HABIST™ Case Study

Tom Almy
Opmaxx, Inc.
August 4, 1999

Abstract

Histogram Analog Built-In Salf Test (or HABIST™) is an efficient technique to compare analog
signalsagainst expected waveforms. Java-based software allows designing and implementing tests
which can be used in the testing environment.

Introduction

At ITC 97 wediscussed anew approachto Analog BIST inwhich ahistogram was made of asignal
inthecircuit under test, and the histogram was then analyzed by comparing with the expected or ideal
signal histogram. Since then we' ve realized that the analysis should be tailored to the circuit under
test, and we have devised an interactive approach for developing and verifying the HABIST test
analysis. HABIST has received a patent and is being incorporated into Opmaxx BiSMAXX™ suite
of BIST technologies.

HABIST Fundamentals

Figure 1 illustrates the typical HABIST configuration. A test point of the circuit under test is
connected to a sample and hold and analog to digital converter. The sample rate is controlled by its
own clock which runsasynchronously with the circuit under test. A histogramis made of the samples.
A programrunning onthetester or an embedded processor indevice being tested takesthe difference
between the histogram and an expected histogram obtained from simulation or a“golden” device. A
signature is generated, comprising of at the minimum the variance between the histograms, but
typically includes relative amplitude, offset, noise level, clipping, and other values depending on the
type of waveform. HABIST does not capture frequency domain statistics of sinusoidal waveforms.
Because of sampling, HABIST circuits after the sample and hold can run at amuch lower clock rate
than the circuit under test making HABIST ideal for testing high speed circuits.

Test
Clock
8:32': S&H, Histogram
Te AD Generator
est
Hardware

Software
. Signature Signature of
Expected Difference Generation Circuit under Test
Histogram

Figure 1— HABIST Testing Data Flow

The signature gives afigure of merit of the circuit, and can provide information useful for diagnosis
and repair. However the size of the signatureismuch smaller than that of the histogram, whichinturn
is much smaller than that of the digitized sampled signal, which reduces the needed probing
bandwidth, saving time and money.

HABIST Case Study 2 August 4, 1999

The Testing Problem

To demonstrate the application of HABIST technology, demonstration hardware was built which
generated sine waves of different amplitudes, DC offsets, peak clipping, and cross-over distortion,
various combinations of which could be selected as the output of the “circuit under test.” Testing
such acircuit is different than the original HABIST scheme given in the original paper; in this test
problem, no known good waveform was available. How could HABIST be used? The circuit
waveform would be used to synthesize an “ideal” non-distorted version of itself. By comparing the
relative signal amplitude of the observed waveform'’ s histogram with that of ahistogram of aperfect
sine wave of a known amplitude, the amplitude of the observed signal, if it were an undistorted sine
wave, could be extracted. Thisundistorted sinewave would then be used asthereferenceto calculate
clipping and crossover distortion of the observed signal.

Let’sjump ahead and look at the design solution.

The Solution

Figure 2 is the block diagram of the software solution. Histogram generation is performed in
software, however ideally it would be performed in the device to reduce the data bandwidth. For that
reason the signal cannot be analyzed except after it is converted to ahistogram. The centering blocks
shift the histogram so that either the mean or median data point is at the center histogram bin. Note
that the P-P Amplitude block measuresthe signal amplitude as observed in the histogram, the spread
of the histogram data, not the amplitude of the histogram itself. In fact, the histograms are
manipulated in normalized form, disregarding the actual number of data points captured.

PP .
Arpitude| ATplitde
Deta from Digjtizer
I > Offset
- Gererate Center Distartion | , Clip*
Histogram (mean) Measurements Clip
Qossover
Center
(Median)
_I" Relative “Ioeal”
Anplitude Anrplitude
Ided Generate _|_.
Snenave Hstogram

Figure 2— HABIST Software Solution

Relative amplitude is calculating by minimizing the variance between two histograms by scaling the
spread of one of the histograms. Becausethetwo histogramscould also vary intheir DC signal offset,
effecting the variance, and the histogram spreading operation must be centered on the median data
point, both histograms must first be adjusted so that their median data point is center bin or between
the two central binsif there are an even number of bins. Theideal sine wave can be created such that
its histogram is centered, so a separate centering step is not needed.

HABIST Case Study 3

The clipping and crossover distortion measurements are made by observing the deviation in the
distribution compared to an ideal sine wave of a specified amplitude. The amplitude is that obtained
from the preceding relative amplitude algorithm. The DC offset of the test signal is obtained from
calculating the mean bin of the signal histogram. This offset is also used to center the histogram for
the distortion measurements, which require that the mean bin be as close to the center as possible.

