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Using a bucket-water analogy to illustrate DSM ( Delta-Sigma modulation ) 
 
A robust sensing scheme using simple signal processing (averaging) for measuring an analog 
quantity. 

 
… an “inversed” case 

Averaging can be thought of as reducing the noise in the signal (the variations in water level 
because of sloshing). Averaging how often we add the cup of water gives a digital representation 
of the signal we are trying to measure. 
 
The size of the cup that adds water is important. 

• Using too small of a cup results in the water draining out of the bucket. (We can’t add the 
water fast enough). 

• Using a small cup for adding water increases the resolution. 
 
As long as the water level is at a “constant value” the actual level is unimportant (offset doesn’t 
matter). 
If the sigma bucket is "leaky" and the water it holds leaks out the quality of the sense will be 
affected. 
 
What limits the resolution of this scheme? 1) A leaky bucket, and 2) filling the cup imperfectly. 
 
Example (… a “normal” case): Assume that the rate of water flowing into the sigma bucket, is 
1 cup every 40 seconds. ( 0.25 cups per 10 seconds ). We remove a cup of water from the 
bucket every time the water level is > 5 cups 
Say that the height of the water in the bucket is checked every 10 seconds. We can write 
(assuming we want to keep, water height at 5 cups our reference line): 
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Continuing, we can write: 
 

 
 

Note how, as we increase the number of samples, the average bounces around 0.25 cups/10 
seconds. The longer we average the closer the output converges on 0.25 . 

• The “input” signal is the product of the output number (average) and the feedback 
signal size (cup size) or here 0.25*10 . 

Note that if we make a wrong decision it doesn’t really matter. 
• If we do not determine the level of water correctly it really doesn’t matter! The error will 

average out over time. 
• A counter is used for averaging (count the number of times we remove water from the 

bucket). 
Note that the longer we sense the better the sense … 
 
Sensing a Flash Memory using DSM 
 
State of the flash cell erased or programmed can be determined precisely by DSM. 

 
Ibit can be determined very precisely by looking at the number of times the output of the DSM 
sensing circuit goes high. 
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It may be Greek to you, but sigma delta converters are not really hard to 
understand. 

James Bryant -- 7/17/2006                            http://www.analog.com/analog_root/static/raq/raq_sigmaDeltaConverters.html
 

Q. Can you please explain, simply, as to a Bear of Little Brain¹, 
how sigma-delta converters work?  

A. By over-sampling, noise shaping and digital filtering. 

Athens is a beautiful city, with the ambiance of many millennia o
history. I was walking round the Acropolis with Spiros, one of our
Greek distributors, when he asked me how sigma-delta (Σ-∆) 

converters work. "Sigma and delta are letters of our Greek alphabet," he exclaimed, "but eve
article I have seen about their operation is double dutch² to me. They all start with several 
pages of partial differential equations and then go downhill from there." 
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If a voltage is measured many times, the average of the measurements will be more accurate 
than most individual measurements. This is "over-sampling." (Dither³ may be necessary to 
randomize the errors in the individual measurements.) 

There is a definite theoretical minimum limit to the possible noise of an analog-to-digital 
converter (ADC). When an ADC samples a signal at a frequency of fs the digital output contains 
the signal and this "quantization noise" is usually spread evenly from dc to fs/2. By sampling at a 
higher rate of Kfs, the noise is spread over the wider band from dc to Kfs/2. If we then remove all 
the noise above fs/2 with a digital filter the signal-to-noise ratio (SNR) of the digital output is 
improved — effectively improving the ADC resolution. 

Normally the SNR increases with the square root of K, so very high sampling rates are 
necessary for useful increases in SNR. But a Σ-∆ modulator does not produce uniformly 
distributed quantization noise. Although the total noise is unaltered in a Σ-∆ system, most of it is 
at high frequencies (HF). This is known as noise shaping and permits much lower values of K.

If the digital output from the Σ-∆ modulator is filtered to remove HF, leaving the frequencies 
from dc to fs/2 (where the wanted signals are) then the SNR and resolution of the digital output 
are improved.  

A Σ-∆ ADC simply consists of a Σ-∆ modulator and a digital low-pass filter, both of which are 
easily made with modern high-density digital technology. The principle of Σ-∆ ADCs has been 
known for more than 40 years, but the ability to build one on a chip is relatively recent. 

1. "When you are a Bear of Very Little Brain1 and you think of Things, you find sometimes that a 
Thing which seemed very Thingish inside you is quite different when it gets out into the open and 
has other people looking at it." — AA Milne, "The House at Pooh Corner"  

2. Double dutch means gobbledygook2  
3. Dither — the addition of noise or some other AC signal in order to randomize errors.  

