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Abstract—Offset mismatch, gain mismatch, and sample-time
error between time-interleaved channels limit the performance of
time-interleaved analog-to-digital converters (ADCs). This paper
focuses on the sample-time error. Techniques for correcting and
detecting sample-time error in a two-channel ADC are described,
and simulation results are presented.

Index Terms—Calibration, time-interleaved analog-to-digital
converter, timing error.

I. INTRODUCTION

I N MIXED-SIGNAL systems with analog inputs,
analog-to-digital conversion is a key function that en-

ables digital processing of samples of the analog signal. The
analog-to-digital converter (ADC) often limits the sampling
rate of such a system. Time interleaving more than one ADC
is a well-known technique that can be used to increase the
maximum sample rate [1]–[16]. When each channel operates
near the maximum speed that is possible in a given technology,
time interleaving can potentially increase speed with smaller in-
creases in area and power dissipation than without interleaving.
Unfortunately, the performance of time-interleaved ADCs is
sensitive to offset and gain mismatches as well as aperture
errors between the interleaved channels. Much work has been
done on calibration to correct for offset and gain mismatches
[7], [10], [11], [15]. To avoid the problem of aperture errors,
a single front-rank sample-and-hold amplifier (SHA) can be
used in front of all the interleaved channels [2], [9]–[12], [15].
However, a front-rank SHA limits the overall speed and there-
fore the number of channels that can be interleaved in practice.
Therefore, operating without a front-rank SHA and calibrating
for the sample-time errors will increase the sampling rate.

Calibration of sample-time errors requires both detection and
correction of timing errors. To detect sample-time errors in the
foreground (when the ADC is not processing an input), a known
sinusoidal input can be applied, and the sample-time errors can
be extracted from the images in the output spectrum caused by
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sample-time errors using discrete Fourier transforms [4]. An-
other proposed method to measure the sample-time errors is to
generate a ramp signal to the ADC input [13]. If the slope of the
ramp is known, the sample time errors can be estimated from
differences of the ADC outputs. This scheme requires genera-
tion of an accurate ramp signal. When used in the background,
the ramp signal is added to the ADC input. Therefore, the ramp
signal uses some of the input range of the ADC. Also, a fre-
quency component at any multiple of the channel sample rate in
the input signal will appear as a nonzero offset in each channel,
and this offset will interfere with the proposed background mea-
surement of sample-time errors.

Once the sample-time errors have been measured, there are
two main options for correcting sample-time error. The sam-
pling clock for each ADC could be adjusted to eliminate the
sample-time error [4]. This approach requires some means of
clock-edge control, which could increase the random jitter of
each controlled clock. Alternatively, the sample-time error can
be corrected by digitally processing the ADC outputs to inter-
polate the sample values that would have occurred at the ideal
sample times [13], [16], [19], [20]. This second approach is at-
tractive because it can be done with the required accuracy using
digital signal-processing circuits, which are portable and will
benefit from evolving scaled CMOS technologies.

The main contributions of this paper are the description
and analysis of digital sample-time correction and detection
of the sample-time error for two time-interleaved ADCs. The
remainder of this paper is divided into six major sections.
Section II reviews time-interleaved ADCs and their limitations.
Section III gives the filters required to correct sample-time
error. Section IV describes a method of detecting the timing
error. Section V extends that detection to signals above the
Nyquist frequency. Section VI presents simulation results.

II. BACKGROUND

Fig. 1 shows a simplified block diagram of a two-channel
time-interleaved ADC. It consists of two channels in parallel,
an analog demultiplexer at the input and a digital multiplexer at
the output. Each channel consists of an ADC that samples the
input at half of the overall sampling rate . During conversion,
the analog demultiplexer selects each channel in a ping-pong
manner to process the analog input signal. The corresponding
digital multiplexer selects the digital output of the selected
channel and forms an effectively high-speed ADC. With
interleaving, the overall sampling rate is . Although this
structure increases the sampling rate by a factor of two, the
overall performance of time-interleaved ADCs is sensitive to
channel mismatch [1]–[16].
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Fig. 1. Block diagram of the time-interleaved ADC architecture.

