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yquist-sampling theory lies at the heart of 
today’s digital-communications systems. It 
requires that data-conversion systems include 
antialiasing input filters. Designers need to 
understand the requirements for antialiasing 
filters and examine the consequences of filter 

application. They must also consider the benefits of a new 
class of ADC that uses a low-power, high-speed, continuous-
time-sampling method. These devices claim the ability to 
achieve a first Nyquist-zone-sampling capability without the 
aid of external filters.

You can reconstruct a time-continuous signal from discrete-
time-sampled data if the original sampling rate is twice that 
of the highest frequency component in the sampled signal. 
The Nyquist-sampling theory states that data clocked with 
a sample rate of fS (sampling frequency) samples/sec can 
effectively represent a signal of bandwidth as high as 0.53fS 
Hz. The Nyquist theory places demands on the sampling 
function, time, and amplitude precision. Sampling signals 
with signal content greater than a 0.53fS-Hz bandwidth 
cause aliasing, a nonlinear process that results in frequency 
shifting. Signal content at frequencies greater than 0.53fS 
Hz folds around 0.53fS Hz—the Nyquist frequency—and 
alias back into the baseband. This aliasing creates a serious 

problem: Once you sample the signal, you have no way of 
determining which resulting signal components originate 
from the desired signal band and which ones are aliased 
errors. Figure 1 shows two alias signals, A9, a single tone, 
and B9, a spectrum, each folding down into the first Nyquist 
zone. Note that A9 originates in Nyquist Zone 4, and B9 
is from Zone 3. Also note that, in a communications ap-
plication, this folding may allow interference signals to 
completely obscure information-bearing Signal A.

You should bandlimit a signal for digitization to eliminate 
any signal power beyond the frequency range of interest. The 
design of a suitable antialiasing-filter network may seem fairly 
trivial; however, as ADC linearity and performance improve, 
these filters become a significant part of the total system 
design.

Ideal and practIcal fIlters
Ideal baseband, lowpass antialiasing filters should have a 

steep transition band, excellent gain flatness, and low dis-
tortion in the passband—difficult goals to achieve. Further-
more, the stopband attenuation should be enough to reduce 
any residual out-of-band signal power to a level invisible 
to the ADC. You achieve this performance by employing 
stopband attenuation in excess of the dynamic range of the 

ADC (Figure 2). Assume that the stopband 
extends to infinity. Applications encountering 
high noise levels, especially those with high 
levels of interference occurring close to the edge 
of the first Nyquist zone, require filters with 
aggressive falloff. You achieve this performance 
using high-order filters that typically exhibit 
poor phase performance and result in dispersion 
or large group delay. In antialiasing filters, filter-
ing takes place before the time-sampling point, 
or quantizer; these filters consequently require 
the use of an analog filter. This requirement is 
unfortunate because you can more easily and 
cost-effectively implement aggressive filters in 
the digital domain. High-order analog filters 
provide low harmonic distortion and gain flat-
ness to in-band signals. However, the design of 
these filters is complex because they are too sen-
sitive to gain matching to be practical at more 
than a few orders of attenuation magnitude. 
Furthermore, any passband harmonic distortion 
the filter introduces also produces undesirable 
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Figure 1 Alias signals A9, a single tone, and B9, a spectrum, can reside in any 
Nyquist zone if no antialias filter exists in a sampled system, but you can find 
both in Zone 1, where A9 now obscures an information-bearing tone. A origi-
nates in Nyquist Zone 4, and B is from Zone 3.
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signals in the output spectrum of the ADC. 
Insertion loss might also be important when 
using passive filters, which increase system 
noise.

An ideal antialiasing filter features 0-dB 
unity gain in the passband with little or no 
gain variation and a level of alias attenuation 
that matches the theoretical dynamic range of 
the data-conversion system in use. You derive 
a first approximation of this value from the 
theoretical SNR (signal-to-noise ratio) for an 
N-bit ADC: SNR56.023N11.76 dB. For 
a 14-bit ADC, this approximation requires 
80- to 86-dB attenuation with an ideal SNR of 
approximately 86 dB.

A number of standardized filter-transfer 
functions, including Bessel, Butterworth, 
Chebyshev, and elliptic, exist. Each has spe-
cific characteristics in the passband, transition 
band, and stopband. Selecting the appropri-
ate topology depends on the most critical 
performance aspects of a design. Butterworth 
filters have the flattest passband region and 
minimal group delays. Chebyshev filters have 
steeper roll-offs but more passband ripple. 
Elliptic filters feature the steepest roll-off 
(Figure 3). The figure does not show a Bessel 
filter, which has a more gradual roll-off but 
has the key advantage of a linear, or constant, 
phase response. A number of public-domain 
tools exist to help developers in the design of 
a suitable antialiasing filter.

