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Abstract—The work presented in this paper builds on previous
research done by the authors in detailing a novel procedure for
obtaining a very fast measurement of the integral nonlinearity of
an analog-to-digital converter (ADC). The core of the method is
the parametric spectral estimation of the ADC output; the static
characteristic is subsequently reconstructed as a sum of Chebyshev
polynomials, in accordance with a previously developed procedure.
The method allows one to test an ADC with sinusoids of any rea-
sonable amplitude (even a slight overdrive is allowed), frequency
(no synchronization is needed), and phase (which is digitally com-
pensated). This approach is less accurate than the histogram test
but incomparably faster (about 8000 samples are sufficient regard-
less of the ADC resolution).

Index Terms—Analog-to-digital conversion, Chebyshev
functions, discrete Fourier transforms, dither techniques, nonlin-
earities.

I. INTRODUCTION

THE static error of an analog-to-digital converter (ADC) is
commonly quantified by the integral nonlinearity (INL),

and measured using the well-known statistical approach named
histogram or code density test [1], [2]. This method measures
the average position of the threshold levels, with a very high
accuracy. This is essentially limited by the purity and synchro-
nization accuracy of the sine wave deployed as well as the test
time.

Test time is the first significant drawback of the histogram
test. Due to its statistical nature, meaningful results are obtained
only by acquiring some dozens of samples per code bin. As a
consequence, the test of a high-resolution converter (16–20 bits)
lasts many minutes or even many hours (at low sampling fre-
quencies). The second drawback is that the test requires precise
coherent sampling of the input sinusoid. Even if some tolerance
is allowed for a given result accuracy [3], a good synchroniza-
tion between the test signal and the sample clock is needed to
avoid gross measurement errors.

The alternative procedure formerly developed by the authors
[4]–[6] is based on the fast Fourier transform (FFT) of the ADC
output having sinusoidal stimulus. The FFT values are used to
reconstruct the INL as a sum of Chebyshev polynomials: we
will therefore refer to this technique, as the Chebyshev test.
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The Chebyshev test presents the following noteworthy fea-
tures.

1) It is extremely fast, needing a few thousand of samples
regardless of the ADC resolution.

2) The test accuracy depends on the smoothness of the ADC
characteristic (this is the price for its speed).

3) The result can be employed for an easy digital lineariza-
tion, especially in the case of dithered ADC [7].

4) Its performance critically depends on and demands co-
herent sampling of the input signal.

The last point is, of course, a drawback that makes the test less
attractive. If a fast and simple measurement of the static error is
required, it is desirable to eliminate problems of synchronization
between the test signal and the sample clock.

In the following, a new version of the Chebyshev test is pre-
sented, in which the use of a parametric spectral estimation
method, instead of the FFT, eliminates any special requirement
on the test signal. It is shown in the following sections that the
new test delivers, with very immediate and straightforward com-
putations, acceptably accurate measurements of the static error,
by simply using a pure sine wave of any frequency or amplitude
compatible with the ADC under test.

II. CHEBYSHEV TEST THEORY AND PRACTICE

First of all, we briefly recall the simple theory of the Cheby-
shev test. If we call the characteristic of a static system
(a nonlinear staircase function for an ADC), and we assume an
input of the form

(1)

the output of the system is then a signal with Fourier expansion

(2)

(as the input of the static system is even, also the output is such
and can be represented as a cosine series).

The combination of (1) and (2) gives, with simple algebraic
manipulations, the formula

(3)

The terms are the well-known
Chebyshev polynomials of the first kind. Therefore, knowing
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Fig. 1. Cascade of a high-order static characteristic g(x) and an ideal low-pass
filter. The result of a truncated Chebyshev test on g(x)is the sinusoidal response
of this system.

the Fourier expansion of the system output, in principle implies
knowledge of the static characteristic in polynomial form.

