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INTRODUCTION
Among the many definitions for the wonderful word

“dharma” is the essential function or nature of a thing. That is
what this note is about: the essential function or nature of
audio analog-to-digital (A/D) converters. Like everything else
in the world, the audio industry has been radically and
irrevocability changed by the digital revolution. No one has
been spared. Arguments will ensue forever about whether the
true nature of the real world is analog or digital; whether the
fundamental essence, or dharma, of life is continuous
(analog) or exists in tiny little chunks (digital). Seek not that
answer here. Here we shall but resolve to understand the
dharma of audio A/D converters.
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Data Conversion
It is important at the onset of exploring digital  audio to

understand that once a waveform has been converted into
digital format, nothing can occur to change its sonic proper-
ties. While it remains in the digital domain, it is only a series
of digital words, representing numbers. Aside from the gross
example of having the digital processing actually fail and
cause a word to be lost or corrupted into none use, nothing
can change the sound of the word. It is just a bunch of “ones”
and “zeroes.” There are no “one-halves” or “three-quarters”.
The point being that sonically, it begins and ends with the
conversion process. Nothing is more important to digital
audio than data conversion. Everything in-between is just
arithmetic and waiting.

That’s why there is such a big to-do with data conversion.
It really is that important. Everything else quite literally is just
details. We could go so far as to say that data conversion is
the art of digital audio while everything else is the science, in
that it is data conversion that ultimately determines whether
or not the original sound is preserved (and this comment
certainly does not negate the enormous and exacting science
involved in truly excellent data conversion.)

Since analog signals continuously vary between an infinite
number of states and computers can only handle two, the
signals must be converted into binary digital words before the
computer can work. Each digital word represents the value of
the signal at one precise point in time. Today’s common word
length is 16-bits or 32-bits. Once converted into digital words,
the information may be stored, transmitted, or operated upon
within the computer.

In order to properly explore the critical interface between
the analog and digital worlds, it is necessary to review a few
fundamentals and a little history.

Binary Numbers
Whenever we speak of “digital,” by inference, we speak

of computers (throughout this paper the term “computer” is
used to represent any digital-based piece of audio equipment).
And computers in their heart of hearts are really quite simple.
They only can understand the most basic form of communica-
tion or information: yes/no, on/off, open/closed, here/gone –
all of which can be symbolically represented by two things –
any two things. Two letters, two numbers, two colors, two
tones, two temperatures, two charges – it doesn’t matter.
Unless you have to build something that will recognize these
two states – now it matters. So, to keep it simple we choose
two numbers: one and zero … a “1” and a “0.” Officially this
is known as binary representation, from Latin bini two by
two. In mathematics this is a base-2 number system, as
opposed to our decimal (from Latin decima a tenth part or
tithe) number system, which is called base-10 because we use
the ten numbers 0-9.

In binary we use only the numbers 0 and 1. “0” is a good
symbol for no, off, closed, gone, etc., and “1” is easy to
understand as meaning yes, on, open, here, etc. In electronics
it is easy to determine whether a circuit is open or closed,
conducting or not conducting, has voltage or doesn’t have
voltage. Thus the binary number system found use in the very
first computer, and nothing has changed today. Computers

just got faster and smaller and cheaper, with memory size
becoming incomprehensibly large in an incomprehensibly
small space.

One problem with using binary numbers is they become
big and unwieldy in a hurry. For instance, it takes six digits to
express my age in binary, but only two in decimal. But, in
binary, we better not call them “digits” since “digits” implies
a human finger or toe, of which there are ten, so confusion
reigns. To get around that problem John Tukey of Bell
Laboratories dubbed the basic unit of information (as defined
by Shannon – more on him later) a binary unit, or “binary
digit” which became abbreviated to “bit.” A bit is the simplest
possible message representing one of two states.

