TMS320C50)
while keeping the software modifications at a
minimum. It concludes with the introduction of
“C-callable assembler routines” provided by TI’s
application staff that relieve the experienced
C-programmer from performing tedious
assembler studies.

Serial analog-to-digital converters
Table 1 lists a range of serial ADCs that interface
directly to DSPs without additional control logic. All these
devices have the following in common:
• the conversion is performed by successive approxima-

tion based on charge redistribution,
• a conversion is initiated by an external trigger signal, and
• the data format for the transfer between DSP and ADC

is 16 bits.

For purposes of describing interface timing the devices
in Table 1 are grouped in two categories:
• on-the-fly converters that perform a conversion while

exchanging data with the host, and
• sequential converters that execute a conversion follow-

ing a data transfer.

Figure 1 shows a typical interface between a DSP and a
serial ADC. The DSP general-purpose I/O XF signal acti-
vates the ADC. The control and data signals of the DSP
serial port manage the transfer of data. The additional
EOC/INT output, only available on sequentially converting
ADCs, signals the end of a conversion to the DSP, indicat-
ing that a new transfer can begin.

Before the timing sequence of a data transfer is discussed,
the reader should understand the internal operation of
the standard serial interface.

Standard serial interface
TI provides a variety of DSPs with different types of serial
interfaces including:
• buffered serial port (BSP) with auto-buffering unit

module (AMU),
• buffered serial interfaces with internal FIFO, and
• time-division-multiplex (TDM) serial interfaces, partic-

ularly useful for telecom applications.

The standard serial interface is the focus of this discus-
sion because it is used far more often than the BSP or the
TDM serial port. The serial port interfaces to data con-
verters via the following six control lines:

CLKX Transmit clock input or output. This signal
clocks data from the transmit shift register (XSR)
to the DX pin. The serial port can be configured
for internal clock generation or to accept an exter-
nal clock. If the port is configured to generate the

Texas Instruments Incorporated Data Acquisition

By Thomas Kugelstadt
Application Manager

Continued on next page

SUPPLY RESOLUTION INPUT CONVERSION POWER SWEEP
DEVICE CONVERSION (V) (bits) CHANNEL RATE (MSPS) DOWN MODE FIFO

TLV1570 On-the-fly 2.7 – 5.5 10 1 1.25 Auto – –
TLV1572 On-the-fly 2.7 – 5.5 10 8 1.25 Auto ✔ –
TLV1544 Sequential 2.7 – 5.5 10 4 0.1 Prog. ✔ –
TLV1548 Sequential 2.7 – 5.5 10 8 0.1 Prog. ✔ –
TLV2544 Sequential 2.7 – 5.5 12 4 0.2 Prog. ✔ ✔

TLV2548 Sequential 2.7 – 5.5 12 8 0.2 Prog. ✔ ✔

TLC2554 Sequential 5.0 12 4 0.4 Prog. ✔ ✔

TLC2558 Sequential 5.0 12 8 0.4 Prog. ✔ ✔

Table 1. Family of serial A-to-D converters

XF

CLKX
CLKR

FSX
FSR

DX
DR

INTx

SCLK

FS

DIN
DOUT

CS

EOC / INT

n
A0 - An

ADC DSP

Analog
Inputs

Serial
Interface

Figure 1. Typical serial interface between an
ADC and a DSP

Texas Instruments IncorporatedData Acquisition

2

Analog Applications JournalAnalog and Mixed-Signal Products February 2000

data clock on-chip, CLKX becomes an output,
providing the data clock for the serial interface. If
the port is configured to accept an external clock,
CLKX changes to an input, receiving the external
clock signal.

FSX Transmit frame synchronization input or

output. FSX indicates the start of a transmission.
The serial port can be configured for internal frame-
sync generation or to accept an external frame-
sync signal. If the port is configured to generate
the frame sync pulse on-chip, FSX becomes an
output. If the port is configured to accept an exter-
nal frame sync pulse, this pin becomes an input.

DX Serial data transmit. DX transmits the actual
data from the transmit shift register (XSR).

CLKR Receive clock input. CLKR always receives an
external clock for clocking the data from the DR
pin into the receive shift register (RSR).

FSR Receive frame synchronization input. FSR
always receives an external frame sync pulse to
initiate the reception of data at the beginning of a
frame.

