High-speed ADC techniques - overview and scaling issues -

Vladimir Stojanovic

Outline

- High-Speed ADC applications
- Basic ADC performance metrics
- Architectures overview
- ADCs in 90s
- Limiting factors
- Conclusion

High-speed ADC applications

- Wireless LAN Data Channel (1-50MS/s, 6-10b)
- Magnetic Storage Read Channel (200-1000MS/s, 6-8b)
- ADSL data channel (3-10MS/s, 12-16b)
- Digital Multi-Standard TV Baseband ADC (20MS/s, 8-10b)
- CATV Decoder Modem ADC (10-20MS/s, 8-10b)
- HDTV various apps (50-75MS/s, 10b)
- Digital-IF for Multi-standard Broadcast TV rcvr (100-200Mb/s, 8-12b)
- Serial high-speed links with MPAM modulation (5-10Gs/s, 4-6b)

Basic ADC performance metrics

- Peak SNR SNRp=6.02N+1.76 [dB]
- Effective # of bits SNDR=6.02ENOB+1.76[dB]
- Dynamic range

 $DR=P_{full \ scale \ sin}/P_{sin@0dB \ SNR}$

- Spurious Free Dynamic Range
- Static errors:

DNL - differential non-linearity

INL - integral non-linearity

Offset

Gain error

Architectures

- Flash
 - Interpolation
 - Averaging
- Folding
 - Folding and Interpolation
- Two-step
 - Subranging
 - Flash
- Pipeline
 - Per-stage calibration

Flash ADC

- Best up to 8 bits:
- + Speed
- + Simplicity
- Exponential complexity
- Big input capacitance
- Bubbles in thermo code
- Power
- Difference in signal delay to each comparator

Interpolation in Flash ADC

- Reduced # of pre-amps
 - smaller input capacitance
 - less power than full flash
- Improved DNL due to distribution of errors

Averaging in Flash ADC

Pre-amps reduce effect of comparator offset (~ 15-50mV) But introduce offsets (~3mV-10mV)

Solution – Average out the pre-amplifier offsets with resistor network

Effect of Averaging

Averaging effect on offset, INL, DNL

• neighboring signals highly correlated after averaging

•
$$\Delta = (V_{n-2} - V_{n+3})/5$$
 and $\boldsymbol{s}_{average} = \frac{\boldsymbol{s}_{individual}}{\sqrt{5}}$

- DNL improves with # of averaging stages
- INL, offset improve with square-root of averaging stages

Folding and Two-step ADCs

Folding: Continuous Two Step A/D Converter

Two architectures, same idea:

- Folding
- Two-step
- Coarse ADC gets MSBs and residue
- Fine ADCs get LSBs from residue

Folding ADC

Folding ADC: Block Diagram

- Folding tradeoff
 - + Fewer comparators
 - Faster signals

• Fold x 4

- + From 8 to 2 comparators
 - max. Fout > 4 Fin
- Critical issue is to match timing of coarse ADC and fine (folded) ADCs
- Non-linearity around the folding point significantly reduces performance if amplitude is quantized

Folding & Interpolating ADC

With interpolation – only detect zero crossing points

Two-step: subranging ADC

- + 2(2^{N/2}-1) comparators
 Coarse bank selects which part
 of reference ladder to connect to
 fine bank
- Speed limited by settling of fine references
 parasitic capacitance from > 2^N switches + large kickback

Two-step: Flash ADC

• Two-step ADC accuracy challenges

Pipelined ADC

- All stages process different data simultaneously
 - throughput only depends on speed of each stage
 - complexity traded for latency

Effect of stageADC non-linearity errors

2-bit example:

Case 1: Ideal ADC, DAC

Key Point: Can remove ADC Errors by Increasing ADC range in next stg

Removing stageADC non-linearity errors

Important Case: 1.5 bit/Stage with Digital Correction

Final Result: DAC Linearity and amplifier gain errors ultimately limit linearity

Interstage gain error propagation

G_E models interstage gain error Only need to correct for the red block in each stage !

Interstage gain error calibration

Time-Interleaved, pipelined ADCs

Clock each ADC at F_s/M

Increase throughput and area M times

Gain mismatch => Amplitude Modulation Offset mismatch => Additive Tones Timing mismatch => Phase modulation

Gain and offset calibration

ADCs in '90s

- Analyzed a bunch of ADCs
 - different technologies
 - different specs How to compare?
- Use metrics from digital domain to see how ADCs scale with mainstream digital CMOS
- Two main metrics:
 - Delay of fan-out of 4 inverter (FO4)
 - Energy dissipated driving the gate of minimum size inverter (MSI)

Metrics ...