So, I’m 6-bits old! Well, not quite. But it takes 6-bits to
express my age as 110111. Let’s see how that works. I’m
fifty-five years old. So in base-10 symbols that is “55,” which
stands for 5-1s plus 5-10s. You may not have ever thought
about it, but each digit in our everyday numbers represents an
additional power of 10 beginning with 0. That is, the first
digit represents the number of 1s (100), the second digit
represents the number of 10s (101), the third digit represents
the number of 100s (102), and so on. We can represent any
size number by using this shorthand notation.

Binary number representation is just the same except
substituting the powers of 2 for the powers of 10 [any base
number system is represented in this manner]. Therefore
(moving from right to left) each succeeding bit represents
20 = 1, 21 =2, 22 =4, 23 =8, 24 = 16, 25 =32, etc. Thus, my age
breaks down as 1-1, 1-2, 1-4, 0-8, 1-16, and 1-32, represented
as “110111,” which is 32+16+0+4+2+1 = 55 …or double-
nickel to you cool cats. Fig. 1 shows the two examples.

Now let’s take a brief look at how all this came about.

Figure 1. Number Representation Systems
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The Story of Harry & Claude
The French mathematician Fourier unknowingly laid the

groundwork for A/D conversion in the late 18th century. All
data conversion techniques rely on looking at, or sampling,
the input signal at regular intervals and creating a digital word
that represents the value of the analog signal at that precise
moment. The fact that we know this works lies with Nyquist.

Harry Nyquist discovered while working at Bell Laborato-
ries in the late ‘20s and wrote a landmark paper1  describing
the criteria for what we know today as sampled data systems.
Nyquist taught us that for periodic functions, if you sampled
at a rate that was at least twice as fast as the signal of interest,
then no information (data) would be lost upon reconstruction.
And since Fourier had already shown that all alternating
signals are made up of nothing more than a sum of harmoni-
cally related sine and cosine waves, then audio signals are
periodic functions and can be sampled without lost of
information following Nyquist’s instructions. This became
known as the Nyquist frequency, which is the highest fre-
quency that may be accurately sampled, and is one-half of the
sampling frequency. For example, the theoretical Nyquist
frequency for the audio CD (compact disc) system is 22.05
kHz, equaling one-half of the standardized sampling fre-
quency of 44.1 kHz.

As powerful as Nyquist’s discoveries were, they were not
without their dark side: the biggest being aliasing frequen-
cies. Following the Nyquist criteria (as it is now called)
guarantees that no information will be lost; it does not,
however, guarantee that no information will be gained.
Although by no means obvious, the act of sampling an analog
signal at precise time intervals is an act of multiplying the
input signal by the sampling pulses. This introduces the
possibility of generating “false” signals indistinguishable
from the original. In other words, given a set of sampled
values, we cannot relate them specifically to one unique
signal. As Fig. 2 shows, the same set of samples could have
resulted from any of the three waveforms shown … and from
all possible sum and difference frequencies between the
sampling frequency and the one being sampled. All such false
waveforms that fit the sample data are called “aliases.” In
audio, these frequencies show up mostly as intermodulation
distortion products, and they come from the random-like
white noise, or any sort of ultrasonic signal present in every
electronic system. Solving the problem of aliasing frequencies
is what improved audio conversion systems to today’s level of
sophistication. And it was Claude Shannon who pointed the
way.

Shannon is recognized as the father of information theory:
while a young engineer at Bell Laboratories in 1948, he
defined an entirely new field of science. Even before then his
genius shined through for, while still a 22-year-old student at
MIT he showed in his master’s thesis how the algebra
invented by the British mathematician George Boole in the
mid-1800s, could be applied to electronic circuits. Since that
time, Boolean algebra has been the rock of digital logic and
computer design.2

Figure 2. Aliasing Frequencies

Shannon studied Nyquist’s work closely and came up with
a deceptively simple addition. He observed (and proved) that
if you restrict the input signal’s bandwidth to less than one-
half the sampling frequency then no errors due to aliasing are
possible. So bandlimiting your input to no more than one-half
the sampling frequency guarantees no aliasing. Cool – only
it’s not possible.