DR Serial data receive. DR receives the actual data
which are clocked into the receive shift register
(RSR).

Figure 2 shows the block diagram of the standard serial
interface. The operation of the serial port is supported by
the following five 16-bit registers:

DXR Data transmit register. Transmit data are writ-
ten by the CPU into this register and then copied
into the XSR. The DXR provides double buffering
function by allowing the CPU to update its con-
tent via a new write-cycle, while the previous
data transmit out of XSR is still ongoing.

XSR Transmit shift register. Transmit data are copied
from the DXR into the XSR and sent to the data
converter.

RSR Receive shift register. Receive data from the data
converter are clocked into this register and then
copied to the DRR.

DRR Data receive register. Receive data, copied from
the RSR, are read by the CPU from this register.
The DRR provides double buffering function by
allowing the CPU to read its content, while the
next data reception into RSR has already started.

SPC Serial port control register. The SPC contains
control bits, which are set by the CPU to config-
ure the operation of the serial port.

Serial port general operation
In the transmit direction the CPU initiates a data transfer
by writing transmit data to the DXR. Then the data are
copied from the DXR into the XSR and clocked out to the
DX output. Upon the completion of a DXR-to-XSR copy, a
transmit interrupt, XINT, is generated. This interrupt sig-
nals the CPU that new data can be written into the DXR.

In the receive direction the incoming data are clocked
into RSR and then copied into DRR. Upon the completion
of the data copy, a receive interrupt, RINT, is generated.
This interrupt signals the CPU that new data are available
in DRR. The CPU needs to read these data, while the
next receive frame is clocked into the RSR.

Serial port configuration
Before a data transfer can be executed, the serial port
needs to be configured via the serial port control register,
SPC. Figure 3 shows the 16-bit memory-mapped SPC of
the TMS320C50DSP (R = read-only bits, R/W = read/write
bits).

Out of the 16 bits of the SPC, only six R/W bits (shaded
bits in Figure 3) are used to configure the serial port. The
remaining non-shaded R/W bits, such as the emulation
bits FREE and SOFT, and the digital loop back bit, DLB,
are set to zero (FREE = SOFT = DLB = 0).

Continued from previous page

CPU

Data Bus

DXR

XSR

DRR

RSR

SP
C

XINT

RINT

DX

CLKX
FSX

DR

CLKR
FSR Control

Logic

Control
Logic

R/WR/W R R R R R R R/W R/W R/W R/W R/W R/W R/W R

FREE SOFT RSRFULL /XSREMPTY XRDY RRDY IN1 IN0 RRST XRST TXM MCM FSM FO DLB RES

Figure 3. Serial port control register

Figure 2. Standard serial interface
block diagram

Texas Instruments Incorporated Data Acquisition

3

Analog Applications Journal February 2000 Analog and Mixed-Signal Products

Table 2 explains the functions of the
six bits that configure the serial port.

The following example shows a typical
serial port configuration when interfac-
ing to a serial A-to-D converter from
Texas Instruments.
• For standard serial port operation, all

non-shaded R/W bits are set to zero
(Free = Soft = DLB = 0).

• During the SPC configuration the serial
port transmitter and receiver need to
be disabled by setting the respective
reset bits to zero (/XRST = /RRST = 0).

• Assuming that no external clock and
frame sync generator are used, both
signals need to be generated on-chip,
thus requiring that TXM and MCM be
set to one (TXM = MCM = 1).

• To comply with the 16-bit data format
of the A-to-D converter, FO is set to
zero (FO = 0).

• As mentioned previously, all serial ADCs require a trig-
ger signal for each data transfer plus subsequent con-
version. As will be shown in the following section, this
trigger signal is already available through the FS-pulse
of the serial port. For this purpose the serial port needs
to be configured for burst mode operation by setting
FSM to one (FSM = 1).

Figure 4 shows the resulting binary pattern with the
corresponding hex code that is loaded into the SPC.

The assembler instruction << SPLK #0038h , SPC >>
commands the CPU to write the content 38h into the seri-
al control register, SPC. The CPU then activates the serial
port via a second instruction << SPLK #00F8h , SPC >>
by setting the /XRST and /RRST bit to one.