                                                 
1 “...milyen nehéz dolog egy CSEKÉLYÉRTELMŰ MEDVÉNEK, mikor mindezeket el akarja gondolni.” 
2 nagyképű HALANDZSA 
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Getting Inspiration from Electrical Engineering … to Develop Interesting New Mathematics 
Daubechies, http://www.nsf.gov/pubs/2002/nsf0120/nsf0120_15.htm
 
Applied mathematicians can use their craft to help scientists and engineers solve numerical, simulational, or 
modeling problems, and they have often done so, in many fields, with great success, developing new 
applied mathematics tools as they progress.  
Talking to scientists and engineers should also lead to forms of applied mathematics where the science or 
engineering problems pose conceptual challenges that force us to (hopefully) develop whole new fields of 
mathematics (ultimately). It is much harder to foretell what these fields will look like - the power and 
importance of Fourier Analysis would have been hard to predict before Fourier. Our only hope to not 
miss these chances is to work hard and earnestly with scientists and engineers to get steeped in their 
problems, and not just be "consultants" for them. But it can be very hard to do this.  

A/D conversion in EE 
Digital signal processing has revolutionized the storage and transmission of audio signals, images and 
video, in consumer electronics as well as in more scientific settings (such as medical imaging). The main 
advantage of digital signal processing is its robustness. Although all operations have to be 
implemented with necessarily not quite ideal hardware, the a priori knowledge that all ideal outcomes must 
lie in a very restricted set of well separated numbers makes it possible to recover the ideal outcomes by 
rounding off appropriately. When bursty errors can compromise this scenario (as is the case in many 
communications channels, as well as for storage in memory), making the "perfect" data unrecoverable, 
knowledge of the type of expected contamination can be used to protect the data, prior to transmission or 
storage, by encoding them with error correcting codes. This is again done entirely in the digital domain. All 
these advantages have contributed to the present widespread use of digital signal processing. Many signals, 
however, are inherently "analog" rather than digital in nature; audio signals, for instance, correspond to 
functions, modeling rapid pressure oscillations, which depend upon a "continuous" variable, and the range of 
the signal typically also fills an interval. 
For this reason, the first step in any digital processing of such signals must consist of a conversion of the 
Analog signal to the Digital world, usually abbreviated as A/D conversion. Note that at the other end of the 
chain, after the signal has been processed, stored, retrieved, transmitted, ..., all in digital form, it needs to be 
reconverted to an analog signal that can be understood by a human hearing system; we thus need a D/A 
conversion there.  

The digitization of an audio signal rests on two pillars:  
sampling and quantization 

Moving from "analog time" to "discrete time" can be done without any problems or serious loss of 
information. At this state, each of these samples is still a real number. 

Sigma-delta modulation has its roots in the 60's when Inose and 
Yasuda developed the first unity bit encoding by negative feedback. 
Similarly, the classical error diffusion algorithm of Floyd and 
Steinberg was invented in the 70's. In the late 80's, interest in the 
information theory community was led by Gray who discovered 
some of the best known theoretical results. It was, however, only in 
the late 90's that an approximation theoretical framework was given 
to the problem by Daubechies and DeVore. Since then, there has 
been a rapid development in the theoretical analysis of sigma-delta 
modulation with emerging connections to other mathematical fields.

The transition to a discrete representation for each sample is called quantization. The simplest way to 
"quantize" the samples would seem to replace each by a truncated binary expansion. If we can "spend" k 
bits per sample, then a natural solution is to just select the first k bits in the binary expansion of the sample 
value. Quantized representations of this type are used for the digital representations of audio signals, but 
they are, in fact, not the solution of choice for the A/D conversion step. (Instead, they are used after the A/D 
conversion, once one is firmly in the digital world.) The main reason is that it is very hard (and therefore 
very costly) to build analog devices that can divide the amplitude range into 2k+1 precisely equal bins. It 
turns out that it is much easier (=cheaper) to increase the oversampling rate, and to spend fewer bits on 
each approximate representation. Sigma-Delta quantization schemes are a very popular way to do exactly 
this: they oversample significantly, 
and then spend very few bits per 
sample, but nevertheless achieve a 
very close approximation for the 
overall function when coarsely 
quantized "samples" are used 
instead of the true samples. In the 
most extreme case, every sample 
is replaced by just one bit. At the 
heart of this method lies an 
algorithm that recursively rounds 
(quantizes) each sample value to 
one of the few quantization levels in 
a way that is suited to achieve small global reconstruction error rather than small individual sample error. 
Surprisingly, very little math work has been done of these systems. 
We constantly had to go back to the drawing board as we understood better what the engineers 
meant. The process of keeping in touch with engineers at all stages was essential. 
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