In order to satisfy the Shannon limit (as it is called –
Harry gets a “criteria” and Claude gets a “limit”) you must
have the proverbial brick-wall, i.e., infinite-slope filter. Well,
this isn’t going to happen, not in this universe. You cannot
guarantee that there is absolutely no signal (or noise) greater
than the Nyquist frequency. Fortunately there is a way around
this problem. In fact, you go all the way around the problem
and look at it from another direction.

If you cannot restrict the input bandwidth so aliasing does
not occur, then solve the problem another way: Increase the
sampling frequency until the aliasing products that do occur,
do so at ultrasonic frequencies, and are effectively dealt with
by a simple single-pole filter. This is where the term
“oversampling” comes in. For full spectrum audio the
minimum sampling frequency must be 40 kHz, giving you a
useable theoretical bandwidth of 20 kHz – the limit of normal
human hearing. Sampling at anything significantly higher
than 40 kHz is termed oversampling. In just a few years time,
we have seen the audio industry go from the CD system
standard of 44.1 kHz, and the pro audio quasi-standard of 48
kHz, to 8-times and 16-times oversampling frequencies of
around 350 kHz and 700 kHz respectively. With sampling
frequencies this high, aliasing  is no longer an issue.

Okay. So audio signals can be changed into digital words
(digitized) without loss of information, and with no aliasing
effects, as long as the sampling frequency is high enough.
How is this done?

1 Nyquist, Harry, “Certain topics in Telegraph Transmission Theory,” published in 1928.
2 See Clive Maxfield’s book Bebob to the Boolean Boogie (HighText ISBN 1-878707-22-1, Solana Beach, CA, 1995) for the best treatment

around.

SAMPLING POINTS TIME
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Table 1. Quantization Steps For ±5 Volts Reference

# Bits # Divisions Resolution/Div Max % Error Max PPM Error

8 2 =128 39 mV 0.78 7812.00

16 2 =32,768 153 µV 0.003 30.50

20 2 =524,288 9.5 µV 0.00019 1.90

24 2 =8,388,608 0.6 µV 0.000012 0.12

77777
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2323232323

5.00V Reference Voltage

—————

4.375V


————  23 = 8 quantizing steps
   Q = 0.625V/step

3.75V

—————
 All analog voltages within

3.125V   the same quantizing step are
 assigned the same binary code

—————

2.50V

—————
         ——2.0V example
1.875V  0.125V quantizing error

—————

1.25V

—————
 +½ Q max quantizing error

0.625V
 -½ Q max quantizing error

—————

0.00V

Figure 4. Quantization – 3-Bit, 5V Example

Figure 3. 8-Bit Resolution

3 A single +5 V supply is probably more common today, but this illustrates the point.

Quantization
Quantizing is the process of determining which of the

possible values (determined by the number of bits or voltage
reference parts) is the closest value to the current sample –
i.e., you are assigning a quantity to that sample. Quantizing,
by definition then, involves deciding between two values and
thus always introduces error. How big the error, or how
accurate the answer, depends on the number of bits. The more
bits, the better the answer. The converter has a reference
voltage which is divided up into 2n parts, where n is the
number of bits. Each part represents the same value. Since
you cannot resolve anything smaller than this value, there is
error. There is always error in the conversion process. This is
the accuracy issue.