Different offsets in the ADC channels contribute to a dc value
as well as a periodic additive pattern in the output of the ADC
array. In the frequency domain, the periodic pattern appears as
a tone at the channel sampling rate , as is shown in the
Appendix I.

Gain mismatches between the parallel channels cause ampli-
tude modulation of the input samples by the sequence of channel
gains. In the frequency domain, this error causes a copy of the
input signal spectrum to appear centered around the channel
sampling rate . The expression for the ADC output with
gain mismatch is derived in the Appendix II.

Ideally, each channel should sample seconds after the pre-
vious channel, where . Deviations from the ideal sam-
pling instants can be represented as a sequence of sample-time
errors that introduce errors in the input samples. For a sinusoidal
input, the input samples are phase modulated by the sequence
of sample-time errors in the ADC channels. In the frequency
domain, this error produces copies of the input signal spec-
trum at the same frequencies as the spurious components stem-
ming from gain mismatch. Consider a two-channel ADC and
assume that it is ideal except that there is a sample-time error.
Let be the deviation from the ideal sample time in the lower
channel. Consider an input . (Throughout
this paper, unless stated otherwise, the input frequency satisfies

.) The ADC output is, as derived in Appendix III
[see (45)]

(1)

In (1), the first term is the sampled input [scaled by
and phase shifted by ], and the

second term is the image of the input due to sample time
error. The image is frequency shifted by and phase
shifted with respect to the input. If the sample-time error
is small (i.e., ), then and

. Using these approximations, (1) can
be written as

(2)

Fig. 2. Spectra of the input (X) and output (Y ) in Fig. 1 with small
sample-time error (�t).

Fig. 3. (a) Block diagram of a two-channel time-interleaved ADC. (b) Model
of (a).

This expression shows that the image amplitude is approxi-
mately proportional to the sample-time error as well as the
input frequency . Plots of the spectra of and the input

are shown in Fig. 2.
All of these mismatches cause the noise floor of the ADC

to increase, thus reducing the system signal-to-noise ratio
(SNR) [1]–[16]. Techniques for correcting offset and gain mis-
matches have been presented elsewhere [10]–[12], [16]. The
remainder of this paper will focus on methods of calibrating
the sample-time error.

III. SAMPLE-TIME ERROR CORRECTION

Fig. 3(a) shows a block diagram for a two-channel time-inter-
leaved ADC. The input is . The top channel
samples at times , where is a discrete time index. The
lower channel samples the input at times . There-
fore, both channels sample at a rate , but the lower channel
samples the input after the upper channel samples. is
the sample-time error for channel 2. Ideally, . The sam-
ples in the upper channel are upsampled by a factor of two to
produce . Similarly, the samples in the lower channel are
upsampled by two and delayed to produce . Signals and
are then added to give the ADC output.

Fig. 3(b) shows an equivalent model of Fig. 3(a). Here the
samplers in the two channels sample at the same times ,
and the delay of associated with the sampling in the
lower channel in Fig. 3(a) is modeled here by time-advancing
the continuous-time input to the lower channel by . The
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block implements this time advance. Hence, the out-
puts of the corresponding samplers in Fig. 3(a) and (b) are iden-
tical. The samples and the upsampled signal are given by

(3)

even (4)

odd (5)

where and are discrete time indices. The signals in the lower
channel are given by

(6)

even (7)

odd (8)

If the sample time error is zero , the ADC output
becomes

(9)

Equation (9) shows that, in the ideal case , the inter-
leaved ADC output is samples of the input at a rate of . With
nonzero , the output can be written as

(10)

This equation shows that, with nonzero sample-time error, the
interleaved ADC still samples the input at a rate of ; how-
ever, there is phase modulation due to the term
in (10). As described in Section II, this phase modulation con-
tributes an undesired tone in the frequency domain. Equation
(10) can be written as in (1) or more simply approximated by
(2) under the assumption that the sample-time error is small. The
frequency where the tone due to the sample-time error appears
is called the image frequency and is equal to .
The amplitude of the image is approximately proportional to
both the sample-time error and the input frequency. In practice,
minimizing the image amplitude is important to maximize the
signal-to-noise-and-distortion ratio (SNDR) of the interleaved
ADC.