Transmit and receive operations in burst mode
The serial port can be programmed for continuous mode
or burst mode operation. Both modes indicate the begin-
ning of a data frame via a frame-sync pulse at FS. In con-
tinuous mode, only one FS-pulse is needed to indicate the
beginning of a number of consecutive data frames. In
burst mode, an FS-pulse indicates the start of one data
frame (16 SCLK cycles) only, thereby providing the
required trigger signal for an A-to-D conversion.
Therefore, the serial port needs to operate in burst mode.
Figure 5 shows the interface timing of the serial port in
burst mode operation.

The data clock has the two designators CLKX and CLKR
because the clock signal of the serial port transmitter is

identical to the one of the serial port receiver. Figure 1
shows that when the serial port is configured for on-chip
clock generation (MCM = 1), CLKX is not only connected
to the clock input of the ADC but also fed back into the
data clock input of the serial port receiver. The same is
valid for the frame-sync signals, FSX and FSR.

A data transfer is initiated by the CPU writing transmit
data (i.e., ADC configuration data) into the data transmit
register, DXR. With the second rising edge of CLKX, the
content of DXR is copied into the transmit shift register,
XSR. At this time, a frame-sync pulse and a transmit
interrupt, XINT, are generated. With the first rising edge
of CLKX after FSX has gone low, transmit data are shifted
out to the DX-pin while receive data are clocked into the
receive shift register, RSR, via the DR-pin. Both data
streams, in transmit and receive, start with the most sig-
nificant bit, MSB. While data change with the rising edge
of CLKX, the falling edge of CLKX latches the transmit
data into the ADC and the receive data into RSR. With
the 16th falling edge of CLKX (after FSX has gone low),
the receive shift register, RSR, is full. The content of RSR
is copied into the data receive register, DRR, and a
receive interrupt, RINT, is generated. The falling edge of
the 16th CLKX cycle completes an entire data transfer,
both in receive and transmit. Any further data transfer
needs to be initiated with a CPU reload of DXR.

The serial port interrupts, XINT and RINT (shaded gray
in Figures 5 and 6), represent internal signals, which are
available to the CPU only. If either one of these interrupts

NAME FUNCTION
/XRST/RRST The Transmit and Receive reset signals activate and deactivate the

transmitter and receiver of the serial port.
/XRST, / RRST = 1, transmitter and receiver are active
/XRST, / RRST = 0, activity halts

TXM The Transmit Mode bit specifies the source for FSX-pulse generation.
TXM = 1, FSX is generated on-chip and synchronized to CLKX
TXM = 0, FSX needs to be applied from external source

MCM The Clock Mode bit specifies the clock source for CLKX.
MCM = 1, on-chip clock source is used
MCM = 0, external clock source is chosen

FSM The Frame Synch Mode bit specifies when a frame sync pulse is needed.
FSM = 1, Burst Mode is selected (an FS-pulse is used for each word)
FSM = 0, Continuous Mode is selected (only one start pulse is required)

FO The Format bit specifies the word length of the transmitter and receiver.
FO = 0, word length is 16-bit
FO = 1, word length is 8-bit

Table 2. Important SPC bits for an ADC/DSP interface

00 0 0 0 0 0 0 0 0 0 0 01 1 1

8300

Bin

Hex

FREE SOFT RSRFULL /XSREMPTY XRDY RRDY IN1 IN0 RRST XRST TXM MCM FSM FO DLB RES

Continued on next page

Figure 4. Serial port configuration code

Texas Instruments IncorporatedData Acquisition

4

Analog Applications JournalAnalog and Mixed-Signal Products February 2000

DX
(FO = 0)

XINT

CLKX / CLKR
(MCM = 1)

FSX / FSR
(TXM = 1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

DXR
Loaded

DXR
Loaded

Transmit Word B

1 2 3 4 5 6 7 8

MSB

Transmit Word A

1 16

RINT

DRR
Read

DR

Receive Word BReceive Word A

MSB

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8

RSR ⇒DRR
Copy

DXRDXR ⇒⇒ XSRXSR
CopyCopy

DXR
Reloaded

DXR
Loaded

DXR
Reloaded

XINT
Disabled

DRR
Read

Data
Save

DX
(FO = 0)

XINT

CLKX / CLKR
(MCM = 1)

FSX / FSR
(TXM = 1)