The number of bits determines the converter accuracy. For
8-bits, there are 28 = 256 possible levels as shown in Fig. 3.
Since the signal swings positive and negative there are 128
levels for each direction. Assuming a ±5 V reference3 , this
makes each division, or bit, equal to 39 mV (5/128 = .039).
Hence, an 8-bit system cannot resolve any change smaller
than 39 mV. This means a worst case accuracy error of
0.78%. Table 1 compares the accuracy improvement gained
by 16-bit, 20-bit and 24-bit systems along with the reduction
in error. (Note: this is not the only way to use the reference
voltage. Many schemes exist for coding, but this one nicely
illustrates the principles involved.) Each step size (resulting
from dividing the reference into the number of equal parts
dictated by the number of bits) is equal and is called a
quantizing step (also called quantizing interval – see Fig. 4).
Originally this step was termed the LSB (least significant bit)
since it equals the value of the smallest coded bit, however it
is an illogical choice for mathematical treatments and has
since be replaced by the more accurate term quantizing step.

The error due to the quantizing process is called quantiz-
ing error (no definitional stretch here). As shown earlier, each
time a sample is taken there is error. Here’s the not obvious
part: the quantizing error can be thought of as an unwanted
signal which the quantizing process adds to the perfect
original. An example best illustrates this principle. Let the
sampled input value be some arbitrarily chosen value, say, 2
volts. And let this be a 3-bit system with a 5 volt reference.
The 3-bits divides the reference into 8 equal parts (23 = 8) of
0.625 V each, as shown in Fig. 4. For the 2 volt input ex-
ample, the converter must choose between either 1.875 volts
or 2.50 volts, and since 2 volts is closer to 1.875 than 2.5,
then it is the best fit. This results in a quantizing error of -
0.125 volts, i.e., the quantized answer is too small by 0.125
volts. If the input signal had been, say, 2.2 volts, then the
quantized answer would have been 2.5 volts and the quantiz-
ing error would have been +0.3 volts, i.e., too big by 0.3
volts.
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Figure 5B. Successive Approximation A/D Converter

These alternating unwanted signals added by quantizing
form a quantized error waveform, that is a kind of additive
broadband noise that is generally uncorrelated with the signal
and is called quantizing noise. Since the quantizing error is
essentially random (i.e. uncorrelated with the input) it can be
thought of like white noise (noise with equal amounts of all
frequencies). This is not quite the same thing as thermal
noise, but it is similar. The energy of this added noise is
equally spread over the band from dc to one-half the sam-
pling rate. This is a most important point and will be returned
to when we discuss delta-sigma converters and their use of
extreme oversampling.

Successive Approximation
Successive approximation is one of the earliest and most

successful analog-to-digital conversion techniques. Therefore,
it is no surprise it became the initial A/D workhorse of the
digital audio revolution. Successive approximation paved the
way for the delta-sigma techniques to follow.

The heart of any A/D circuit is a comparator. A compara-
tor is an electronic block whose output is determined by
comparing the values of its two inputs. If the positive input is
larger than the negative input then the output swings positive,
and if the negative input exceeds the positive input, the output
swings negative. Therefore if a reference voltage is connected
to one input and an unknown input signal is applied to the
other input, you now have a device that can compare and tell
you which is larger. Thus a comparator gives you a “high
output” (which could be defined to be a “1”) when the input
signal exceeds the reference, or a “low output” (which could
be defined to be a “0”) when it does not. A comparator is the
key ingredient in the successive approximation technique as
shown in Figures 5A & 5B.

The name successive approximation nicely sums up how
the data conversion is done. The circuit evaluates each sample
and creates a digital word representing the closest binary
value. The process takes the same number of steps as bits
available, i.e., a 16-bit system requires 16 steps for each
sample. The analog sample is successively compared to
determine the digital code, beginning with the determination
of the biggest (most significant) bit of the code.