If , the output in Fig. 3 consists of samples of the
input taken at nonuniformly spaced sample times. If the
continuous-time input is bandlimited to less than

, then the input is nonuniformly sampled at an average
sampling rate that satisfies the Nyquist criterion. Therefore, the
continuous-time signal can be reconstructed from and

by appropriate filtering of the samples [21], [22] if is
known, and then the reconstructed output can be sampled at
uniformly spaced sample times. Alternatively, the nonuniformly
spaced samples can be converted to uniformly spaced samples
by discrete-time filtering if is known [13], [19], [20]. Such
a system is shown in Fig. 4(a). The samples from the upper
channel are upsampled by two and then filtered by . The
samples from the lower channel are upsampled by two, then
they are delayed by one sample. This delay assures that the up-
sampled signals are nonzero at different times, and this delay is
the only processing that would be needed to generate the ADC
output without sample-time error. The upsampled and delayed
signal is filtered by . Filters and together correct for

Fig. 4. (a) Processing required to correct for sample-time error. (b) Processing
equivalent to the processing in (a). (c) The processing in (b) excluding theF (z)
filter.

Fig. 5. Spectra of the signals y and y when x(t) = cos(! t).

sample-time error and give that is uniformly spaced sam-
ples of the ADC input.

For simplicity, consider an input signal .
When sampled by the upper channel, the signal has the spec-
trum shown in Fig. 5. In this case, the spectrum is real (the phase
is zero for every component). After the time-advance, sampling,
and delay in the lower channel, the signal has the spectrum
shown in Fig. 5. In this case, the phase of each component is
nonzero. The goals of filters and in Fig. 4(a) are to elim-
inate the image components (at and )
and to give an output that is uniformly spaced samples of the
continuous-time input.

To determine the filters that can generate uniformly
spaced samples of the continuous-time input from
the nonuniformly spaced samples, consider an input signal

. First, consider , the positive
frequency component of the input . The processing in
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Fig. 4(a) must give unity gain and zero phase shift at while
eliminating the image component at , that is

(11)

(12)

Here, has been used to simplify the equa-
tions. Second, consider , the negative frequency com-
ponent of the input . The processing in Fig. 4(a) must give
unity gain and zero phase shift at while eliminating the
image component at , that is

(13)

(14)

From the last four equations, and are given by

(15)

and

(16)

and are periodic with period because they are
discrete-time filters. When , and ,
which is the signal processing shown in Fig. 3.

The filtering in Fig. 4(a) can be implemented as shown in
Fig. 4(b), where now processes the summer output and

processes . The expression for
is

(17)

Fig. 4(b) still requires two separate filtering operations as in
Fig. 4(a). A potential simplification is to eliminate from
Fig. 4(b), as shown in Fig. 4(c). The images due to sample-time
error are eliminated even if is deleted as in Fig. 4(c) be-
cause is an all-pass filter, so by itself cannot eliminate
images. Although is also an all-pass filter, it can eliminate
images because it appears before the summer in Fig. 4(c). There-
fore, the images have been eliminated in the summer output in
Fig. 4(c). However, deleting introduces a small attenuation
of and a constant phase shift of in
the final output. However, both of these effects are small in most
practical cases. For example, if , the resulting at-
tenuation will be less than dB and the phase shift
will be less than 0.9 degrees. Therefore, one filter as shown
in Fig. 4(c) will suffice in many applications.

The filter has a magnitude response of unity. Also, the
negative of the slope of the phase response or the group delay of
the filter is except for discontinuities at , where is any
integer. This filter causes cancellation of the image generated by
sampling time error for any input frequency between 0 and .
The impulse response corresponding to the frequency response

is

(18)

Fig. 6. Detection of the sample-time error. y and y come from Fig. 4.

This impulse response is infinite in extent. To make the filter
causal and realizable in practice with a finite-impulse response
(FIR) structure, the impulse response can be truncated, win-
dowed, and delayed [17]. Any delay that is added to this filter
must also be added to in Fig. 4(c) before the summer to
assure proper time alignment of the summed signals.

