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An FPGA Implementation of an Oversampling, Second-order
Noise Shaping DAC

Eric Jonas, Massachusetts Institute of Technology Class of 2003

Abstract— An oversampling, noise-shaping digital-to-analog converter
architecture is designed and implemented in a Xilinx Spartan-II Field-
Programmable Gate Array. The system uses 128-times and 256-times
oversampling and has zero-, first-, and second-order noise shapers which
may be selected by the end user in real-time. 1-bit DAC output is passed
through a 4-pole analog Butterworth filter. Particular emphasis is paid to
minimizing silicon space and achieving performance comparable to that
of Phillips Semiconductor’s UDA1320ATS device, as well as allowing the
ned user to select oversampling rate and noise-shaping order.

I. INTRODUCTION

THE modern development of oversampling, noise-shaping (also
known as delta-sigma) ADCs and DACs is a testament to

the tremendous progress made in digital technology. These devices
increase the effective resolution of coarse converters by employing
a combination of oversampling and negative feedback to reduce
quantization noise in the baseband. This increase can be tremendous
– one-bit converters which achieve 16-bits of in-band resolution are
common.

The negative feedback “noise-shaping” architecture reduces the
noise markedly in the passband, and (following a 1-bit DAC) allows
for a much more trivial analog antialiasing filter. The trade-off allows
more complicated (yet still relatively inexpensive) digital hardware
to be used in place of more expensive analog circuitry.

Similarly, tremendous advances have been made over the past
decade in the area of reconfigurable logic, specifically field-
programmable gate arrays. FPGAs (such as the Xilinx Spartan-II used
here) are arrays of generalized logic that can be reconfigured for arbi-
trary functions in-circuit. Xilinx FPGAs are arrays of “slices” – each
slice consists of two four-input, single-output function generators,
two registers, some buffer logic, and additional fast-carry logic. A
complex logic block (CLB) is comprised of two slices. Thus a single
CLB can implement a latched four-bit-wide adder. The Spartan-II
XC2S50 used herein (a $35 part) contains 1176 CLBs, as well as
other useful logic (such as 14 blocks of BlockSelect+ RAM, a 4096-
bit dual-ported SRAM) [1].

What follows is an attempt to implement an oversampling, noise-
shaping DAC similar in specification to the Philips device. Device
parameters are discussed, particularly as they apply to the FPGA
implementation. Relevant signal theory concepts are reviewed as
they apply to sampled discrete-time systems. The hardware and its
properties are described, and both simulated DAC output and actual
measured response are reported.

II. SYSTEM OVERVIEW

The overall system runs from a 20 MHz input clock which is clock-
doubled to 40 MHz and doubled again to 80 MHz. An overview of
the resulting system can be seen in figure 1. The FPGA development
board was already assembled with a 20Mhz clock, so the initial
sampling rate is fs = 62.5 kHz, and the output is either 128fs = 8
MHz or 256fs = 16 MHz. Note that the net result is the input audio
(resampled by the host computer) simply occupies a smaller portion
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Fig. 1. Flow diagram of oversampling, noise-shaping DAC.
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Fig. 2. Device utilization of the Xilinx Spartan-II FPGA used to implement
the DAC.

of the sampled spectrum. This is treated as a minor implementation
detail – all analysis is done for the bandwidth of the original Philips
DAC, assuming a sampling rate fs = 44.1 kHz.

The overall system is FIR once pole-zero cancellation is considered
– in reality, the system is a cascaded FIR-IIR structure.

Data is taken in over USB via a Cypress CY7C64613 USB micro-
controller from a Linux host. The byte-wide words are pushed into an
internal FIFO of the FPGA implemented in BlockSelect+ RAM. Data
is passed at fs through a simple compensation filter to counteract
attenuation of higher frequencies later on in the system. The input
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signal is then passed through a sharp FIR filter to remove images
arising from the expander, and then two identical cascaded FIR
systems with more relaxed cutoffs. The final filter-interpolator pair
responsible for the bulk of the oversampling is a cascaded integrator-
comb filter as described by Hogenauer [2] . The CIC-interpolator is
a cascaded FIR-IIR system which nulls imaged components while
allowing the passband through with only minor attenuation.

An initial survey of the literature suggested a CIC-interpolator
to accomplish all oversampling. However (see below) the CIC-
interpolator works on the assumption that the input signal occupies
a very limited band – the input here, by contrast, occupies −π to
π. Thus initial stages of upsampling were necessary to reduce the
relative bandwidth of the input signal.

III. INTERPOLATOR

The high oversampling factor necessitates a fantastically sharp low-
pass filter if the oversampling is done at once. However, a series of
three 2x stages with progressively less-demanding FIR anti-imaging
low-pass filters, followed by a cascaded integrator-comb structure at
16x or 32x, enables the desired response.