Figure 5A. Successive Approximation Example

The description given in Daniel Sheingold’s Analog-
Digital Conversion Handbook (see References) offers the best
analogy as to how successive approximation works. The
process is exactly analogous to a gold miner’s assay scale, or
a chemical balance as seen in Figure 5A. This type of scale
comes with a set of graduated weights, each one half the
value of the preceding one, such as 1 gram, ½ gram, ¼ gram,
1/

8
 gram, etc. You compare the unknown sample against these

known values by first placing the heaviest weight on the
scale. If it tips the scale you remove it; if it does not you leave
it and go to the next smaller value. If that value tips the scale
you remove it, if it does not you leave it and go to the next
lower value, and so on until you reach the smallest weight
that tips the scale. (When you get to the last weight, if it does
not tip the scale, then you put the next highest weight back
on, and that is your best answer.) The sum of all the weights
on the scale represents the closest value you can resolve.

In digital terms, we can analyze this example by saying
that a “0” was assigned to each weight removed, and a “1” to
each weight remaining – in essence creating a digital word
equivalent to the unknown sample, with the number of bits
equaling the number of weights. And the quantizing error will
be no more than ½ the smallest weight (or ½ quantizing step).

As stated earlier the successive approximation technique
must repeat this cycle for each sample. Even with today’s
technology, this is a very time consuming process and is still
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limited to relatively slow sampling rates, but it did get us into
the 16-bit, 44.1 kHz digital audio world.

PCM (Pulse Code Modulation) and
PWM (Pulse Width Modulation)

The successive approximation method of data conversion
is an example of pulse code modulation, or PCM. Three
elements are required: sampling, quantizing, and encoding
into a fixed length digital word. The reverse process recon-
structs the analog signal from the PCM code. The output of a
PCM system is a series of digital words, where the word-size
is determined by the available bits. For example the output is
a series of  8-bit words, or 16-bit words, or 20-bit words, etc.,
with each word representing the value of one sample.

Pulse width modulation, or PWM is quite simple and quite
different from PCM. Look at Fig. 6. In a typical PWM
system, the analog input signal is applied to a comparator
whose reference voltage is a triangle-shaped waveform whose
repetition rate is the sampling frequency. This simple block
forms what is called an analog modulator.

A simple way to understand the “modulation” process is
to view the output with the input held steady at zero volts.
The output forms a 50% duty cycle (50% high, 50% low)
square wave. As long as there is no input, the output is a
steady square wave. As soon as the input is non-zero, the
output becomes a pulse-width modulated waveform. That is,
when the non-zero input is compared against the triangular
reference voltage, it varies the length of time the output is
either high or low.

For example, say there was a steady DC value applied to
the input. For all samples when the value of the triangle is
less than the input value, the output stays low, and for all
samples when it is greater than the input value, it changes
state and remains high. Therefore, if the triangle starts higher
than the input value, the output goes high; at the next sample
period the triangle has increased in value but is still more than
the input, so the output remains high; this continues until the
triangle reaches its apex and starts down again; eventually the
triangle voltage drops below the input value and the output
drops low and stays there until the reference exceeds the input
again. The resulting pulse-width modulated output, when
averaged over time, gives the exact input voltage. For

4 The name delta-sigma modulation was coined by Inose and Yasuda at the University of Tokyo in 1962, but due to a translation misunder-
standing, words were interchanged and taken to be sigma-delta. Both names are still used, but only delta-sigma is actually correct.

5 Leung, K., et al., “A 120 dB dynamic Range, 96 kHz, Stereo 24-bit Analog-to-Digital Converter,” presented at the 102nd Convention of the
Audio Engineering Society, Munich, March 22-25, 1997.

Figure 6. Pulse Width Modulation (PWM)

example if the output spends exactly 50% of the time with an
output of 5 volts, and 50% of the time at 0 volts, then the
average output would be exactly 2.5 volts.

This is also an FM, or frequency-modulated system – the
varying pulse-width translates into a varying frequency. And
it is the core principle of most Class-D switching power
amplifiers. The analog input is converted into a variable
pulse-width stream used to turn-on the output switching
transistors. The analog output voltage is simply the average of
the on-times of the positive and negative outputs. Pretty
amazing stuff from a simple comparator with a triangle
waveform reference.