While not part of this example, algorithms have also been developed for measuring noise level,
amplitude modulation depth, sawtoothwavelinearity, and squarewaverise/fal times, overshoot, and

low frequency roll-off.

Deriving and Verifying the Solution

A few sample waveformswere captured, to beused in
the development of the HABIST test prior to the
construction of thetest fixture. To aid in development
of HABIST tests, algorithmsfor HABIST analysis as
well as waveform synthesis were encapsulated in the
Java™ language as JavaBeans™. A beanisasoftware
component which has a well defined interface
allowing it to be utilized in graphical programming
environments. Figure 3 shows Visua Age® for Java
programming environment being used to generate a
program to test the HABIST algorithm described
above on sample waveforms. The beans have been
found to work in al other bean-aware Java
programming environmentstested, including products
from Borland, Sun, and Net Beans. The following
beans are some of those implemented for HABIST
development:

Histogram Processing Beans

August 4, 1999

neFrompilelTC9% 1.0 in Defau m ckage for Old Histogram Der,
ce

3 Composition Editor

Histagram ~

I =

ins [32 | xR% [10
£

Amplitude /yieal Amp| Offset ciigs % /Ciip-% c

~[®]

System

| RS A

]
CalcAmplitte -

MedianAvg

//%
e ol RelativeAmplituce
ave

[Nothing selected

Figure 3— HABIST Algorithm Verification

ADCLinearity DNL/INL measurements of an ADC
Amplitude Amplitude of signal

Average Mean/median bin, optional shift

Difference Generate difference histogram
HistogramGenerator Generate histogram from data array
HistogramReader Read histogram from file

Iterator Iterate on data and collect result
ModulationDepth Calculate modulation depth

Noisel evel Measure relative noise level and compensate
Positioner Position a histogram

RelativeAmplitude Calculate amplitude based on ideal histogram
SawtoothSignature Sawtooth histogram measurements
SinewaveSignature Sine wave histogram measurements
SquarewaveSignature Square wave histogram measurements
Variance Calculate variance between two histograms

Waveform Synthesis Beans
AddNoise

Add noise to waveform

HABIST Case Study 4 August 4, 1999

Adjustment Gain and offset adjustment

Clipping Clip waveform

CrossoverDistort Add cross-over distortion

Modul ator Amplitude modul ate waveforms
SawtoothGenerator Basic sawtooth wave generator
SimulatorWaveformReader ~ Read a waveform from simulator output
SinewaveGenerator Basic sine wave generator
SquarewaveGenerator Square wave generator

While the histogram processing beans represent algorithms that are used for testing, the waveform
synthesis beans are helpful in developing tests. Other beans, not listed, include “visible” beans that
provide a user interface for the created Java program. Creating additional beans for new histogram
processing algorithmsis a straightforward process, taking only minutes after the algorithm has been
coded and tested.

A Javaprogramwascreated to test the HABIST solution. Figure 3 showsthe graphical user interface
components at the top, and icons for the various histogram beans at the bottom. Figure 4 shows a
close-up view of the connections to the histogram beans. The programming environment allows
creating and placing these beans and then making connections between them. The histogram beans
support adata flow architecture; when the output of one bean is connected to the input of another,
any changein thefirst beans output signals the second bean to process the new data presented by the
first. Sequential operation is implied by the order of the connections. The inputs of some of the
histogram beans come from fieldsin the user interface to provide adjustable parametersand selection
of the test waveform, while the outputs of some beans connect to numeric or graphical display fields
in the user interface.

ZISineFromFilelTC98 - Properties
IHlstGerﬂ j
d - \\niﬂ/ beanMName HistGenl [
H "—‘———_______. 559 conversionArray
CalcAamplitiide . . dataPaints double]
R l SinewaweSignature eroExpanen 5
HistGenl maxval 5.0
MedianAvg 5./ min'al 0.0
A= mode MNORMAL
me— (o Felativeamplitude LUIHETE i
ldealSinewawe) percentPaointslsed 0.0
HistGen? tossFlag Falsa
|
hinSize :I
[¥ Show expett featires
Figure 4— Connecting Histogram “Beans’ Figure 5—Bean Properties

Constant parameters of the histogram processing algorithms can be specified by setting the bean
properties (see figure 5). The HistogramGenerator bean allows setting the input levels for the
minimum and maximum bins, setting the number of bins, the maximum bin count (at which point
additional data is ignored), and whether to ignore data out of range or add to the outermost bins.
Thus it can smulate hardware histogram generators. It has the ability to introduce errors typifying
faults of analog to digital converters. The dataPoints property hereis not aconstant aswe are using
it, but isan input array which isread in from afile. This connection is made graphically and appears

HABIST Case Study 5 August 4, 1999

in figure 3 as a line from the user interface control in the upper left corner of the display to the
HistGenl bean.