A consequence of using an antialiasing 
filter is the limit on available alias-free band-
width when you use it in a traditional ADC. 
At first glance, the Nyquist theorem seems to 
promise a lot. Consider an ADC that samples 
at 40M samples/sec at a clock frequency of 40 
MHz. It theoretically promises a 20-MHz signal bandwidth. 
However, aliasing with practical filter design means that 
the free bandwidth is considerably less than this amount. 
A 14-bit converter can resolve to one part in 214—that is, 
one part in 16,384. To bury any alias component in the 
ADC’s noise floor requires attenuation to be less than 60.5 
LSB. That amount equates to 90-dB attenuation—that 
is, 60.5 LSB5one part in 32,768590.3 dB. In practical 
terms, however, this level of attenuation need exceed only 
the measured SNR of a 14-bit ADC. A more realistic level 
in the filter design is an attenuation of 80 dB.

Figure 3 shows several possible filter topologies, includ-
ing two Butterworth-transfer functions—those of four- and 
eight-pole systems—both compared with an ideal Nyquist 
filter. Note that, by convention, the cutoff frequency is the 
point at which the filter produces 3 dB of attenuation. The 
horizontal axis shows the normalized input frequency as a 
ratio of the absolute frequency to the cutoff frequency. Note 
that the four-pole curve does not drop to 80 dB until the 
input frequency has risen to 10 times the cutoff frequency. 

So, if this ADC were to sample a 5-MHz signal, then this 
system would still see frequencies all the way out to 50 MHz. 
To fully sample the 5-MHz bandwidth and eliminate aliasing, 
the correct sample frequency using this filter would need to 
be 100 MHz. The range of 5 to 50 MHz becomes a guardband 
against alias errors. An obvious option is to look for higher 
performance filters. Consider an aggressive, eight-pole filter. 
Inspection shows that the 80-dB-attenuation point occurs at 
a frequency that is 3.2 times the cutoff frequency, or 16 MHz, 
a significantly reduced alias guardband. Alias-free sampling 
requires considerably more system bandwidth to handle the 
alias-guardband needs of an application. It is also important 
to note the cost trade-offs you must weigh when considering 
the severity of the antialiasing filter and the performance 
level of the ADC.

To ease antialiasing-filter design, pipeline ADCs—often 
confusingly referred to as Nyquist converters—have been 
offering increased sample rates and input bandwidths. 
Oversampling a signal at twice the Nyquist rate evenly 
spreads the ADC’s quantization-noise power into a two-
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Figure 2 Ideal lowpass antialiasing filters should have a steep transition band, 
excellent gain flatness, and low distortion in the passband. 
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Figure 3 Possible antialias-filter designs illustrate the different transition-band 
characteristics of example filter systems.



times-wider frequency band. Applying decimation to sub-
sample the resultant output samples yields a 3-dB/octave 
conversion gain. This technique is useful for deployment 
in delta-sigma converters because it not only produces 
dynamic-range improvements, but also reduces the pressure 
on the antialiasing filter by relaxing filter roll-off. Lower 
order antialiasing filters are easier to match across multiple 
channels than higher order ones. Oversampling techniques 
reduce the demands on the filter networks, but higher-
sample-rate ADCs and faster digital processing use more 
power and increase cost.

You must also consider the phase response of the antialias-
ing filters. A filtered signal should not see any significant 
phase alteration. This alteration becomes even worse if phase 
varies according to input frequency. You normally measure 
phase variation in a filter in terms of group delay—that is, the 
derivative of phase with respect to frequency. For a noncon-
stant group delay, a signal spreads out in time, causing poor 
impulse response. Dispersion may be an additional worry for 
system performance. This factor is important in the design of 

ultrasound systems in which the received-signal phase carries 
reflection information.

delta-sIgma converters
Delta-sigma techniques place lower demands on antialias-

ing filters. Delta-sigma converters exploit oversampling. In 
the past, designers improved dynamic range by using high 
oversampling rates and a simple low-resolution quantizer. 
However, simple oversampling produces minimal conver-
sion-gain improvements. Applying feedback provides a faster 
route to conversion-gain improvements.