RINT

DR

DXR ⇒XSR
Copy

DXR ⇒XSR
Copy

Transmit Word A Transmit Word B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Receive Word A Receive Word B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RSR ⇒DRR
Copy

Disabled
XINT

RINT-ISR

XINT-ISR

Continued from previous page

Figure 5. Transmit and receive operation in burst mode

Figure 6. Burst mode operation at maximum packet frequency

Texas Instruments Incorporated Data Acquisition

5

Analog Applications Journal February 2000 Analog and Mixed-Signal Products

occurs, the program execution is directed to a transmit
interrupt service routine, XINT-ISR, or a receive interrupt
service routine, RINT-ISR. Within those ISRs, the CPU
can execute serial port supporting tasks while a data
transfer over the serial interface is still in progress.

For example, an XINT-ISR is often used to reload DXR
after the old DXR content is copied into XSR. This ensures
that the next DXR-to-XSR copy happens as soon as XSR
is empty and a second data transmit can follow immedi-
ately. However, as will be shown in the next secton, when
interfacing to sequentially operating ADCs, XINT needs to
be disabled. A RINT-ISR is used to read the data receive
register, DRR, and to save the content into data memory.
When interfacing to on-the-fly converters, the RINT-ISR
can also include the initiation of the next data transfer to
maximize the data throughput.

A specific case of the burst mode is the operation at
maximum packet frequency, shown in Figure 6.

At maximum packet frequency, the data bits in consec-
utive packets are transmitted contiguously with no inactiv-
ity between bits. This is achieved by reloading DXR dur-
ing the first XINT-ISR. A second instruction disables XINT
for all further data frames. A XINT-ISR executing these
two instructions takes approximately five CLKX cycles to
complete. With the rising edge of the 16th CLKX cycle,
the last transmit bit is shifted out of XSR, and the latest
DXR content is copied into XSR. At this time a new frame
sync pulse, which overlaps the last transmit bit of the
previous frame, is generated to start a new data transfer.

With the 16th falling edge of CLKX, half a clock cycle
later, the last receive bit is clocked into the RSR. The sub-
sequent RSR-to-DRR copy generates a receive interrupt.
During the following RINT-ISR, the CPU reloads the
transmit data register, DXR. It then reads the receive data
register, DRR, and saves its content into data memory.
While the CPU is executing the RINT-ISR, the serial port
continues to transfer data. From now on, only one interrupt

service routine, the RINT-ISR, is used to save the receive
data into memory, as well as to initiate all further data
transfers. Care must be taken when adding further
instructions to the RINT-ISR. Since the data stream needs
to be contiguous, the length of the ISR must not exceed
15 CLKX cycles.

Interfacing to sequential ADCs
The sequential A-to-D converters in Table 1 operate in
two phases. In phase 1, the ADC simultaneously receives
configuration data from the DSP and transmits conversion
results to the DSP. During this data transfer, the ADC is
configured for the desired operation mode and starts
sampling the analog input channel. Phase 2 represents
the actual analog-to-digital conversion, followed by an
interrupt signal once a conversion is complete. The
advantage of the sequential operation is that the sampling
period can be extended by a factor of 2 without affecting
the conversion time. This is particularly useful for sam-
pling high-impedance input sources. A long sampling time
allows the ADC internal switched capacitors to be charged
longer, thus helping the analog input signal sampled to
settle within a 0.5-LSB accuracy.

Figure 7 shows the timing diagram of the TLV2544 ADC
in single-shot mode. Because a conversion needs to be
completed before another one can be started, a contigu-
ous flow of data bits is not possible, which is true for all
sequentially operating ADCs.

Note that most ADCs provide a programmable EOC/INT
pin to signal the end of a conversion. The following dis-
cussion assumes that the EOC/INT pin is programmed to
use the /INT pulse to indicate the end of a conversion.
The two gray-shaded signals, EOC and RINT, serve
demonstration purposes only.

EOC presents the internal conversion time of the A-to-D
converter, while RINT demonstrates the occurrence of
the DSP internal receive interrupt.