Another way to look at this, is that this simple device
actually codes a single bit of information, i.e., a comparator is
a 1-bit A/D converter. PWM is an example of a 1-bit A/D
encoding system. And a 1-bit A/D encoder forms the heart of
delta-sigma modulation.

Delta-Sigma Modulation & Noise Shaping
After nearly thirty years, delta-sigma modulation (also

sigma-delta4 ) has only recently emerged as the most success-
ful audio A/D converter technology. It waited patiently for the
semiconductor industry to develop the technologies necessary
to integrate analog and digital circuitry on the same chip.
Today’s very high-speed “mixed-signal” IC processing allows
the total integration of all the circuit elements necessary to
create delta-sigma data converters of awesome magnitude5 .

How the name came about is interesting. Another way to
look at the action of the comparator is that the 1-bit informa-
tion tells the output voltage which direction to go based upon
what the input signal is doing. It looks at the input and
compares it against its last look (sample) to see if this new
sample is bigger or smaller than the last one – that is the
information transfer: bigger or smaller, increasing or decreas-
ing. If it is bigger than it tells the output to keep increasing,
and if it is smaller it tells the output to stop increasing and
start decreasing. It merely reacts to the change. Mathemati-
cians use the Greek letter “delta” (symbol ∆) to stand for
deviation or small incremental change, which is how this
process came to be known as “delta modulation.” The
“sigma” part came about by the significant improvements
made from summing or integrating the signal with the digital
output before performing the delta modulation. Here again,
mathematicians use the Greek letter “sigma” (symbol Σ) to
stand for summing, so “delta-sigma” became the natural
name.

Essentially a delta-sigma converter digitizes the audio
signal with a very low resolution (1-bit) A/D converter at a
very high sampling rate. It is the oversampling rate and
subsequent digital processing that separates this from plain
delta modulation (no sigma).

Referring back to the earlier discussion of quantizing
noise it is possible to calculate the theoretical sine wave
signal-to-noise (S/N) ratio (actually the signal-to-error ratio,
but for our purposes it’s close enough to combine) of an A/D
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A. Original Noise Power Distribution

C. Noise Shaping “Tilts” Distribution

E. Remaining Noise Distribution

B. Reduction & Redistribution due to Oversampling

D. Digital Filter Eliminates Out-of-Band Noise

Figure 7A-E. Noise Power Redistribution & Reduction due to

Oversampling, Noise Shaping and Digital Filtering.

converter system knowing only n, the number of bits. Doing a
bit (sorry) of math shows that the value of the added quantiz-
ing noise relative to a maximum (full-scale) input equals
6.02n + 1.76 dB for a sine wave. For example, a perfect 16-bit
system will have a S/N ratio of 98.1 dB, while a 1-bit delta-
modulator A/D converter, on the other hand, will have only
7.78 dB!

To get something of a intuitive feel for this, consider that
since there is only 1-bit, the amount of quantization error
possible is as much as ½-bit. That is, since the converter must
choose between the only two possibilities of maximum or
minimum values, then the error can be as much as half of that.
And since this quantization error shows up as added noise,
then this reduces the S/N to something on the order of around
2:1 or 6 dB.

One attribute shines true above all others for delta-sigma
converters and makes them a superior audio converter:
simplicity. The simplicity of 1-bit technology makes the
conversion process very fast, and very fast conversions allows
use of extreme oversampling. And extreme oversampling
pushing the quantizing noise and aliasing artifacts way out to
megawiggle-land, where it is easily dealt with by digital
filters (typically 64-times oversampling is used, resulting in a
sampling frequency on the order of 3 MHz).

To get a better understanding of how oversampling
reduces audible quantization noise, we need to think in terms
of noise power. From physics you may remember that power
is conserved – i.e., you can change it,  but you cannot create
or destroy it; well, quantization noise power is similar. With
oversampling the quantization noise power is spread over a
band that is as many times larger as is the rate of
oversampling. For example, for 64-times oversampling, the
noise power is spread over a band that is 64 times larger,
reducing its power density in the audio band by 1/64th. See
Figures 7A-E for example.

