
Circuit
Under
Test

S&H,
A/D

Histogram
Generator

Test
Clock

Expected
Histogram

Difference
Signature

Generation

Hardware

Software

Signature of
Circuit under Test

Figure 1— HABIST Testing Data Flow

HABIST™ Case Study
Tom Almy

Opmaxx, Inc.
August 4, 1999

Abstract
Histogram Analog Built-In Self Test (or HABIST™) is an efficient technique to compare analog
signals against expected waveforms. Java-based software allows designing and implementing tests
which can be used in the testing environment.

Introduction
At ITC ‘97 we discussed a new approach to Analog BIST in which a histogram was made of a signal
in the circuit under test, and the histogram was then analyzed by comparing with the expected or ideal
signal histogram. Since then we’ve realized that the analysis should be tailored to the circuit under
test, and we have devised an interactive approach for developing and verifying the HABIST test
analysis. HABIST has received a patent and is being incorporated into Opmaxx BistMAXX™ suite
of BIST technologies.

HABIST Fundamentals
Figure 1 illustrates the typical HABIST configuration. A test point of the circuit under test is
connected to a sample and hold and analog to digital converter. The sample rate is controlled by its
own clock which runs asynchronously with the circuit under test. A histogram is made of the samples.
A program running on the tester or an embedded processor in device being tested takes the difference
between the histogram and an expected histogram obtained from simulation or a “golden” device. A
signature is generated, comprising of at the minimum the variance between the histograms, but
typically includes relative amplitude, offset, noise level, clipping, and other values depending on the
type of waveform. HABIST does not capture frequency domain statistics of sinusoidal waveforms.
Because of sampling, HABIST circuits after the sample and hold can run at a much lower clock rate
than the circuit under test making HABIST ideal for testing high speed circuits.

The signature gives a figure of merit of the circuit, and can provide information useful for diagnosis
and repair. However the size of the signature is much smaller than that of the histogram, which in turn
is much smaller than that of the digitized sampled signal, which reduces the needed probing
bandwidth, saving time and money.

HABIST Case Study 2 August 4, 1999

Generate
Histogram

Center
(mean)

Center
(Median)

Relative
Amplitude

Distortion
Measurements

P-P
Amplitude

Generate
Histogram

Ideal
Sinewave

Data from Digitizer

Amplitude

Offset

Clip+

Clip-

Crossover

“Ideal”
Amplitude

Figure 2— HABIST Software Solution

The Testing Problem
To demonstrate the application of HABIST technology, demonstration hardware was built which
generated sine waves of different amplitudes, DC offsets, peak clipping, and cross-over distortion,
various combinations of which could be selected as the output of the “circuit under test.” Testing
such a circuit is different than the original HABIST scheme given in the original paper; in this test
problem, no known good waveform was available. How could HABIST be used? The circuit
waveform would be used to synthesize an “ideal” non-distorted version of itself. By comparing the
relative signal amplitude of the observed waveform’s histogram with that of a histogram of a perfect
sine wave of a known amplitude, the amplitude of the observed signal, if it were an undistorted sine
wave, could be extracted. This undistorted sine wave would then be used as the reference to calculate
clipping and crossover distortion of the observed signal.

Let’s jump ahead and look at the design solution.

The Solution
Figure 2 is the block diagram of the software solution. Histogram generation is performed in
software, however ideally it would be performed in the device to reduce the data bandwidth. For that
reason the signal cannot be analyzed except after it is converted to a histogram. The centering blocks
shift the histogram so that either the mean or median data point is at the center histogram bin. Note
that the P-P Amplitude block measures the signal amplitude as observed in the histogram, the spread
of the histogram data, not the amplitude of the histogram itself. In fact, the histograms are
manipulated in normalized form, disregarding the actual number of data points captured.