Delta-sigma modulators apply feedback to shape the quan-
tization noise in the frequency domain by pushing most noise 
power into frequencies beyond the signal band of interest. 
Filtering can reduce the noise power in this band. Employing 
oversampled systems, which provide free frequency space 
beyond the signal band of interest, accomplishes this goal. 
Conventional Nyquist converters achieve a 3-dB/octave 
conversion gain through 23 oversampling. Delta-sigma con- 
verters more efficiently build conversion gain, which the 
order of the applied feedback loop determines. First-, second-, 
or third-order loops can provide 9-, 15-, or 21-dB/octave 
conversion gain, respectively.

Most delta-sigma-converter implementations are discrete-
time systems in which designers build the loop-filter compo-
nents from simple switched-capacitor filters. The signal-trans-
fer function of a delta-sigma modulator is an important factor 
in such a design. Signal-transfer performance looks promising 
in traditional discrete-time systems. Digital-decimation filters 
define the effective passband and provide a sharp transition 
band. Unfortunately, switched-capacitor-filter networks, 
which define the input bandwidth, add a discrete-sampling 
effect to the modulator structure. This discrete sampling causes 
a lowpass signal-transfer function (Figure 4a). Although this 
function seems acceptable, a closer inspection of a wideband-
frequency plot reveals a problem: The passband of the digital 
filter wraps around integer multiples of the sample frequency at 
60, 120, and 180 MHz (Figure 4b). No alias attenuation what-
soever exists at these points, and this characteristic extends to 
infinity. Preventing high-level, out-of-band noise at multiples 
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Figure 5 An aliasing-mitigation system ensures the analog-loop 
filter provides maximum stopband attenuation at the oversam-
pling frequency of the modulator.
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Figure 4 Discrete time sampling produces a lowpass signal-transfer function in a discrete time delta-sigma ADC (a). The graph in (a) 
appears to show alias protection; however, the transfer function of (a) is wrapped around integer multiples of the sampling frequency, 
as the expanded plot (b) shows. Aliasing gaps appear centered on 60, 120, and 180 MHz in this case.
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of the oversample rate is a challenge and 
a downside of such designs.

contInuous tIme
In a continuous-time modulator, you 

implement noise shaping using conven-
tional analog active filters. The benefit 
of the continuous-time approach is that 
you can design the loop filter to handle 
alias filtering of the input signal. Tai-

loring this filter system for a specific 
product, the maximum-loop-filter at-
tenuation coincides with the minimum 
attenuation that the decimation filter 
offers. An aliasing-mitigation system 
ensures that the analog-loop filter pro-
vides maximum stopband attenuation 
at the oversampling frequency of the 
modulator (Figure 5, green line). This 
attenuation ensures that no noise power 

beyond the oversampling frequency 
can enter the first Nyquist zone. The 
back-end digital filter provides a sharp 
stopband attenuation, limiting the 
maximum effective input bandwidth of 
the ADC (blue line). Through this ar-
rangement, the maximum analog-loop- 
filter attenuation always coincides with 
the folded-digital-filter minimum to 
maintain a high level of wideband at-
tenuation. The maximum attenuation 
of the analog-loop filter coincides with 
the alias passband of the digital filter. 
The purple line shows the composite 
transfer function.

The specific implementation of a 
given delta-sigma topology determines 
the performance of the antialias system. 
For example, the 14-bit-resolution, 
20M- to 40M-sample/sec Xignal (www.
xignal.com) XT11400 ADC achieves 
76-dB SNR and provides a 20-MHz 
analog-input bandwidth. The passband 
gain flatness is 60.002 dB, the transition 
band is approximately 2.5 MHz wide, 
and the unit achieves alias attenuation 
of 80 dB beyond 22.5 MHz, all without 
any external filtering. A digital allpass-
filter stage, which reduces dispersion to 
0.3 samples, minimizes group delay. Such 
approaches have benefits in reducing de-
sign complexity, especially in multiple-
channel designs in which cross-channel 
filter matching is a major issue.

In summary, delta-sigma modulators 
use oversampling to help simplify anti-
aliasing-filter design. For discrete-time 
systems, you must use caution in design-
ing antialiasing filters because of the 
potential occurrence of high-frequency 
noise, which can couple and fold di-
rectly into the baseband. A continu-
ous-time alternative can eliminate the 
need for all external antialiasing filters. 
The maximum attenuation of the ana-
log-loop filter aims successfully to inter-
cept the passband frequency of the digi-
tal-decimation filter at the oversampling 
frequency.EDN
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