If is a polynomial of finite degree (say, ), taking
Fourier terms

(4)

gives an exact reconstruction of the characteristic, i.e.,
. If is, instead, not of finite degree (the real-world prac-

tical case), taking as a measurement of introduce a
truncation error that can be quantified in
at least two different ways. It is easily demonstrated, indeed (see
the Appendix), that

(5)

(6)

The quantities and are, respectively,
the maximum absolute value and the weighted sum squared
value of the truncation error introduced by an -harmonic
reconstruction of . As the weight function in the sum
squared error (6) is the density function of the sinusoidal signal,

represents the power at the output of a system with
static characteristic when stimulated by a sinusoidal input
(1). Equations (4) and (5) (which, of course, represent uncer-
tainties in the measurement of given by the Chebyshev
test) can be evaluated with very good accuracy if one knows
the omitted coefficients ; otherwise, it is
possible to estimate their magnitude using the “last coefficient
rules of the thumb” reported in [8], which makes use only of
the coefficient .

A more qualitative and intuitive way of representing the trun-
cation error is provided by Fig. 1. It is clear, indeed, that using
(4), with a finite number of Fourier terms, is equivalent to mea-
suring the sinusoidal response of the system as represented in
Fig. 1, consisting of cascaded with an ideal low-pass filter.
The low-pass filter limits the possibility of investigating

at the microscopic level, but does not destroy much infor-
mation about the metrological properties of . If is an
ADC employed in a digital scope, the automatic measurements
performed by the instrument usually entail, explicitly or implic-
itly, a more severe low-pass filtering than that represented by

, for example waveform averaging to reduce noise. There-
fore the result of the Chebyshev test, which leaves out only very
small disturbances at very high frequency introduced by ,

Fig. 2. (a) Comparison between the “true” INL (thin line) and the INL
reconstructed by a 100-harmonic Chebyshev test (thick line). The harmonics
come from a 2000-point FFT on a coherently sampled sine wave. (b) Plot of
the difference between the INL estimates in (a).

maintains all the useful information about an ADC as a mea-
surement system for a dynamic signal.

The performance and the limit of the Chebyshev test are best
illustrated by a practical example. Fig. 2(a) and (b) compares the
INL of an 8-bit flash ADC with the reconstruction performed
by a Chebyshev test. The “true” INL has been measured by a
histogram test with about 1000 samples per code, while the re-
constructed INL was obtained using the first 100 harmonics of
an FFT of the ADC output. The FFT has been performed by
averaging 4 records of only 2000 samples each, acquired with
precise coherent sampling (each record was exactly 3 periods).
The small difference between the curves is traceable to: 1) the
intrinsic difference between INL and the average static error of
the ADC, and 2) to the distortion components beyond the 100th
harmonic, which are of very little relevance in most practical
measurements. Effect 2) is made clear if one takes fewer har-
monics in the reconstruction [Fig. 3(a) and (b)].

It is clear that considering fewer harmonics yields a smoother
(and less accurate) reconstruction of the INL and of the average
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Fig. 3. (a) Same as Fig. 2, but with a 30-harmonic reconstruction. (b) Plot of
the difference between the INL estimates in (a).

static error. To also give an idea of effect 1), Fig. 4 shows the
“true” average static error, measured by comparing the input
with the average of 10 000 output samples (the ADC input noise
is LSB). It must be noted that, while the INL is useful
for the ADC designer, as it gives information about the average
thresholds of the circuit, the average static error (which is the
quantity actually measured by the Chebyshev test) is the impor-
tant one for ADC users, as it gives the true distortion introduced
by the converter.

III. PARAMETRIC SPECTRAL ANALYSIS FOR THE

CHEBYSHEV TEST

Past experiments on actual ADCs have demonstrated that the
Chebyshev test requires the correct estimation of a very large
number of harmonics at the converter output (100 in the pre-
vious example). Performing the estimate via FFT is very fast
and straightforward, but requires coherent sampling, with even
more precision than the histogram test.