Relative amplitude is calculating by minimizing the variance between two histograms by scaling the
spread of one of the histograms. Because the two histograms could also vary in their DC signal offset,
effecting the variance, and the histogram spreading operation must be centered on the median data
point, both histograms must first be adjusted so that their median data point is center bin or between
the two central bins if there are an even number of bins. The ideal sine wave can be created such that
its histogram is centered, so a separate centering step is not needed.

HABIST Case Study 3 August 4, 1999

Figure 3— HABIST Algorithm Verification

The clipping and crossover distortion measurements are made by observing the deviation in the
distribution compared to an ideal sine wave of a specified amplitude. The amplitude is that obtained
from the preceding relative amplitude algorithm. The DC offset of the test signal is obtained from
calculating the mean bin of the signal histogram. This offset is also used to center the histogram for
the distortion measurements, which require that the mean bin be as close to the center as possible.

While not part of this example, algorithms have also been developed for measuring noise level,
amplitude modulation depth, sawtooth wave linearity, and square wave rise/fall times, overshoot, and
low frequency roll-off.

Der iving and Ver ifying the Solution
A few sample waveforms were captured, to be used in
the development of the HABIST test prior to the
construction of the test fixture. To aid in development
of HABIST tests, algorithms for HABIST analysis as
well as waveform synthesis were encapsulated in the
Java™ language as JavaBeans™. A bean is a software
component which has a well defined interface
allowing it to be utilized in graphical programming
environments. Figure 3 shows VisualAge® for Java
programming environment being used to generate a
program to test the HABIST algorithm described
above on sample waveforms. The beans have been
found to work in all other bean-aware Java
programming environments tested, including products
from Borland, Sun, and Net Beans. The following
beans are some of those implemented for HABIST
development:

Histogram Processing Beans
ADCLinearity DNL/INL measurements of an ADC
Amplitude Amplitude of signal
Average Mean/median bin, optional shift
Difference Generate difference histogram
HistogramGenerator Generate histogram from data array
HistogramReader Read histogram from file
Iterator Iterate on data and collect result

 ModulationDepth Calculate modulation depth
NoiseLevel Measure relative noise level and compensate
Positioner Position a histogram
RelativeAmplitude Calculate amplitude based on ideal histogram
SawtoothSignature Sawtooth histogram measurements
SinewaveSignature Sine wave histogram measurements
SquarewaveSignature Square wave histogram measurements
Variance Calculate variance between two histograms

Waveform Synthesis Beans
AddNoise Add noise to waveform

HABIST Case Study 4 August 4, 1999

Figure 4— Connecting Histogram “Beans” Figure 5—Bean Properties

Adjustment Gain and offset adjustment
Clipping Clip waveform
CrossoverDistort Add cross-over distortion
Modulator Amplitude modulate waveforms
SawtoothGenerator Basic sawtooth wave generator

 SimulatorWaveformReader Read a waveform from simulator output
SinewaveGenerator Basic sine wave generator
SquarewaveGenerator Square wave generator

While the histogram processing beans represent algorithms that are used for testing, the waveform
synthesis beans are helpful in developing tests. Other beans, not listed, include “visible” beans that
provide a user interface for the created Java program. Creating additional beans for new histogram
processing algorithms is a straightforward process, taking only minutes after the algorithm has been
coded and tested.

A Java program was created to test the HABIST solution. Figure 3 shows the graphical user interface
components at the top, and icons for the various histogram beans at the bottom. Figure 4 shows a
close-up view of the connections to the histogram beans. The programming environment allows
creating and placing these beans and then making connections between them. The histogram beans
support a data flow architecture; when the output of one bean is connected to the input of another,
any change in the first beans output signals the second bean to process the new data presented by the
first. Sequential operation is implied by the order of the connections. The inputs of some of the
histogram beans come from fields in the user interface to provide adjustable parameters and selection
of the test waveform, while the outputs of some beans connect to numeric or graphical display fields
in the user interface.