Continued on next page

XF

DX

1 16

Conf2

Result 1

4
INTx-ISRRINT-ISR Idle RINT-ISR IdleIdle IdleMain INTx-ISR

1 2 3 4 1 2 3 4 1

RINT

Result 0

Conf1

SCLK

FS

DIN

DOUT

EOC

Conf
Sampling

CLKX
CLKR

FSR
FSX

DR

INTx

ADC DSP

Zeros Zeros

1st
Conversion

2nd
Conversion

CS

INT

Figure 7. ADC/DSP interface timing for a sequential ADC

Texas Instruments IncorporatedData Acquisition

6

Analog Applications JournalAnalog and Mixed-Signal Products February 2000

Main routine
The main routine starts with defining the following variables:
• the number of samples to be acquired,
• the memory start address for the acquired data, and
• the ADC configuration words such as the conversion mode, the sampling

mode, and the channel numbers.
The DSP configuration disables all interrupts, specifies the wait-states

to zero, and defines the program memory range for the data acquisition
program. Then the serial port is configured for burst mode operation and
on-chip data clock and frame-sync generation.

The two interrupts, RINT and INTx, are enabled, and the END-flag, which
determines the end of the data acquisition program, is set to zero.

To configure the A-to-D converter, the DSP takes the XF-output low and
enables the ADC via the /CS- input. The CPU loads the DXR with ADC
configuration data, causing the first data transfer to start. Then the CPU is
set into idle mode, waiting for interrupts to occur.

Once an ISR has been completed, the CPU checks for program
completion. As long as the END-flag is zero, the CPU returns to idle mode.
If the END-flag is one, the DSP disables the ADC by taking XF high, thus
completing the main routine.

RINT-ISR
During the RINT-ISR the CPU reads the receive data in the serial port,
saves the data into memory, and returns to the main routine.

INTx-ISR
The INT-ISR initiates all further data transfers. As long as more samples
are to be acquired, the CPU continuously reloads the DXR to start a new
conversion.

Once all samples have been acquired, the END-flag is set to one and
program control returns to the main routine.

The data acquisition process starts with the DSP pro-
viding the data clock, SCLK, for the serial interface. The
DSP then activates the ADC by applying a logic low via
the external flag output, XF, to the /CS input of the A-to-D
converter. With the falling edge of /CS, the data output of
the ADC leaves the high-impedance state and provides a
random logic value at DOUT.

After the ADC is enabled, each data transfer is executed
by the following five steps:
1. In the main routine, the DSP initiates a data transfer

by writing ADC configuration data into the DXR of the
serial port. On the second rising edge of SCLK follow-
ing the DXR-write, a frame sync pulse, FS, is generated.

2. With the falling edge of FS, the serial port transmits
configuration data to the ADC via DIN. The first four
bits represent the actual configuration data, while the
remaining 12 bits are ignored by the ADC. Simulta-
neously the ADC transmits the conversion results via
DOUT to the DSP. To comply to the 16-bit frame for-
mat, the results of a 10-bit converter is followed by six
zero bits. A 12-bit conversion result requires only four
trailing zeros.

3. With the 16th falling edge of SCLK, the DX output, and
with it DIN, goes into high-impedance, while DOUT
stays low till the next data transfer. The A-to-D con-
verter starts the conversion process and the generated
receive interrupt of the serial port leads the CPU to
enter the RINT-ISR. During this interrupt routine, the

CPU reads the receive data from the serial port and
saves it into data memory.

4. Upon the completion of the RINT-ISR the CPU idles
until an unmasked interrupt occurs. The ADC com-
pletes the conversion and provides an interrupt pulse
via its /INT output to one of the DSP external interrupt
inputs, /INT1 – /INT3.

5. The CPU now enters the INTx-ISR, reloading the DXR
with ADC configuration data (i.e., the channel number).
The new DXR-write initiates the next data transfer
sequence, and Steps 1–4 are repeated until all samples
have been acquired.

Figure 8 shows the basic program flow that supports
the above interface timing.

Interfacing to “on-the-fly” ADCs
These converters perform the analog-to-digital conversion
at the same time they transfer data to the DSP. A data
acquisition, including device configuration and data con-
version, is completed within the 16 data clock cycles, thus
allowing the stream of data bits to be contiguous. On-the-
fly converters usually provide a sample rate of 1–4 MSPS.
Figure 9 shows the timing diagram of the multi-channel,
on-the-fly A-to-D converter, TLV1570.