The filters described above can eliminate the effects of
sample-time error if the sample-time error is known.
However, in most cases this sample-time error is unknown.
Section IV describes a method to detect the sample-time error
in the time-interleaved system.

IV. SAMPLE-TIME ERROR DETECTION

A. With Ideal Hilbert Filter

Fig. 6 shows the block diagram of a scheme that can detect the
sample-time error using the input signal itself. The signals from
the two channels are summed, and the summed output goes into
a phase detector block. At the input of the detector, the signal
is passed through a short FIR filter . Ignore this filter
at first. The output of the FIR filter is , which is chopped to
produce ; is then passed through a Hilbert transform
filter to produce . Then, and are multiplied. As-
suming only a sample-time error of , the ADC output with a
sinusoidal input at is [from (45) in Appendix III]

(19)

where and are constants.
The chopped signal is

(20)

The chopped signal goes through an ideal discrete-time Hilbert
transform filter [17], [18] to produce

(21)

Then and are multiplied. The product has a dc or average
component that is equal to

(22)
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Assuming , , and
, (22) simplifies to

(23)

So is approximately proportional to the sample-time error.
Note that increases with increasing input frequency, thus
increasing the sensitivity of sample-time error detection with
increasing input frequencies, where the image amplitude also
increases.

This scheme for detecting sample-time error is based on the
fact that the chopped image due to sample-time error is 90 out
of phase with the input. Applying a Hilbert transform to the
chopped signal eliminates the 90 phase difference between the
frequency translated image and the input, causing when

.
An ideal discrete-time Hilbert transform filter has transfer

function for , where
is the signum function. This filter has unity magnitude re-

sponse and a constant phase shift of 90 . The impulse response
of the Hilbert filter is [18]

(24)

The discrete-time Hilbert filter in (24) is noncausal. To make the
filter causal and realizable, the impulse response can be trun-
cated, windowed, and delayed. The delay that is added to make
the filter causal must also be added to in Fig. 6 before it is
multiplied by .

B. With Hilbert Filter Approximations

To accurately approximate the ideal discrete-time Hilbert
transform filter, an FIR filter with a large number of taps is
required, making it difficult to implement in practice. Simpler
filters that approximate the Hilbert transform can be used
instead of the discrete-time Hilbert filter for easier imple-
mentation. One simpler filter is a delay, or filter. This
approximating filter can be used as in Fig. 6. This filter
gives a constant magnitude response and linear phase shift.
Using , the dc or average value of the product

is

(25)
Assuming , then

(26)

Note that the average value in (26) differs from that in (23) by
a factor of . The value in (26) is small for low input fre-
quencies as in the Hilbert transform filter case; however, it does
not monotonically increase with input frequencies as in the pre-
vious case. Here, peaks when the input frequency is near
and decreases to zero as the input frequency approaches .
Therefore, the sensitivity of the timing error detection decreases
at high input frequencies where it is most important. Using a

filter instead of the Hilbert transform filter has the advan-
tage that it is easier to implement. However, since the phase

shift of the filter is not a constant 90 , the output of the
phase detector in Fig. 6 depends on timing error and gain mis-
match (if gain mismatch exists), since the images due to gain
and sample-time error appear at the same frequency and are 90
out of phase [cf. (40) and (45)]. Therefore, gain error must be
corrected before the timing error can be corrected when using
the approximation to the Hilbert filter.

Another simple approximation to the Hilbert transformer is
a three-tap filter: . This filter gives the de-
sired 90 of phase shift at all frequencies, but its magnitude
response is , which is not constant as desired. Using
this filter for in Fig. 6, the dc or average value of the
product is

(27)
Assuming , then

(28)

Note that the average value in (28) differs from that in (23) and is
twice the value in (26). An advantage of this three-tap approxi-
mation to the Hilbert transformer is that it gives the desired 90
degree phase shift for all frequencies, so the timing error detec-
tion is not affected by gain error (as is the case for the filter).
In practice, a delay of one sample must be added to to
make it causal, and in Fig. 6 must be delayed by one sample
before it is multiplied by .