All of the histogram beans have properties to customize
the agorithmsfor specific requirements. For example, the | EEEEIEETRITIE

Amplitude Bean, labeled CalcAmplitude, has an input | |- -
histogram property that is connected to the output | [Chistogen (Histogram)

histogram property of HistGenl. When anew histogram | | satias e

is generated, the Amplitude Bean will automatically pefLow 1.0

recalculate the histogram amplitude. It can do thisintwo
different ways, depending on the test designers
preference. The bean properties are shown in figure 6.
The mode property is a boolean value. If it is true, the
signal amplitude is calculated as the distance between the
two bins with the greatest content. If it is false, then a peak to peak amplitude is calculated, after
deleting high and low points to ignore noise. The percentage of pointsto ignore are also expressed
as the bean’s properties.

L

beanMame

¥ | Shovw exper featuras

Figure 6— Amplitude Bean

The finished algorithm test program was executed. When given a sample waveform with heavy
clipping, the results shown in figure 7 were obtained. The number of bins was set to 32,
corresponding to a 5 bit Analog To Digital Converter. The XR% setting of 25 means that the
waveformwill beexamined for crossover distortion within the central 25% of signal amplitude range.
The graphs show the input waveform for reference purposes, with a scale of 0 to 5 volts, and the
histogram of the waveform.

&z]Sine from File

| D:uBNvavaUDEPRC Elmwsel Bins |32 xR® |10 (Dol

TAAAAAAAANT
IRIRERNRRRTRTRNATANN
H \ HH]HHHH \

IR Wb

Amplitude Ideal Amipl Offset Clip+ % Clip- % Crossover %
|3.54839 |4.??252 I—D.362369 |35.?143% |14.285?% |n
Idle

Figure 7— Histogram Analysis Test In Operation

While the amplitude measured roughly 3.5 volts, the analysis concludesthat if the signal were not to
have been clipped, it would be roughly 4.8 volts, with 36% of the positive and 14% of the negative
sides clipped. The mean amplitude is -.36 volts from the midpoint of 2.5 volts, and 3% of the signal
amplitude is lost via crossover distortion. This closely matches measurements made of the original
signal.

HABIST Case Study 6 August 4, 1999

Figure 8 showsthe resultswith adifferent sample waveform, that of the sine wave generator without
additional distortion. The number of bins has been increased to that needed for a6 bit A/D converter.
The test results show a much smaller amount of distortion than the preceding example. The
suspiciously identical measurements of positive and negative clipping is aresult of the resolution of
the measurements. The absolute magnitude of clipping can only be measured to the amplitude

z]Sine from File

ID:IIEIM\-"Ja\ra‘tIDE‘tF'RC Elruwsel Bins |32 ®R% |10

AAAAAAARDNRDA
ATLNANANRVAAVAVAUAEA
WVVY Y VYV VY

Amplitude Ideal Ampl Offset Clip+ % Clip- % Crossaver %
|2.?4194 |2.83548 |-u.422012 |n.n% 0.0% 0
Idle

Figure 8— A Good Sine Wave Histogram

differencerepresented by adjacent bins. Although not shownhere, thesignaturealgorithmdoesreport
the resolution as the percentage of signal amplitude.

Conversion To Library Routines

The actual circuit testing was to be performed using LabVIEW™ (see figure 9). While the existing
histogram analysis algorithm could conceivably be used in test situations, it was much easier to
interface LabVIEW to C++ routines.

The modular design of the HABIST Java Beans alows them to be easily used in graphical design

Flo £o oo E
IS E) [csionen 5] [Bl [51 5 =
a

OPMAXX, Inc.

s p—

IxlexpN |4
sign(x)*ix|expl 2 2.00

05| pgel LS .
00-| 50 El
05- cliping|.

vvvvv

El SYNTI ED
E
Lt 1)

Figure 9— HABIST under LabVIEW

HABIST Case Study 7 August 4, 1999

environments, however they also can be used in traditional, non-graphical, procedural programming.
A C++ class was written which functionally matches the Histogram Processing Java Beans. The
analysis algorithm was tested again, first using Java without the user interface. Then the Java code
was converted to C++ and retested. Finally the C++ code was converted to aform accessible from
LabVIEW. The commented C++ code representing the connections of the Java Beans was 86 lines
long:

#i ncl ude" hi st o. h"
#i ncl ude" mat h. h"
#i ncl ude" st di o. h"