After the DSP has activated the ADC by taking /CS low,
the data transfer is executed by the following three steps:
1. In the main routine, the DSP writes ADC configuration

data into the DXR of the serial port and generates an
FS-pulse as well as a transmit interrupt, XINT. The ser-
ial port executes the first transfer of data by sending a

Continued from previous page

No

No

IDLE

END = 1?

END

Yes

Initiate Next
Conversion

RETE

RINT

Save Data
into Memory

Read Serial
Interface

More
Samples?

Yes

END:= 1

START

Define
Variables

Configure
DSP

Configure
Serial I/F

Configure
ADC

END:= 0

Enable
RINT & INTx

INTx

RETE

Disable ADC

Figure 8. Interface program for sequential ADCs

Texas Instruments Incorporated Data Acquisition

7

Analog Applications Journal February 2000 Analog and Mixed-Signal Products

16-bit configuration word to the ADC. In receive, the
ADC provides 16-bit output data, consisting of four
preceding zeros and a 12-bit conversion result.
Meanwhile the XINT-ISR reloads DXR and disables
XINT for all further data frames.

2. While the data transfer continues, the CPU idles, wait-
ing for a receive interrupt to occur.

3. With the rising edge of the 16th SCLK cycle, a new FS-
pulse starts the next data frame. Upon the falling edge
of the 16th SCLK cycle, a RINT is generated that
forces the CPU to leave the idle mode and enter the

receive interrupt service routine. Within the RINT-ISR,
the CPU reads the DRR and saves the received data
into memory. It then writes a new configuration word
into DXR to prepare for the next data frame. After
completing the RINT-ISR, the CPU returns to idle
mode. Then Steps 2 and 3 are repeated until all sam-
ples have been acquired.

Figure 10 shows the timing diagram of the 12-bit, single-
channel ADC, TLV1572. The interface timing is similar to
that of the TLV1570, except that the output data of the

RINT

Config 4

XF

DX

16
RINT-ISRRINT-ISR Idle RINT-ISR IdleXINT-ISR IdleMain+

1 2 3 2 3 2 3 2

Config 1

SCLK

FS

DIN

CLKX
CLKR

FSR
FSX

ADC DSP

Config 2 Config 3

Result 0DOUT DRResult 1 Result 2 Result 3

XINT

Sampling
Converting

Idle

Zeros Zeros

CS

RINT

Dummy Write 4

XF

DX

16
RINT-ISRRINT-ISR Idle RINT-ISR IdleXINT-ISR IdleMain+

1 2 3 2 3 2 3 2

Dummy Write 1

SCLK

FS

CLKX
CLKR

FSR
FSX

ADC DSP

Dummy Write 2 Dummy Write 3

Result 1DOUT DRResult 2 Result 3 Result 4

XINT

Sampling
Converting

Idle

Zeros Zeros

CS

Continued on next page

Figure 9. ADC/DSP interface timing for a multi-channel on-the-fly ADC

Figure 10. ADC/DSP interface timing for a single-channel, on-the-fly ADC

Texas Instruments IncorporatedData Acquisition

8

Analog Applications JournalAnalog and Mixed-Signal Products February 2000

TLV1572 represent the results of the current conversion,
while the output data of the TLV1570 are the results of
the conversion executed in the previous data frame.

The TLV1572 is not configurable and therefore provides
no DIN terminal. The DSP still needs to perform a dummy
write of the DXR (i.e., with random data) to generate the
required FS-pulse, which indicates the start of a data
frame and triggers the A-to-D conversion.

Figure 11 shows the basic program flow that supports
the above interface timing.

C-callable interface routines
The previous flowcharts describe the structure of the
interface routines written in assembler. These assembler
routines are used to investigate and to optimize the inter-
face timing between newly released data converters and
DSPs. However, with the majority of DSP programmers

using C rather than assembler, TI’s application team for
analog products has made its assembler routines C-callable.

Figure 12 gives an example of a C-callable assembler
routine for the 8-channel, 12-bit ADC, TLV2548.

In addition, the assembler routine received a save-
context and a restore-context task.
• Save-context saves all pointers and registers, such as

frame-pointer, stack-pointer, status and auxiliary regis-
ters, which have been used previously in the C-program.

• Restore-context restores the original content of these
registers before returning to the C-program.