C. Limitations

A problem with this detection technique occurs when the
ADC input has a frequency component at . In this case,
the product of and may have a nonzero dc value even
without timing error. [This occurs, for example, when

.] This dc value would indicate that a timing
correction is needed even if no adjustment is necessary. To over-
come this problem, the filter in Fig. 6 produces a null
at to avoid the problem with inputs at this frequency (or
inputs at frequencies that alias to ). Frequencies close to
but not exactly equal to are attenuated somewhat by the

filter. A sharper notch filter could be used in the de-
tector if necessary.

Fig. 7 shows a feedback loop that includes timing error de-
tection and correction. The detector output signal
is scaled by and becomes the input to an accumulator. In
steady state, the average input to the accumulator must be zero.
Therefore, the negative feedback loop drives to zero. The
filter is a causal FIR approximation to (18), and the fixed
delay in the upper channel equals the delay introduced in
to make it causal. The filter coefficients can be calculated,
based on (18), or stored in a lookup table. In the steady state,
the timing error is corrected and the images are eliminated
as a result of finding and eliminating correlation between the
sinusoidal input signal at frequency and the chopped and
phase-shifted version of its image at . However,
if the input signal has frequency components at and

with a nonzero phase difference between them, the average
detector output will be nonzero even with no timing error,
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Fig. 7. Block diagram of the sample-time calibration approach.

which would cause the accumulator output and hence filter
to be incorrect. Therefore, one simple but restrictive

condition for the timing-error detector to work properly is
that the input signal have a spectrum that satisfies

. A less restrictive condition would
be that the short-time Fourier transform of the input
signal [23] should satisfy ,
for any short-time transform calculated over a time interval
that is on the order of the time constant of the feedback loop
in Fig. 7. If the input meets these conditions, the timing cali-
bration can operate in the background on the input . If the
input signal does not meet these conditions, then the proposed
sample-time detection scheme could be used in the foreground
with a test input that satisfies these conditions.

A FIR approximation to the sample-time correction filter
cannot perfectly correct sample-time errors. Simulations show
that a FIR filter has difficulty correcting sample-time errors for
inputs near (see Section V). Therefore, the ADC input
would have to be bandlimited to less than in practice.
Assume that the input is bandlimited to , where .
In this case, the condition will be
satisfied for input frequencies . Therefore,
if the detector in Fig. 7 is preceded by a filter that only
passes signals in this frequency band and the corresponding
image band , the sample-time calibration
can operate in the background. A drawback of this approach
is that the detection would be based on input frequencies near
dc, which produce small images. In some cases, the spectrum
of the input is zero in a frequency band near dc because the
input is ac coupled or is a bandpass signal. In such a case,
the condition will be satisfied for
input frequencies near . Then filtering before the detector
to pass signals in this frequency band and its image band
near dc allows the sample-time calibration to operate in the
background. The advantage here is that the detection would
be based on high-frequency inputs, which produce a larger
detector output than low-frequency inputs.

V. SAMPLE-TIME CALIBRATION FOR INPUT FREQUENCIES

ABOVE

The frequency responses of the digital filters and above
are periodic with period , but a sinusoidal input experiences
a phase shift due to sample-time error that is periodic with pe-
riod . Therefore, the sample-time correction using
in (17) works only for input frequencies below . How-
ever, operation for input frequencies above is possible by

changing to provide the proper phase shift to eliminate the
resulting image. Operation for signals above may be of in-
terest, for example, in a system that uses sampling in the ADC
to mix a high-frequency bandpass signal to lower frequencies
for processing. To eliminate the image due to sample-time er-
rors for a sinusoidal input with frequency between and

, equations equivalent to (11)–(14) can be solved for
filters that keep the desired alias of the input signal while elim-
inating the undesired image. The resulting filter , which
can replace in Fig. 4(b) or (c) and eliminate the images
due to sample-time error, is given by

(29)

where

if is odd
if is even.

(30)

The impulse response of this filter is

(31)

When (and ), the input frequency is less than ,
and this equation gives that is the same as in (18).