• Unit Delay

$$FO4 = \frac{500 \, ps}{mn} L_{ch}[mn]$$

• Unit Energy $Cg_{MSI} = (4+8)I \frac{2fF}{mn} = \frac{12fF}{mn} L_{ch}[mn]$
 $MSI = \frac{6 \, fF}{mn} L_{ch}[mn] \times Vdd^2$

- Approach:
 - Normalize sampling period to FO4
 - Energy/sample=Power/Rate
 - Normalize Energy/sample by MSI
 - ED=normalized Energy * normalized Sampling period
 - Figure of merit FM~ Resolution*ln2 ln(ED)

ADCs in '90s: Raw data

Author	Conf/Jour.	Resolution	peed [MS/	Tech. [um]	P [mW]	Vdd [V]	A [mm2]	INL [LSB]	DNL [LSB]	ENOB	SNDR	SFDR	Cin [fF]	Style
M. Choi	ISSCC 01	6	1300	0.35	250	3.3	0.8	0.35	0.2	5	32	44	1	Full-Flash with preamp & two stage averaging
G. Geelen	ISSCC 01	6	1100	0.35	300	3.3	0.35	0.6	0.7	4.5	29	40		Flash, 3 avg, 2 interpolate, distrib T/H
K. Nagaraj	JSSC 00	6	700	0.25	190	3.3	0.45	0.4	0.4	4.7	30	40		Flash, interleaved S/H, interpolation
Y. Tamba	ISSCC 99	6	500	0.4	400	3.3	2.4	0.55	0.65	5.4	34	45		Flash, offset comp. per comp, distrib T/H
K.Yoon	ISSCC 99	6	500	0.6	330	3.3	4	0.5	0.4	3.6	23	34		Flash, interpol., auto-zero (bg), intern T/H
B. Song	VLSI 99	6	50	0.35	20	1	4.8	0.7	0.6	4.2	27			Flash,Current Interpolation, low-supply
K. Nagaraj	JSSC 99	6	75	0.5	110	3.3	1	1	1	5.2	33			Flash with 1-bit folding
M. Flynn	ISSCC 98	6	400	0.5	200	3.2	0.6	0.5	0.5	4	26		1.2	Flash,Folding,interpolating current mode
3.Tsukamot	ISSCC 98	6	400	0.35	190	3	1.2	0.25	0.2					Full-Flash with interleav. auto-zero error cor
J. Spalding	ISSCC 96	6	200	0.6	400	5	2.7	0.5	0.5	5	32	35		Full-Flash, auto-zero comparators
R. Roovers	JSSC 96	6	175	0.7	160	3.3	12	1	0.8	4	26		4	Current Interpolation
3.Tsukamot	JSSC 96	6	200	0.5	110	3	1.6	0.5	0.3	4	26	32		Full-Flash, interl auto-zero, chopper comp
J. Ming	ISSCC 00	8	80	0.5	250	3	10.3	0.5	0.3	7.3	46	59		pipelined, inter-stage bg calibration
K. Yoon	VLSI 00	8	125	0.35	110	3.3	0.8	1.5	0.7	6.4	40			Flash, fold. & interpol, w. equalizing preamp
Y-T. Wang	JSSC 00	8	150	0.6	400	3.3	1.8	1.24	0.6	6.4	40		1.5	Sliding window pipe. interpolation, dual ch.
M-J. Choe	VLSI 00	8	100	0.5	165	5	1.7	1.3	0.4	6.1	38			pipelined folding
W. Bright	ISSCC 98	8	75	0.5	70	3.3	5.5	0.5	0.5	6.85	43			parallel, pipelined, dual sampling, 1.5b/stage
K. Nagaraj	JSSC 97	8	52	0.9	250	5	15	1	0.2	7.2	45	55		parallel, pipelined, dual sampling, 1.5b/stage
A. Venes	ISSCC 96	8	80	0.5	80	3.3	0.3	0.8	0.45	6.6	42		2	folding&interp, distrib T/H
M.Flynn	ISSCC 95	8	100	1	250	3.3	4			7.2	45		5	folding&interp, current mode interpolation
B. Nauta	ISSCC 95	8	70	0.8	110	5	0.8	0.5	0.2				4.8	folding&interpolating
M.Pelgrom	JSSC 94	8	25	1	250	5	2.8	0.5	0.5	6.4	40			Full-Flash optimized for random offset
C. Conroy	JSSC 93	8	85	1	1100	5	25	1	0.8	6.5	41	46	2	4-way interleaved, pipelined 1.5b/stage
Y. Park	ISSCC 01	10	100	0.18	80	1.8	2.5	0.76	0.66	9	56	64		pipelined, 1.5b/stage, no calibration
B. Brandt	ISSCC 99	10	20	0.5	75	3.3	1.6	0.5	0.4	9.5	59			Two-step, subranging, interpolated comps
H. v.d.Ploe	ISSCC 99	10	25	0.35	195	3.3	0.66	0.9	0.7	8.2	54	60		Two-step, offs comp res. amp, ladder sharing
K. Dyer	ISSCC 98	10	40	1	650	5	47	0.48	0.3	9	56	74		3-way interl, pipelined, mix signal bg calib
D. Fu	ISSCC 98	10	40	1	565	5	42	0.3	0.14	7.7	48	72		2-way interl, pipelined, digital bg calib LMS
A. Abo	VLSI 98	10	14	0.6	36	1.5	5.8	0.7	0.5	8.2	54			pipelined, 1.5b/stage, no calib, low power
K. Bult	ISSCC 97	10	50	0.5	240	5	2	1.1	0.6	8	50	52		Flash, improved averaging, folding