#i f ndef M_PI

#define M PI 3.14159265358979323846

#endi f

const doubl e DELTA=0.01; /1 gain calculation delta

const doubl e SPREAD=35. 0; /'l crossover spread (% of whol e)
const doubl e | DEALPEAK=1.0; // Peak anplitude of ideal waveform
const doubl e MAXBI N=5. O; /1 Maxi mum bin value for input data
const doubl e M NBI N=0. O; /1 M nimm bin value for input data
const doubl e PCTI GNORE=1.0; // Percentage of points to ignore (anplitude calc)
extern "C" {
void _ decl spec(dll export) processHi stogran{short *data,
int dataSi ze,
doubl e *hi st Dat a,
i nt numnber Bi ns) {
H STOGRAM h(data, dataSize, nunberBins, 0, 0, 4095);
h. normal ();
for (int i=0;

i < nunberBins; i++)
histbData[i] =

h[i];

void _ decl spec(dl | export)

denmoHi st ograml(doubl e *dat a,
i nt dataSize,
doubl e *hi st Dat a,
i nt nunber Bi ns,
doubl e *measur edAnpl i t ude,
doubl e *esti mat edl deal Anpl it ude,
doubl e *neasuredd f set,
doubl e *nmeasuredd i pP,
doubl e *nmeasuredd i pM
doubl e *measuredCrossoverDistortion) {

int i; [/ Tenp

H STOGRAM h(data, dataSize, nunmberBins, 0, MNBIN, MXBIN);
h. normal ();

for (i=0; i < nunberBins; i++)

histData[i] = h[i];
*measur edAnpl i tude = h. ppAnpl it ude(PCTI GNORE, PCTI GNORE) ;
doubl e *i deal Data = new doubl e[dat aSi ze] ;
for (i=0; i < dataSize; i++)

ideal Data[i] = sin((i*2.0*MPI)/dataSi ze);

}
H STOGRAM i deal (i deal Data, dataSi ze, nunberBins, O, -1 DEALPEAK, | DEALPEAK) ;
i deal . normal ();

/1 Calculate estimated ideal anplitude

doubl e adj ustnent = h. nedi an();
*measur edOf f set = adj ust ment *(h. get MaxVal () - h. get M nVal ())/ nunber Bi ns;

HABIST Case Study 8 August 4, 1999

doubl e shiftAmount = nunberBins/2.0 - adjustnent;
H STOGRAM shl = h. position(0, shiftAnmount, 1.0);
shl. normal ();

doubl e estGin = ideal.anplitude()/shl.anplitude();
doubl e gai n;

gain = shl.gain(ideal, estGain, DELTA, 0);

*est i mat edl deal Anpl i tude = ((| DEALPEAK*2. 0)/ gain)*
(shl. get MaxVal ()-shl.getM nVal ())/
(ideal.getMaxVal ()-ideal.getMnVal ());

}

/1 Generate histogramfor signature anal ysis,
/1 then perform anal ysis

{
doubl e dunmmy;
doubl e adj ustnment = h. nean();
doubl e shiftAmunt = floor(0.5 + nunmberBins/2.0 - adjustnent);
H STOGRAM sh2 = h. position(0, shiftAnount, 1.0);
sh2. normal ();
*measur edCrossoverDi stortion =
sh2. xover (*esti mat edl deal Anpl i t ude, SPREAD) *100. O;
*measuredd i pP =
(1.0-sh2.clipp(*estinatedl deal Anmplitude, dumry))*100.0;
*measuredd i pM =
(1.0-sh2.clipm *estinatedl deal Anpl i tude, dummry))*100. 0;
}
delete [] ideal Dat a;
}

}

TheLabVIEW test programworked asdesired, with only oneiteration to correct an error inthe C++
class. Thiswas a clerical error introduced when converting Javato C++.

The analysis algorithm executed in 4.6 milliseconds in the C++ version, and 5.1 milliseconds under
Java. This was using a Pentium™ |1 400MHz PC running Windows NT. In this case the time to
capture the data (and generate the histogram) is greater than that for processing. Since these can be
overlapped, the processing time is effectively zero.

In cases where an embedded processor is available for testing, the HABIST agorithms can be easily
adapted to micro-controller assembly language, using fractional integer arithmetic instead of the
floating point used in the C++ and Javaversions. While execution time would be longer, it would not
be longer to the extent suggested by the relative processor power. The C++ design is inefficient as
it was designed with ease of use and safe memory management (memory leaks are basically not
possible) in mind.

Conclusions

HABIST has been shown to be alow overhead approach to testing analog circuitry. HABIST test
development is simplified by having a graphical environment to design tests, and verify their
operation. Testing can be performed with various mixes of on-chip and external elements, with
analysis performed in C++ or Java.