Here, the filter in Fig. 4(b) is replaced by

(32)

where is given in (30). Note that the phase error and atten-
uation that are being corrected by increase as in-
creases (i.e., as the input frequency moves to higher frequency
bands).

The sample-time error detector in Fig. 6 can be used here be-
cause the aliased input and its image have the same relationship
as when there is no aliasing, i.e., if the input frequency aliases
to , the image appears at frequency and with a
phase difference between them that is similar to the case when
there is no aliasing. (See Appendix IV.) However, if the input
frequency is between and with odd, the sign
of the average detector output changes from negative to pos-
itive, due to the different signs of the second terms in (47) and
(49). Therefore, a negative value of is needed in Fig. 7 when

is odd to give negative feedback, while a positive value of
is needed when is even.

VI. SIMULATION RESULTS

Simulations were carried out on the system in Fig. 7. Unless
stated otherwise, simulations use a 29-tap FIR filter for
and a 21-tap FIR approximation for the Hilbert filter in
Fig. 7, 10-b ADC quantization, sample-time error of

, and . The filter coefficients are found by multi-
plying the exact coefficients by a Hann window.

Fig. 8(a) shows the output spectrum of the ADC system with
sample-time error. The input frequency is . The
image due to sample-time error appears at . Fig. 8(b)
shows the same output spectrum with sample-time correction
after the loop in Fig. 7 has converged. The image amplitude
has been reduced by about 40 dB and is small enough to give
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(a)

(b)

Fig. 8. The spectrum of the ADC output with sample-time error: (a) without
and (b) with correction. f = 0:1f and �t=T = 0:01.

(a)

(b)

Fig. 9. ADC output spectra when the input consists of two equal-amplitude
sinusoids at 0:1f and 0:35f and �t=T = 0:01: (a) without and (b) with
correction.

an SNDR of about 62 dB, which is expected for an ideal 10-b
converter.

Fig. 9 shows spectra before and after sample-time correc-
tion when the input consists of two equal-amplitude sinusoids at

and . Here, there are two images caused by the two
input frequencies, and their amplitudes are again much smaller
after correction.

The accumulator output versus time is plotted in Fig. 10
for the sample-time correction system in Fig. 7. Two cases
are plotted with and . The first uses

Fig. 10. Plots of the accumulator output versus time for the system in Fig. 7
using a 21-tap Hilbert filter for H (z) with a sinusoidal input and with a white
noise input. In both cases, �t=T = 0:02 and � = 2 .

Fig. 11. Plots of SNDR versus sample-time error without and with calibration
for different length FIR filters H(z) with 10-b ADC quantization and a
sinusoidal input at f = 0:45f .

TABLE I
FIR CORRECTION FILTER REQUIREMENTS FOR DIFFERENT ADC RESOLUTIONS

a sinusoidal input at . The second uses a white
noise input, bandlimited to , with the same power as in
the first case. In the steady state, negative feedback forces the
average of the accumulator input to zero. Therefore, its output
converges to in both cases, which gives a
that corrects for the sample-time error.

Fig. 11 contains plots of SNDR versus timing error without
and with calibration for different length FIR filters for
10-b ADC quantization. The input is a sinusoid at
or 90% of the Nyquist frequency. As the timing error increases,
more taps are needed for correction.

Table I gives the number of filter taps needed in the FIR cor-
rection filter in Fig. 7 for different ADC resolutions. The
criterion used is that the corrected output should have a SNDR
that is within 1 dB of the peak SNDR for . The
input here is a sinusoid at . The required length
of the FIR correction filter increases with the number of bits in
the ADC because more accuracy is needed in the filter to pro-
vide more attenuation of the image as the required SNDR in-
creases. In practice, the filter coefficients must be quantized for
a fixed-point implementation of the correction filter. The
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Fig. 12. Plots of SNDR versus input frequency for a sample-time error of
�t=T = 0:01 without and with calibration for 10-b ADC quantization. The
input is a sinusoid.

number of bits required to keep the additional SNDR loss due
to coefficient quantization to 0.1 dB is also given in Table I.