ADCs in '90s: Scaled data

Labels	Author	Resolution	Ts [FO4]	Tech. [um]	Vdd [V]	A [M]	ED/s	E/s[k MSI]	Emsi [fJ]	E/s [fJ]	FM	Style
[6_1]	M. Choi	6	4	0.35	3.3	26	37	8	23	192308	15	Full-Flash with preamp & two stage averaging
[6_2]	G. Geelen	6	5	0.35	3.3	11	62	12	23	272727	14	Flash, 3 avg, 2 interpolate, distrib T/H
[6_3]	K. Nagaraj	6	11	0.25	3.3	29	190	17	16	271429	12	Flash, interleaved S/H, interpolation
[6_4]	Y. Tamba	6	10	0.4	3.3	60	306	31	26	800000	11	Flash, offset comp. per comp, distrib T/H
[6_5]	K.Yoon	6	7	0.6	3.3	44	112	17	39	660000	13	Flash, interpol., auto-zero (bg), intern T/H
[6_6]	B. Song	6	114	0.35	1	157	21769	190	2	400000	2	Flash,Current Interpolation, low-supply
[6_7]	K. Nagaraj	6	53	0.5	3.3	16	2394	45	33	1466667	7	Flash with 1-bit folding
[6_8]	M. Flynn	6	10	0.5	3.2	10	163	16	31	500000	12	Flash,Folding,interpolating current mode
[6_9]	.Tsukamot	6	14	0.35	3	39	359	25	19	475000	10	Full-Flash with interleav. auto-zero error cor
[6_10]	J. Spalding	6	17	0.6	5	30	370	22	90	2000000	10	Full-Flash, auto-zero comparators
[6_11]	R. Roovers	6	16	0.7	3.3	98	326	20	46	914286	11	Current Interpolation
[6_12]	.Tsukamot	6	20	0.5	3	26	407	20	27	550000	10	Full-Flash, interl auto-zero, chopper comp
							x100					
[8_1]	J. Ming	8	50	0.5	3	165	58	116	27	3125000	8	pipelined, inter-stage bg calibration
[8_2]	K. Yoon	8	46	0.35	3.3	26	18	38	23	880000	10	Flash, fold. & interpol, w. equalizing preamp
[8_3]	Y-T. Wang	8	22	0.6	3.3	20	15	68	39	2666667	10	Sliding window pipe. interpolation, dual ch.
[8_4]	M-J. Choe	8	40	0.5	5	27	9	22	75	1650000	11	pipelined folding
[8_5]	W. Bright	8	53	0.5	3.3	88	15	29	33	933333	10	parallel, pipelined, dual sampling, 1.5b/stage
[8_6]	K. Nagaraj	8	43	0.9	5	74	15	36	135	4807692	10	parallel, pipelined, dual sampling, 1.5b/stage
[8_7]	A. Venes	8	50	0.501	3.3	5	15	31	33	1000000	10	folding&interp, distrib T/H
[8_8]	M.Flynn	8	20	1	3.3	16	8	38	65	2500000	12	folding&interp, current mode interpolation
[8_9]	B. Nauta	8	36	0.8	5	5	5	13	120	1571429	13	folding&interpolating
[8_10]	M.Pelgrom	8	80	1	5	11	53	67	150	1000000	8	Full-Flash optimized for random offset
[8_11]	C. Conroy	8	24	1	5	100	20	86	150	12941176	10	4-way interleaved, pipelined 1.5b/stage
							x1000					
[10_1]	Y. Park	10	111	0.18	1.8	309	25	229	3	800000	7	pipelined, 1.5b/stage, no calibration
[10_2]	B. Brandt	10	200	0.5	3.3	26	23	115	33	3750000	8	Two-step, subranging, interpolated comps
[10_3]	H. v.d.Ploe	10	229	0.35	3.3	22	78	341	23	7800000	5	Two-step, offs comp res. amp, ladder sharing
[10_4]	K. Dyer	10	50	1	5	188	5	108	150	16250000	11	3-way interl, pipelined, mix signal bg calib
[10_5]	D. Fu	10	50	1	5	168	5	94	150	14125000	11	2-way interl, pipelined, digital bg calib LMS
[10_6]	A. Abo	10	238	0.6	1.5	64	76	317	8	2571429	5	pipelined, 1.5b/stage, no calib, low supply
[10_7]	K. Bult	10	80	0.5	5	32	5	64	75	4800000	11	Flash, improved averaging, folding