When the synchronization of the ADC sample clock is dif-
ficult to obtain, the FFT is no longer utilizable for the Cheby-

Fig. 4. “True” average static error of the considered ADC. This curve is
smoother than the INL and is closer to the result of the Chebyshev test.

shev test. It is true that windows and spectral interpolation algo-
rithms can help in determining harmonic amplitudes in nonco-
herent sampling conditions [9], [10], [11], but these algorithms
are usually well-suited only for reconstructing a limited number
of spectral terms with meaningful amplitude.

In order to perform the Chebyshev test without synchroniza-
tion constraints it is preferable to use, instead, a parametric spec-
trum estimation method. We have chosen the multiharmonic
sine estimation presented in [12], which is basically a gener-
alization of the “semi-fixed” sine fitting methods discussed, for
example, in [13] and [14]. All of these methods have already
been successfully used in the ADC characterization field.

For the purpose of spectral analysis, the following model of
the ADC output is assumed:

(7)

where is the digital angular frequency ( is the
sampling frequency), is the model order (the number of har-
monics) and the number of samples. We do not suppose the
input sine wave to be sampled with exactly null phase, so (7) in-
cludes both cosine and sine terms. The Chebyshev test by mul-
tiharmonic sine estimation is arranged as follows.

1) An interpolated FFT (IFFT) is performed on the first har-
monic of the ADC output in order to obtain an esti-
mate of the digital frequency [10].

2) The matrix shown in (8) at the of the next page is con-
structed.

3) The following overdetermined linear system ( equa-
tions, unknowns) is solved:

(9)

The obtained vector is an estimate of

(10)
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4) The phase of is estimated on the basis of the first
harmonic

(11)

5) The Chebyshev coefficients are estimated from the rela-
tionship

(12)

which implements the correction of the nonzero phase of
. In a “perfect” estimate with a perfectly static ADC

the imaginary part of the term is exactly
zero.

A few remarks are needed about the algorithm. The most im-
portant is that it is a considerably simplified version of the one
described in [12]: The original method includes, after the com-
putation of , a suitable number of Gauss–Newton iterative steps
to find the minimum mean-squared-error estimate of the digital
frequency . This version, instead, relies completely on the ac-
curacy of the IFFT estimate of . The algorithm could be made
even simpler because, if the ADC is assumed to be perfectly
static, the unknown are not independent each other, as all the
harmonics must be in phase, i.e.,

(13)

Therefore, it is possible to reformulate the algorithm for esti-
mating the coefficients , starting from a prior estimation of
(for example via IFFT). This halves the size of the linear system
involved, but loses the possibility of verifying that the harmonics
are actually in phase, i.e., that the ADC is a static system at the
test signal frequency. If this is not true, the amplitudes of the
coefficients give information about the deviation of the con-
verter from the static behavior.

Afinal remarkregards themodelorder selection,which is thor-
oughly discussed in [12]. The experimental results presented in
Section IV show that, for the purpose of INL reconstruction, a
careful selection of the model order is not needed.

IV. EXPERIMENTAL RESULTS

Since the theoretical properties of the described spectral es-
timation method have been deeply studied, there is no point in
examining its performance with simulated signals. It is instead
interesting to try it with actual ADCs, comparing the recon-
structed INL with the “true” one (obtainable with the histogram

Fig. 5. Comparison between the “true” INL (thin line) and the INL
reconstructed by a 100-harmonic Chebyshev test (thick line). The harmonics
come from the parametric spectral analysis of a 2000-point incoherently
sampled sine wave.

test), having at hand also the reconstruction provided by the FFT
method.

One should not take for granted that the parametric method
will perform as well as the FFT. First of all, in the past the
method has been used to estimate a small number of harmonics

of a considerably distorted signal [12]. We have seen
that a satisfactory INL reconstruction requires, on the contrary,
the correct estimation of dozens of very small harmonics. Be-
sides, our simplified procedure does not include a special cri-
terion for selecting the model order, which is instead usually a
requirement for parametric spectral methods. It is clearly im-
practical to try and establish the precise order of a signal with
hundreds of very small components. Finally, a key point is that
our procedure avoids the considerable computational burden of
the Gauss-Newton iterative steps, at the expense of a worse fre-
quency estimation.