After the variable definition in C, a call instruction
starts the assembler routine. All previously used registers
are saved, and the actual data acquisition begins. Once
the user-defined number of samples has been received, all
pointers and registers are restored. The CPU exits the
assembler routine and returns to the C-program. Using
C-callable interface relieves the programmer from the
tedious task of studying device-specific assembler code.

Continued from previous page

Main routine
The main routine is almost the same as the one in
Figure 8, except that the internal transmit interrupt,
XINT, is used instead of the external interrupt, INTx.

The main routine starts with defining the number of
samples to be acquired, the memory start address for
the acquired data, and the ADC configuration words.
In the case of a non-configurable device, there are no
configuration words. Instead, any random code can
be written to DXR to start a data transfer.

The main routine continues with configuring the
DSP and the serial port.

Then the two serial port interrupts, RINT and XINT,
are enabled, and the END-flag is set to zero.

To configure the ADC, the DSP takes the XF-output
low and enables the device via the /CS- input. The
CPU writes configuration data to DXR. The following
data transfer configures the ADC, while the CPU goes
into idle mode, waiting for interrupts to occur.

Once an ISR has been completed, the CPU checks
for program completion. Depending on the status of
END, the CPU either returns to idle mode or disables
the ADC and completes the main routine.

XINT-ISR
With the start of the first data frame, a XINT is
generated. The CPU enters the XINT-ISR and reloads
DXR to ensure an immediate start of the second frame,
once the first transfer is completed and XSR is empty.

Then the CPU disables XINT for all further
transfers.

RINT-ISR
This RINT-ISR is the sum of the previous RINT- and
INTx-ISRs for sequential converters. The CPU reads
the receive data and saves it into memory.

As long as more samples are to be acquired, the
CPU continuously reloads the DXR to start a new
conversion. Once all samples have been acquired, the
END-flag is set to one and program control returns to
the main routine.

No

No

IDLE

END = 1?

END

Yes
Initiate Next
Conversion

RETE

RINT

Save Data
into Memory

Read Serial
Interface

More
Samples?

Yes

END:= 1

START

Define
Variables

Configure
DSP

Configure
Serial I/F

Configure
ADC

END:= 0

Enable
RINT & XINT

XINT

RETE

Initiate Next
Conversion

Disable XINT

Disable ADC

Figure 11. Interface program for on-the-fly ADCs

Texas Instruments Incorporated Data Acquisition

9

Analog Applications Journal February 2000 Analog and Mixed-Signal Products

Main()
{
/*select Vcc, Vcc = 5 or 3
Vcc = 5;
/* select channel */
Channel = 0x2000;
/* select samples */
Samples = 0x1000;
/* select memory address*/
MemStart = 0x2000;
:
:

/*Call Interface Program */
C2548();

/* remaining C program */
:
:
}

C2548.CC2548.ASM

* Data Acquisition
(Conversion & Transfer)

* Restore Context
- Restore Return Address,

FP, SP, ST0, ST1,
AR6, AR7, SWWSR

* Save Context
- Save Return Address,

FP, SP, ST0, ST1,
AR6, AR7, SWWSR

* Return to C Program
Ret

_C2548:

References
For more information related to this article, visit the TI Web
site at www.ti.com/ and look for the following materials by
entering the TI literature number into the quick-search box.

Document Title TI Lit. #

1. Analog Applications (August 1999) SLYT005
2. Characteristics, Operation, and Use of

the TLV157XEVM .SLAU025
3. Interfacing the TLV1572 ADC to the

TMS320C203 DSP .SLAA026B
4. TLV1570 EVM User’s Guide SLAU024
5. TLV1572 EVM User’s Guide SLAU018
6. Choosing an ADC and Op Amp for

Minimum Offset .SLAA064

7. Interfacing the TLV1544 ADC to the
TMS320C203 DSP .SLAA028A

8. Interfacing the TLV1544 ADC to the
TMS320C50 DSP .SLAA025A

9. Switched-capacitor ADC Analog Input
Calculations .SLAA036

Related Web sites
Get product data sheets at:
www.ti.com/sc/docs/products/analog/device.html

Replace device with tlc2554, tlc2558, tlv1544, tlv1548,
tlv1570, tlv1572, tlv2544, or tlv2548
www.ti.com/sc/docs/products/dsp/tms320c50.html

Figure 12. C-callable interface program