Noise shaping helps reduce in-band noise even more.
Oversampling pushes out the noise, but it does so uniformly,
that is, the spectrum is still flat. Noise shaping changes that.
Using very clever complex algorithms and circuit tricks, noise
shaping contours the noise so that it is reduced in the audible
regions and increased in the inaudible regions. Conservation
still holds, the total noise is the same, but the amount of noise
present in the audio band is decreased while simultaneously
increasing the noise out-of-band – then the digital filter
eliminates it. Very slick.
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Figure 8. Delta-Sigma A/D Converter

Figure 9. A. Input Signal. B. Output Signal [no dither]. C. Total Error

Signal [no dither]. D. Power Spectrum of Output Signal [no dither].

E. Input Signal. F. Output Signal [with dither]. G. Total Error Signal

[with dither]. H. Power Spectum of Output Signal [with dither].8

As shown in Fig. 8, a delta-sigma modulator consists of
three parts: an analog modulator, a digital filter and a decima-
tion circuit. The analog modulator is the 1-bit converter
discussed previously with the change of integrating the analog
signal before performing the delta modulation. (The integral
of the analog signal is encoded rather than the change in the
analog signal, as is the case for traditional delta modulation.)
Oversampling and noise shaping pushes and contours all the
bad stuff (aliasing, quantizing noise, etc.) so the digital filter
suppresses it. The decimation circuit, or decimator, is the
digital circuitry that generates the correct output word length
of 16-, 20-, or 24-bits, and restores the desired output sample
frequency. It is a digital sample rate reduction filter and is
sometimes termed downsampling (as opposed to
oversampling) since it is here that the sample rate is returned
from its 64-times rate to the normal CD rate of 44.1 kHz, or
perhaps to 48 kHz, or even 96 kHz, for pro audio applica-
tions. The net result is much greater resolution and dynamic
range, with increased S/N and far less distortion compared to
successive approximation techniques – all at lower costs.

Dither – Not All Noise Is Bad6

Now that oversampling helped get rid of the bad noise,
let’s add some good noise – dither noise.

Just what is dither? Aside from being a funny sounding
word, it is a wonderfully accurate choice for what is being
done. The word “dither” comes from a 12th century English
term meaning “to tremble.” Today it means to be in a state of
indecisive agitation, or to be nervously undecided in acting or
doing. Which, if you think about it, is not a bad description of
noise.

Dither is one of life’s many trade-offs. Here the trade-off
is between noise and resolution. Believe it or not, we can
introduce dither (a form of noise) and increase our ability to
resolve very small values. Values, in fact, smaller than our
smallest bit — now that’s a good trick. Perhaps you can begin
to grasp the concept by making an analogy between dither
and anti-lock brakes.7  Get it?

No? Okay, here’s how this analogy works: With regular
brakes, if you just stomp on them, you probably create an
unsafe skid situation for the car — not a good idea. Instead, if
you rapidly tap the brakes, you control the stopping without
skidding. We shall call this “dithering the brakes.” What you

have done is introduce “noise” (tapping) to an otherwise
rigidly binary (on or off) function.

So by “tapping” on our analog signal, we can improve our
ability to resolve it. By introducing noise, the converter
rapidly switches between two quantization levels, rather than
picking one or the other, when neither is really correct.
Sonically, this comes out as noise, rather than a discrete level
with error. Subjectively, what would have been perceived as
distortion is now heard as noise.

Lets look at this is more detail. The problem dither helps
to solve is that of quantization error caused by the data
converter being forced to choose one of two exact levels for

6 This section is included because of the confusing surrounding the term. However, it is noted that with the truly astonishing advances made
in A/D converter resolution technology of the past two years, the need for dither in A/D converters has essentially disappeared, making
this section more of historical interest. Dither is still necessary for word-length reduction in other digital processing.