A first set of experiments have been performed with the same
8-bit flash ADC considered in Section II. The analyzed waveform
has been obtained, again, by averaging four records of 2000 sam-
ples, but this time we have totally removed the synchronization
between the sample clock and the signal generator (each record
was actuallymadeofabout3.1periods).Fig. 5 shows that the INL
obtainedwitha100-harmonicreconstructionisverysimilartothat
obtained via FFT (Fig. 2), and is a good approximation to the true
one. This result demonstrates that, for the sake of INL reconstruc-
tion, acareful determination of the fundamental frequency via the
Gauss–Newtoniterativestepsisnotneeded.Thedigitalfrequency
estimate described in [10], coupled with the linear system (9) de-
livers excellent results.

(8)
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Fig. 6. Same as Fig. 5, but with a 30-harmonic reconstruction.

If one wants to approximate the INL with a polynomial of a
lower order, e.g., with a 30th degree polynomial like in Fig. 3,
the parametric spectral analysis offers two possibilities. The
first, and more rigorous approach, consists in performing the
analysis with a high-order model of the ADC output (say, a
100th-order model), and then using only the first 30 harmonics
for the reconstruction. The second approach is quicker and more
direct: obtaining the required 30 harmonics by using a 30th-
order model of the ADC output. Even if the latter approach
seems not advisable (because usually a reduced order model im-
plies larger errors in the final estimates of the harmonics), Fig. 6
shows that in the Chebyshev test of nonlinearity it is perfectly
feasible. The result is indeed very close to that of Fig. 3: or, in
other words, the result given by a 30th order model is nearly the
same obtained by selecting the first 30 harmonics of an FFT, i.e.,
the best 30th-order polynomial approximation to the INL.

As a final result concerning this 8-bit ADC, we present the
performance of the test with a slightly overdriving input. An
undesirable feature of the frequency-domain test methods for
ADCs is that usually one cannot stimulate exactly the full-scale
range. On the contrary, the histogram test (and also the modified
time-domain analysis proposed in [14]) allows one to employ a
saturating sine wave, so testing the whole characteristic. Fig. 7
shows the INL reconstruction of the parametric method with an
8.2 V peak-to-peak input sine wave (the full-scale range is 8
V). It is clearly shown that, even if additional harmonics due to
the saturation are obviously present at the ADC output, the INL
reconstruction is still accurate, provided a high enough signal
model order is selected. It can be shown that, when working
with overdriving sinusoidal inputs, a low order model leads to
wrong reconstructions of the INL (contrary to the FFT method).

We have tried the Chebyshev test via parametric spectral anal-
ysis also on a second ADC with a much larger number of codes,
a 16-bit sigma-delta converter embedded in a PC sound card.
The test is particularly attractive for this kind of converters: The
high resolution and the low sampling rate makes the histogram
test a lengthy work, and the usually inaccurate sample clock fre-
quency makes very difficult to obtain the exact coherent sam-
pling required by the FFT analysis. In Fig. 8(a) and (b), the result

Fig. 7. Same as Fig. 5, but with a slightly overdriving sine wave at the input.
The whole of the full-scale range is tested.

Fig. 8. (a) Comparison between the INL measured via histogram test
(thick line) and the INL reconstructed by a 100-harmonic Chebyshev test
(thin line) for a 16-bit sigma-delta converter embedded in a PC sound card.
The harmonics come from the parametric spectral analysis of a 1024-point
incoherently sampled sine wave. (b) Plot of the difference between the INL
estimates in (a).
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of the histogram test, performed with more than 8 million sam-
ples, is compared with the INL derived by the Chebyshev test
on an incoherently sampled sine wave of about five periods and
1024 samples. It is impressive to see how good the result of the
Chebyshev test is, especially if one considers that it uses only
one sample per 64 code bins. It is also clear that, by employing
the Chebyshev linearization discussed in [6], the big nonlinear-
ities of the converter can be nearly nullified, so transforming an
inexpensive digitizer into a highly linear and accurate measure-
ment device.