A. Half-band polyphase FIR interpolator design

All FIR filters used are half-band filters [3]. A half-band FIR filter
meets the following criteria:

1) The passband and stopband are symmetric around π
2

, i.e. ωp +
ωs = π.

2) Passband and stopband have equal specified ripples, i.e. δp =
δs.

For FIR systems with odd length, this results in every odd
coefficient being zero except for the center coefficient, which is
always 1

2
(Fig. 3).

The savings are particularly evident given a polyphase implemen-
tation with upsampling, here using an oversampling factor of two.
Note that the impulse response of an LTI system can be decomposed
into even-samples and odd-samples (Fig. 5):

H(z) =

∞
∑

n=−∞

h[n]z−n (1)

=

∞
∑

n=−∞

h[2n]z−2n + z−1

∞
∑

n=−∞

h[2n + 1]z−2n (2)
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Fig. 4. The noble identities:the above two systems are equivalent.
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Fig. 5. Polyphase decomposition using noble identities

So if we allow

He(z) =

∞
∑

n=−∞

h[2n]z−n (3)

Ho(z) =

∞
∑

n=−∞

h[2n + 1]z−n (4)

Then we see that H(z) = He(z
2) + z−1Ho(z

2). Now, the noble
identities [5] (Fig. 4) allow us to combine the above decomposition
with upsampling, yielding the identity shown in figure 5. The
resulting system has the same upsample-filtering properties as the
original, but with half the number of multiplies. The interpolated
outputs have zeros for every other sample, so the delay element can
be replaced by a commutator (Fig. 6) switching between ye[n] and
yo[n] at 2fs, i.e. at twice the sampling rate [4].

B. Pipelined Half-band filter hardware

The structure for filter implementation is general (Fig. 7) to allow
reuse for the three cascaded twice-oversampling half-band filters.
The two polyphase components of the half-band system (he[n] and
ho[n] for the even and odd coefficients, respectively) are particularly
efficient, as the odd coefficient vector is all zeros except for the center
coefficient of 1

2
which can be implemented as a right-shift.

The resulting system takes in samples at Fsl and outputs them at
Fsh = 2Fsl. Each filter system has a circular buffer for storage of
the samples (implemented as one 4096-bit segment of BlockSelect+
RAM), and a similar RAM segment for a coefficient vector. This
coefficient RAM only needs to store he[n], and as he[n] is inherently
symmetric, only needs to store the unique M/2 coefficients.

To process an input sample, the system stores a new sample in
the circular buffer. Then dual index pointers xoffl and xoffh read

2

2
y[n]

Fig. 6. Delay replacement with a commutator
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2
− ωc, stopband at pi

2
+ ωc

through the sample buffer, adding symmetric pairs of samples and
then multiplying them by their corresponding coefficient. Simulta-
neous reads from the buffer are made possible by the dual-ported
BlockSelect+ RAM on the Xilinx FPGA. The extra-wide multiply-
accumulator can return an accurate result even if intermediate sums
(for the entire series of MACs) would overflow.

Note that the yeven[n] samples are the output from the MAC,
whereas the yodd[n] samples are simply the single relevant sample,
right-shifted one bit. The overall Fsh output alternates between these.

The filter coefficients themselves were computed using firls
least-squares implementation in MATLAB. Each interpolation stage
compresses the relevant signal bandwidth into a smaller portion of
the spectrum; thus each successive stage can have a slightly less
sharp anti-imaging filter. Their frequency-response, following 16-bit
coefficient quantization, can be seen in figure 8. Thus the first filter
Hs has a length of 99, whereas the two later Hm filters have lengths
of 19. Note that the second and third oversampling stages both use
Hm as their LPF, due to implementation convenience – at the overall
40 MHz rate, there are clock cycles to spare.

The right-shift for ho[n] is an exact (ignoring rounding error)

division by two, whereas the repeated MACs frequently would not
sum to 1

2
due to coefficient rounding effects. The result was ringing

in the step response that would not die out. Thus filter length was
determined to be that which, using rounded coefficients and firls,
brought

∑

he[n] as close to 1

2
as possible.

C. Cascaded Integrator-Comb Interpolator

Hogenauer [2] described a novel type of filter for interpolation and
decimation of signals subjected to high sampling-rate changes (Fig.
9). The resulting cascaded integrator-comb is optimized for removing
images from up/downsampled spectra, using a minimum of hardware.