Sampling period vs. technology - 6bit

Sampling period vs. technology - 8bit

Sampling period vs. technology - 10bit

Energy*"Delay" vs. technology - 6bit

06/14/2001

Figure of merit vs. technology

Limiting factors

- Timing errors
 - 1. Sampling clock jitter
 - 2. Limited rise/fall time of sampling clock
 - 3. Skew of clock & input signal at different places on the chip
 - (1ps =100-200 µm on a die)
 - 4. Signal-dependent delay
- Distortion errors
 - 1. Sampling comparators' aperture time
 - 2. Distortion in the linear part of the input amplifier
 - 3. Changes in the reference voltage values & comparator offsets, also kickback
 - 4. Delays of analog signal and clock signal

Timing Error performance limitations

• Definition A:

$$SNR = -20\log 10(2pf_{in}e_{t_rms})$$
$$e_{t_rms} < \frac{10^{-(6.02 ENOB + 1.76)/20}}{2pf_{in}}$$

• Definition B:

$$2\mathbf{p}f_{in}A\Delta t < 1LSB = \frac{2A}{2^N}$$

$$\boldsymbol{e}_{t_{-}rms} < \frac{1}{3\boldsymbol{p} \ 2^{N} \ f_{in}}$$

For max fin=1GHz

Ν	A: $\varepsilon_{trms}[ps]$	$B:\epsilon_{trms}[ps]$	$C:\epsilon_{trms}[ps]$
2	33	27	53
4	8	7	27
6	2	2	14
8	0.5	0.4	7
10	0.1	0.1	3

• Definition C:

$$e_{t_{-}rms} < \frac{1}{3p \ 2^{LENOB / 2} f_{in}}$$

Taking into account both transmitter and receiver noise and budgeting 50% for other noise

Conclusion

- Future very high speed ADCs
 - Digitally corrected interpolated Flash
 - Time-Interleaved pipelined ADC with channel mismatch calibration
- Big problem timing errors
 - Most of all jitter after all it is Gaussian noise limit
 - Jitter is less of a problem for digital data communications
- Spectrum allocation limitations for wireless
 - Most of ADCs need not be very, very high speed