V. CONCLUSION

In previous works the authors have obtained a polynomial
approximation of the INL of an ADC, by determining via FFT
the Fourier series of the output when the input is a sine wave.
A drawback of the FFT method is that it requires very accurate
coherent sampling, i.e., synchronization between the test sine
wave and the sampling circuit.

In this paper, the authors have analyzed the performance of
a simplified parametric spectral estimation method, instead of
the FFT, in reconstructing the INL. The experiments have shown
the following remarkable facts.

1) The parametric method is able to reconstruct accurately
as many as 100 output harmonics of the ADC under test,
obtaining an INL reconstruction as accurate as that pro-
vided by the FFT.

2) The time-consuming iterative search of the signal fre-
quency is not needed in practice—a standard IFFT pro-
vides a sufficient estimate for INL reconstruction pur-
poses.

3) A precise selection of the model order is not needed—a
lower order means simply a smoother approximation of
the INL.

4) The INL reconstruction is not affected by a slight over-
drive of the ADC, and therefore the whole full-scale range
can be easily tested (this is also true, however, for the FFT
method).

In short, many typical drawbacks of the parametric spectral
estimation methods disappear in this particular application: no
need for time-consuming iterations, or of a prior knowledge of
the signal spectrum. On the contrary, the method is computa-
tionally simplified and hence rapidly delivers a useful approxi-
mation of the INL, using a few thousand samples of a sine wave
(regardless of the ADC resolution), and without needing any
synchronization between the test signal and the sample clock.

APPENDIX

DEMONSTRATION OF FORMULAS (5) AND (6)

Deriving (5) is straightforward if one considers that the
Chebyshev polynomials are bounded by one

(14)

From (14), it is readily obtained that

(15)

Equation (6) is instead derived by considering the orthogo-
nality property of the Chebyshev polynomials:

for
for
for

(16)

Using this property and the variable change ,
we have at once

(17)

REFERENCES

[1] IEEE Standard 1057/94 for Digitizing Waveform Recorders, Dec. 1994.
[2] IEEE Standard 1241-2000 for Terminology and Test Methods for

Analog-to-Digital Converters, Dec. 2000.
[3] P. Carbone and G. Chiorboli, “ADC sinewave histogram testing with

quasicoherent sampling,” IEEE Trans. Instrum. Measure., vol. 50, pp.
949–953, Aug. 2001.

[4] F. Adamo, F. Attivissimo, and N. Giaquinto, “FFT test of A/D converters
to determine the integral nonlinearity,” IEEE Trans. Instrum. Measure.,
vol. 51, pp. 1050–1054, Oct. 2002.

[5] F. Adamo, F. Attivissimo, N. Giaquinto, and M. Savino, “Measuring
the static characteristic of dithered A/D converters,” Measurement, pp.
231–239, Nov. 2002.

[6] F. Adamo, F. Attivissimo, N. Giaquinto, and A. Trotta, “A/D converters
nonlinearity measurement and correction by frequency analysis and
dither,” in Proc. IMTC/02, Anchorage, AK, May 2002, pp. 201–206.

[7] J. Holub and O. Aumala, “Large scale error reduction in dithered ADC,”
in Proc. IWADC 2000, Vienna, Austria, Sept. 2000, pp. 42–48.

[8] J. P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd ed. New
York: Dover, 2001. rev..

[9] P. Carbone, E. Nunzi, and D. Petri, “Windows for ADC dynamic testing
via frequency-domain analysis,” IEEE Trans. Instrum. Measure., vol.
50, pp. 1571–1576, Dec. 2001.