Constant parameters of the histogram processing algorithms can be specified by setting the bean
properties (see figure 5). The HistogramGenerator bean allows setting the input levels for the
minimum and maximum bins, setting the number of bins, the maximum bin count (at which point
additional data is ignored), and whether to ignore data out of range or add to the outermost bins.
Thus it can simulate hardware histogram generators. It has the ability to introduce errors typifying
faults of analog to digital converters. The dataPoints property here is not a constant as we are using
it, but is an input array which is read in from a file. This connection is made graphically and appears

HABIST Case Study 5 August 4, 1999

Figure 7— Histogram Analysis Test In Operation

Figure 6— Amplitude Bean

in figure 3 as a line from the user interface control in the upper left corner of the display to the
HistGen1 bean.

All of the histogram beans have properties to customize
the algorithms for specific requirements. For example, the
Amplitude Bean, labeled CalcAmplitude, has an input
histogram property that is connected to the output
histogram property of HistGen1. When a new histogram
is generated, the Amplitude Bean will automatically
recalculate the histogram amplitude. It can do this in two
different ways, depending on the test designers
preference. The bean properties are shown in figure 6.
The mode property is a boolean value. If it is true, the
signal amplitude is calculated as the distance between the
two bins with the greatest content. If it is false, then a peak to peak amplitude is calculated, after
deleting high and low points to ignore noise. The percentage of points to ignore are also expressed
as the bean’s properties.

The finished algorithm test program was executed. When given a sample waveform with heavy
clipping, the results shown in figure 7 were obtained. The number of bins was set to 32,
corresponding to a 5 bit Analog To Digital Converter. The XR% setting of 25 means that the
waveform will be examined for crossover distortion within the central 25% of signal amplitude range.
The graphs show the input waveform for reference purposes, with a scale of 0 to 5 volts, and the
histogram of the waveform.

While the amplitude measured roughly 3.5 volts, the analysis concludes that if the signal were not to
have been clipped, it would be roughly 4.8 volts, with 36% of the positive and 14% of the negative
sides clipped. The mean amplitude is -.36 volts from the midpoint of 2.5 volts, and 3% of the signal
amplitude is lost via crossover distortion. This closely matches measurements made of the original
signal.

HABIST Case Study 6 August 4, 1999

Figure 8— A Good Sine Wave Histogram

Figure 9— HABIST under LabVIEW

Figure 8 shows the results with a different sample waveform, that of the sine wave generator without
additional distortion. The number of bins has been increased to that needed for a 6 bit A/D converter.
The test results show a much smaller amount of distortion than the preceding example. The
suspiciously identical measurements of positive and negative clipping is a result of the resolution of
the measurements. The absolute magnitude of clipping can only be measured to the amplitude

difference represented by adjacent bins. Although not shown here, the signature algorithm does report
the resolution as the percentage of signal amplitude.

Conversion To L ibrary Routines
The actual circuit testing was to be performed using LabVIEW™ (see figure 9). While the existing
histogram analysis algorithm could conceivably be used in test situations, it was much easier to
interface LabVIEW to C++ routines.

The modular design of the HABIST Java Beans allows them to be easily used in graphical design

HABIST Case Study 7 August 4, 1999

environments, however they also can be used in traditional, non-graphical, procedural programming.
A C++ class was written which functionally matches the Histogram Processing Java Beans. The
analysis algorithm was tested again, first using Java without the user interface. Then the Java code
was converted to C++ and retested. Finally the C++ code was converted to a form accessible from
LabVIEW. The commented C++ code representing the connections of the Java Beans was 86 lines
long:

#include"histo.h"
#include"math.h"
#include"stdio.h"
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif

const double DELTA=0.01; // gain calculation delta
const double SPREAD=35.0; // crossover spread (% of whole)
const double IDEALPEAK=1.0; // Peak amplitude of ideal waveform
const double MAXBIN=5.0; // Maximum bin value for input data
const double MINBIN=0.0; // Minimum bin value for input data
const double PCTIGNORE=1.0; // Percentage of points to ignore (amplitude calc)
extern "C" {
void __declspec(dllexport) processHistogram(short *data,
 int dataSize,
 double *histData,
 int numberBins) {
 HISTOGRAM h(data, dataSize, numberBins, 0, 0, 4095);
 h.normal();
 for (int i=0; i < numberBins; i++)
 histData[i] = h[i];
}
void __declspec(dllexport)
 demoHistogram1(double *data,
 int dataSize,
 double *histData,
 int numberBins,
 double *measuredAmplitude,
 double *estimatedIdealAmplitude,
 double *measuredOffset,
 double *measuredClipP,
 double *measuredClipM,
 double *measuredCrossoverDistortion) {
 int i; // Temp
 HISTOGRAM h(data, dataSize, numberBins, 0, MINBIN, MAXBIN);
 h.normal();
 for (i=0; i < numberBins; i++)
 histData[i] = h[i];
 *measuredAmplitude = h.ppAmplitude(PCTIGNORE,PCTIGNORE);
 double *idealData = new double[dataSize];
 for (i=0; i < dataSize; i++) {
 idealData[i] = sin((i*2.0*M_PI)/dataSize);
 }
 HISTOGRAM ideal(idealData, dataSize, numberBins, 0,-IDEALPEAK,IDEALPEAK);
 ideal.normal();
 // Calculate estimated ideal amplitude
 {
 double adjustment = h.median();
 measuredOffset = adjustment(h.getMaxVal()-h.getMinVal())/numberBins;

HABIST Case Study 8 August 4, 1999

 double shiftAmount = numberBins/2.0 - adjustment;
 HISTOGRAM sh1 = h.position(0, shiftAmount, 1.0);
 sh1.normal();
 double estGain = ideal.amplitude()/sh1.amplitude();
 double gain;
 gain = sh1.gain(ideal, estGain, DELTA, 0);

 *estimatedIdealAmplitude = ((IDEALPEAK*2.0)/gain)*
 (sh1.getMaxVal()-sh1.getMinVal())/
 (ideal.getMaxVal()-ideal.getMinVal());
 }

 // Generate histogram for signature analysis,
 // then perform analysis
 {
 double dummy;
 double adjustment = h.mean();
 double shiftAmount = floor(0.5 + numberBins/2.0 - adjustment);
 HISTOGRAM sh2 = h.position(0, shiftAmount, 1.0);
 sh2.normal();
 *measuredCrossoverDistortion =
 sh2.xover(*estimatedIdealAmplitude, SPREAD)*100.0;
 *measuredClipP =
 (1.0-sh2.clipp(*estimatedIdealAmplitude, dummy))*100.0;
 *measuredClipM =
 (1.0-sh2.clipm(*estimatedIdealAmplitude, dummy))*100.0;
 }
 delete [] idealData;

 }
}

The LabVIEW test program worked as desired, with only one iteration to correct an error in the C++
class. This was a clerical error introduced when converting Java to C++.

The analysis algorithm executed in 4.6 milliseconds in the C++ version, and 5.1 milliseconds under
Java. This was using a Pentium™ II 400MHz PC running Windows NT. In this case the time to
capture the data (and generate the histogram) is greater than that for processing. Since these can be
overlapped, the processing time is effectively zero.

In cases where an embedded processor is available for testing, the HABIST algorithms can be easily
adapted to micro-controller assembly language, using fractional integer arithmetic instead of the
floating point used in the C++ and Java versions. While execution time would be longer, it would not
be longer to the extent suggested by the relative processor power. The C++ design is inefficient as
it was designed with ease of use and safe memory management (memory leaks are basically not
possible) in mind.

Conclusions
HABIST has been shown to be a low overhead approach to testing analog circuitry. HABIST test
development is simplified by having a graphical environment to design tests, and verify their
operation. Testing can be performed with various mixes of on-chip and external elements, with
analysis performed in C++ or Java.