7 Thanks to Bob Moses, PAVO, for this great analogy.
 8 From Pohlmann, Principles of Digital Audio, 3rd ed., p.44.
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each bit it resolves. It cannot choose between levels, it must
pick one or the other. With 16-bit systems, the digitized
waveform for high frequency, low signal levels looks very
much like a steep staircase with few steps. An examination of
the spectral analysis of this waveform reveals lots of  nasty
sounding distortion products. We can improve this result
either by adding more bits, or by adding dither. Prior to 1997,
adding more bits for better resolution was straightforward, but
expensive, thereby making dither an inexpensive compro-
mise; today, however, there is less need.

The dither noise is added to the low-level signal before
conversion. The mixed noise causes the small signal to jump
around, which causes the converter to switch rapidly between
levels rather than being forced to choose between two fixed
values. Now the digitized waveform still looks like a steep
staircase, but each step, instead of being smooth, is comprised
of many narrow strips, like vertical Venetian blinds. The
spectral analysis of this waveform shows almost no distortion
products at all, albeit with an increase in the noise content.
The dither has caused the distortion products to be pushed out
beyond audibility, and replaced with an increase in wideband
noise. Fig. 9 diagrams this process.

Life After 16 – A Little Bit Sweeter
Current digital recording standards allow for only 16-bits,

yet it is safe to say that for all practical purposes 16-bit
technology is history9. Everyone who can afford the up-grade
is using 20- and 24-bit data converters and (temporarily, until
DVD-Audio becomes common) dithering (vs. truncating)
down to 16-bits.

Here is what is gained by using 20-bits:
•   24 dB more dynamic range
•   24 dB less residual noise
•   16:1 reduction in quantization error
•   Improved jitter (timing stability) performance
And if it is 24-bits, add another 24 dB to each of the above

and make it a 256:1 reduction in quantizing error, with
essentially zero jitter!

As stated in the beginning of this note, with today’s
technology, analog-to-digital-to-analog conversion is the
element defining the sound of a piece of equipment, and if it’s
not done perfectly then everything that follows is compro-
mised.

With 20-bit high-resolution conversion, low signal-level
detail is preserved. The improvement in fine detail shows up
most noticeably by reducing the quantization errors of low-
level signals. Under certain conditions, these course data steps
can create audio passband harmonics not related to the input
signal. Audibility of this quantizing noise is much higher than
in normal analog distortion, and is also known as granulation
noise. 20-bits virtually eliminates granulation noise. Com-
monly heard examples are musical fades, like reverb tails and
cymbal decay. With only 16-bits to work with, they don’t so

much fade, as collapse in noisy chunks.
Where it really matters most is in measuring very small

things. It doesn’t make much difference when measuring big
things. If your ruler measures in whole inch increments and
you are measuring something 10 feet long, the most you can
be off is ½ inch. Not a big deal. However, if what you’re
measuring is less than an inch, and your error can be as much
as ½ inch, well, now you’ve got an accuracy problem. This is
exactly the problem in digitizing small audio signals. Gradu-
ating our audio digital ruler finer and finer means we can
accurately resolve smaller and smaller signal levels, allowing
us to capture the musical details. Getting the exact right
answer does result in better reproduction of music.

A/D Converter Measuring Bandwidth Note
Due to the oversampling and noise shaping characteristics

of delta-sigma A/D converters, certain measurements must
use the appropriate bandwidth or inaccurate answers result.
Specifications such as signal-to-noise, dynamic range, and
distortion are subject to misleading results if the wrong
bandwidth is used. Since noise shaping purposely reduces
audible noise by shifting the noise to inaudible higher
frequencies, taking measurements over a bandwidth wider
than 20 kHz results in answers that do not correlate with the
listening experience. Therefore, it is important to set the
correct measurement bandwidth to obtain meaningful data.
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