Fig. 12 shows plots of SNDR versus input frequency before
and after calibration with a 29-tap FIR filter for 10-b
quantizers. This filter gives an SNDR 60 dB for input fre-
quencies up to . The input is a sinusoid, and

in these simulations. Before calibration, as the input fre-
quency increases, the SNDR drops monotonically because the
effect of timing error is related to the slope of the input, which
increases with the input frequency. Since the timing error in-
creases with input frequency, more image attenuation is needed
as the input frequency increases. To increase the image attenu-
ation, more taps are needed to more accurately approximate the
exact transfer function in (29).

VII. CONCLUSION

Techniques for detecting and correcting sample-time error
in a two-channel ADC have been described. The detection and
correction are implemented with digital signal processing. Such
digital processing is attractive in scaled CMOS technologies.
Correction is performed by digital filtering. The detector is
based on the fact that if the ADC input contains a frequency
component at , an image appears at . The image
has an amplitude that is related to the sample-time error and,
after chopping, the image is 90 out of phase with the input that
caused it. The detection can be implemented in the background
if the input signal satisfies conditions given in the paper.
Otherwise, the detection can be implemented in the foreground
using an appropriate input signal.

APPENDIX I
OFFSET MISMATCH

A mathematical analysis of the output of a two-channel time-
interleaved ADC with only offset error is given here. Assume
channel one has offset , and channel two has offset .
The output of the ADC in Fig. 1 with a sinusoidal input

is

even (33)

odd (34)

Let and . Then
the output can be written as

(35)

Using , (35) can be written as

(36)

The second and third terms in (36) show that different offsets
contribute to a dc value and a periodic additive pattern in the
output of the ADC array.

APPENDIX II
GAIN MISMATCH

A mathematical analysis of the output of a two-channel time-
interleaved ADC with only gain error is given here. Assume
channel one has gain , and channel two has gain . Let

and . The ADC output
with input is

(37)

Using trigonometric identities and , (37)
can be written as

(38)

(39)

(40)

In this equation, the first term is the scaled input and the second
term is the image of the input due to channel gain mismatch. The
last term in (40) shows that the image amplitude is proportional
to the gain error .

APPENDIX III
SAMPLE-TIME ERROR

A mathematical analysis of the output of a two-channel time-
interleaved ADC with only sample-time error is given here. As-
sume that the lower channel samples at a time after
the upper channel, so there is a sample-time error in the lower
channel of . With the upper channel sampling at times
and the lower channel sampling at times , the
combination of the two channels samples the input at times

. The ADC output with a sinusoidal
input is

(41)

(42)
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Using in the above
equation gives

(43)

Using the facts that is even, is odd, and
, (43) can be written as

(44)

Using and in the
above equation gives

(45)

The image here is 90 out of phase with the image due to gain
mismatch in (40). This can be seen by setting in
(40). The added phase shift of stems from the average
delay of caused by the sampling error of in the lower
ADC channel.

APPENDIX IV
SAMPLE-TIME ERROR FOR INPUT FREQUENCIES ABOVE

An analysis of the output of a two-channel time-interleaved
ADC with only sample-time error is given here, assuming a si-
nusoidal input with frequency greater than half the sampling fre-
quency. In this case, aliasing occurs. If the input frequency is ,
it can be expressed as , where is a positive
integer and . With a sample-time error
in the lower channel of , the ADC output with a sinusoidal
input at is given by (45), which is valid for any . Substi-
tuting for the second and fourth occurrences of
in (45) gives

(46)

Using and the periodicity of and
, (46) can be written as

(47)

This equation is similar to (45). It shows that the aliased input
and the image have the same phase and frequency relationships
as when no aliasing occurs, as in (45).

If the sample-time error is small, then and
. Using these approximations, (47) can

be written as

(48)

This equation is similar to (2). It shows that the image amplitude
is approximately proportional to the sample-time error and
the input frequency for small .

The frequency in (47) is negative if
with odd. To directly apply the analysis in Section IV

to find the average detector output , an expression like (47)
is needed where each frequency is positive and between 0 and

. Equation (47) satisfies this requirement for even, as
in this case. For odd, some manipulation allows (47)

to be written as

(49)
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