References

6 bit Converters

- [6_1] M. Choi and A. Abidi " A 6b 1.3GSample/s A/D Converter in 0.35µm CMOS," ISSCC 2001, paper 8.1
- [6_2] G. Geelen " A 6b 1.1GSample/s CMOS A/D Converter," ISSCC 2001, paper 8.2
- [6_3] K. Nagaraj et al. "Dual Mode A/D Converter," JSSC 2000, December, vol. 35, no. 12, pp. 1760-68
- [6_4] Y. Tamba and K. Yamakido " A CMOS 6b 500MSample/s ADC for a Hard Disk Drive Read Channel," ISSCC 1999, paper 18.5
- [6_5] K. Yoon et al. " A 6b 500MSample/s CMOS Flash ADC with a Background Interpolated Auto-Zeroing Technique," ISSCC 1999, paper 18.6
- [6_6] B. Song et al. " A 1V 50MHz Current-Interpolating CMOS ADC," VLSI Symposium 1999, paper 8.3
- [6_7] K. Nagaraj et al. "Efficient 6-b A/D Converter Using a 1-bit Folding Front End," JSSC 1999, August, vol. 34, no. 8, pp. 1056-62
- [6_8] M. P. Flynn and B. Sheahan "A 400MSample/s 6b CMOS Folding and Interpolating ADC," ISSCC 1998, paper 9.7
- [6_9] S. Tsukamoto et al. " A CMOS 6b 400MSample/s ADC with Error Correction," ISSCC 1998, paper 9.8
- [6_10] J. Spalding and D. Dalton "A 200MSample/s 6b Flash ADC in 0.6um CMOS," ISSCC 1996, paper 19.5
- [6_11] R. Roovers and M. S. J. Steyaert "A 175Ms/s, 6 b, 160 mW, 3.3 V CMOS A/D Converter," JSSC 1996, July, vol. 31, no. 7, pp. 938-44
- [6_12] S. Tsukamoto et al. " A CMOS 6-bit, 200Msample/s, 3 V-Supply A/D Converter for a PRML Read Channel LSI," JSSC 1996, November, vol.31, no. 11, pp. 1831-36

8 bit Converters

[8_1] J. Ming and S. H. Lewis "An 8b 80MSample/s Pipelined ADC with Background Calibration," ISSCC 2000, paper 2.5
[8_2] K. Yoon et al. "An 8-bit 125Ms/s CMOS Folding ADC for Gigabit Ethernet LSI," VLSI Symposium 2000, paper 16.2
[8_3] Y. Wang and B. Razavi "An 8-bit 150-MHz CMOS A/D Converter," JSSC 2000, March, vol. 35, no. 3, pp. 308-17
[8_4] M. Choe et al. "An 8b 100MSample/s CMOS Pipelined Folding ADC," VLSI Symposium 1999, paper 8.4

References ...

- [8_5] W. Bright "8b 75MSample/s 70mW Parallel Pipelined ADC Incorporating Double Sampling," ISSCC 1998, paper 9.5
- [8_6] K. Nagaraj et al. " A 250-mW, 8-b, 52-Msample/s, Parallel-Pipelined A/D Converter with Reduced Number of Amplifiers," JSSC 1997, March, vol. 32, no. 3, pp. 312-20
- [8_7] A. G. W. Venes and R. J. van de Plassche "An 80MHz 80mW 8b CMOS Folding A/D Converter with Distributed T/H Preprocessing," ISSCC 1996, paper 19.4
- [8_8] M. P. Flynn and D. J. Allstot "CMOS Folding ADCs with Current-Mode Interpolation," ISSCC 1995, paper 16.2
- [8_9] B. Nauta and A. G. W. Venes "A 70MSample/s 110mW 8b CMOS Folding Interpolating A/D Converter," ISSCC 1995, paper 16.3
- [8_10] M. Pelgrom et al. " A 25-Ms/s 8-bit CMOS A/D Converter for Embedded Application," JSSC 1994, August, vol. 29, no. 8, pp. 879-86
- [8_11] C. Conroy et al. "An 8-bit 85MS/s Parallel-Pipeline A/D Converter in 1-um CMOS," JSSC 1993, April, vol. 28, no. 4, pp. 447-54

10 bit Converters

- [10_1] Y. Park et al. "A 10b 100MSample/s CMOS Piplined ADC with 1.8V Power Supply," ISSCC 2001, paper 8.3
- [10_2] B. Brandt and J. Lutsky "A 75mW 10b 20MSample/s CMOS Subranging ADC with 59dB SNDR," ISSCC 1999, paper 18.4
- [10_3] H. van der Ploeg and R. Remmers "A 3.3V 10b 25MSample/s Two-Step ADC in 0.35um CMOS," ISSCC 1999, paper 18.2
- [10_4] K. Dyer et al. "Analog Background Calibration of a 10b 40MSample/s Parallel Pipelined ADC," ISSCC 1998, paper 9.3
- [10_5] D. Fu et al. "Digital Background Calibration of a 10b 40MSample/s Parallel Pipelined ADC," ISSCC 1998, paper 9.2
- [10_6] A. M. Abo and P. R. Gray "A 1.5V, 10-bit, 14MS/s CMOS Pipeline Analog-to-Digital Converter," VLSI Symposium 1998, paper 14.2
- [10_7] K. Bult et al. " A 170mW 10b 50MSample/s CMOS ADC in 1mm²," ISSCC 1997, paper 8.3