[10] G. Andria, M. Savino, and A. Trotta, “Windows and interpolation al-
gorithms to improve electrical measurement accuracy,” IEEE Trans. In-
strum. Measure., vol. 38, pp. 856–863, Apr. 1989.

[11] J. Schoukens, R. Pintelon, and H. Van Hamme, “The interpolated fast
fourier transform: A comparative study,” IEEE Trans. Instrum. Measur.,
vol. 41, pp. 226–232, Apr. 1992.

[12] R. Pintelon and J. Schoukens, “An improved sine-wave fitting proce-
dure for characterizing data acquisition channels,” IEEE Trans. Instrum.
Measure., vol. 45, pp. 588–593, Apr. 1996.

[13] K. W. Hejn and R. C. S. Morling, “A semifixed frequency method for
evaluating the effective resolution of A/D converters,” IEEE Trans. In-
strum. Measure., vol. 41, pp. 212–217, Apr. 1992.

[14] N. Giaquinto and A. Trotta, “Fast and accurate ADC testing via an en-
hanced sine wave fitting algorithm,” IEEE Trans. Instrum. Measure.,
vol. 46, pp. 1020–1025, Aug. 1997.



946 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 53, NO. 4, AUGUST 2004

Filippo Attivissimo received the M.S. and Ph.D. de-
grees in electrical engineering from the Polytechnic
of Bari, Bari, Italy, in 1992 and 1997, respectively.

Since 1993, he has worked on research projects
in the field of digital signal processing for measure-
ments with the Polytechnic of Bari. He is currently an
Associate Professor in electrical and electronic mea-
surements with the Department of Electrics and Elec-
tronics of the same institution. His main research in-
terests are in the field of electric and electronic mea-
surement on devices and systems, estimation theory,

ultrasonic sensors, digital measurements on power electronic systems, spectral
analysis and analog-to-digital converter modeling, characterization, and opti-
mization.

Dr. Attivissimo is a Member of the Italian Group of Electrical and Electronic
Measurements (GMEE).

Nicola Giaquinto received the M.S. and Ph.D. de-
grees in electronic engineering from the Polytechnic
of Bari, Bari, Italy, in 1992 and 1997, respectively.
Since 1993, he has been working, as a Ph.D. candi-
date, in the field of electrical and electronic measure-
ments, doing research mainly in the field of digital
signal processing for measurement systems.

In 1997–98, he worked in the Casaccia Research
Center, Rome, Italy, as a grant-holder of the
Italian Agency for New Technologies (ENEA),
concerned with real-time geometric measurements

for autonomous robots. In 1998, he rejoined the Polytechnic of Bari, where he
currently works as an Associate Professor in electrical and electronic measure-
ments. His main research interests are in the field of statistical, time-domain
and frequency domain methods for nonlinear systems characterization, A/D
converters modeling, characterization and optimization, parametric and
nonparametric methods for spectral analysis, ultrasonic sensors, and neural
networks for computer vision.

Dr. Giaquinto is a Member of the Italian Group of Electrical and Electronic
Measurements (GMEE).

Izzet Kale (M’88) was born in Akincilar, Cyprus.
He received the B.Sc. (Hons.) degree in electrical
and electronic engineering from the Polytechnic of
Central London, London, U.K., the M.Sc. in the
design and manufacture of microelectronic systems
from Edinburgh University, Edinburgh, U.K., and
the Ph.D. degree in techniques for reducing digital
filter complexity from the University of Westminster,
London, U.K.

He joined the staff of the University of Westmin-
ster (formerly the Polytechnic of Central London)

in 1984, where he is currently Professor of Applied DSP and VLSI Systems,
leading the Applied DSP and VLSI Research Group. His research and teaching
activities include digital and analog signal processing, silicon circuit and
system design, digital filter design and implementation, and A/D and D/A
sigma–delta converters. He is currently working on efficiently implementable,
low-power DSP algorithms/architectures and sigma–delta modulator structures
for use in the communications and biomedical industries.