The interpolator implementation consists of a cascade of N comb
filters of the form

HC(z) = 1 − zM (5)

followed by a series of N post-expansion integrators of the form

HI(z) =
1

1 − z−1
(6)

Assuming an expansion by a factor of L, a cascade of N combs
and N integrators has a frequency response

HCIC(z) = HN
C (zL)HN

I (z) (7)

=
(1 − z−LM )N

(1 − z−1)N
=

[

LM−1
∑

k=0

z−k

]N

(8)

noting the HC(zL) arises via the noble identities. Thus the overall
system is FIR.

The resulting frequency response looks like figure 10 for our
selected parameters, using 128x oversampling (L = 16, N = 4,
M = 1). Note the nulls centered at multiples of pi

L
. Unfortunately, the

CIC-interpolator also rapidly begins attenuating frequencies outside
a narrow lowpass region – this is the reason we must first oversample
by a factor of 8 in our system. Even so, there is minor attenuation
of the higher portions of our original passband, necessitating the
previously-discussed compensation filter. Behavior is very similar for
256x oversampling.

Hogenauer’s innovation can be implemented in a minimum of
silicon – his original design used modular 4-bit combs and 4-
bit integrators. Using the hardware of the Xilinx FPGA, a 4-bit
integrator takes one CLB and a 4-bit comb takes two. The integrator
stage cannot tolerate rounding without the error variance increasing
boundlessly, resulting in instability. To compensate, each integrator
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Fig. 10. CIC interpolator frequency response. N = 4, L = 16, M = 1.
Note the nulls where the images of the original signal would be. The figure
above assumes a signal bandwidth of ω0, indicated in red. Note that the CIC
passband centered at ω = 0 is only flat for a small region around ω = 0

stage must be sufficiently larger than the previous to avoid overflow
and eliminate rounding. The algorithm presented [2] is beyond the
scope of this paper, but resulted in a cascade of integrator sections
24, 30, 36, and 40 bits wide. The result, however, is that the only
truncation/rounding noise occurs at the output to the last integrator,
due to the lack of multiplies. The two different upsampling ratios
inside the CIC (16x and 32x) necessitate selecting different bits of
the CIC output as input to the noise shaper.

D. Complete Interpolator Response

Note that original specifications called for ωp = 0.45 ∗ 2π, ωs =
0.55 ∗ 2π. With 128x oversampling, these become (normalized by
π) ωp = 0.00703, ωs = 0.008594, and with 256x oversampling,
ωp = 0.003515, ωs = 0.0042968 (Fig. 11).

The total response is shown using quantized coefficients – the only
other system artifacts will arise from quantization noise and potential
overflow effects.

IV. NOISE SHAPING

Any system for producing analog output from digital input will
create artifacts in the signal from the inherently quantized output.
Noise-shaping is a technique of using feedback to significantly
lessen the effects of these artifacts in the passband. We adopt the
conventional linear quantization noise model (Fig. 12a), replacing
the non-linear quantizer with additive white noise distributed between
−∆

2
and ∆

2
, where ∆ is the quantization step size. The resulting noise

has a constant power-spectral density of Φee(e
jω) = σ2

e = ∆
2

12

It can be shown that oversampling results in an increase in the
signal to quantization noise ratio (SQNR), measured as the ratio of
signal variance to noise variance. This is equivalent to 3 dB for each
oversampling factor of two [5] – effectively an extra bit in resolution
for every fourfold increase in oversampling. The above oversampling
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system would thus have roughly 3.5 bits of resolution. This is referred
to henceforth as “zero-order” noise shaping.

Quantization noise power remains constant regardless of over-
sampling rate. Oversampling reduces the DT spectrum bandwidth
(which is limited to a region of 2π) occupied by a given signal, so it
becomes easy to filter out the higher-frequency noise with inexpensive
analog reconstruction filters. Oversampling effectively “spreads out”
the noise over a larger spectral area relative to the signal of interest
– thus the final filter will remove more noise, reducing noise power
and increasing SNR.

A. First-order Noise Shaping

The first-order noise shaping system is shown in figure 12b with
the quantizer replaced by the linear noise model. The signal u[n] is
the output of the integrator stage. Assume Y [n] = Yd[n]+Ye[n], that
is, the sum of the output error and the desired output due to x[n].
Then

Yd(z) = U(z) = X(z) + z−1U(z) − z−1U(z) = X(z) (9)

Thus the input passes unaffected through to the output. Yd[n] can be
shown as follows:

Y (z) = E(z) + U(z) (10)

U(z) = z−1U(z) − z−1(U(z) + E(z)) (11)

= −z−1E(z) (12)

Y (z) = (1 − z1)E(z) (13)

The noise transfer function (NTF) of the system is thus 1 −
z−1. As e[n] is white, the output noise spectrum Φyeye

(ejω) is
σ2

e |HNTF (ejω)|2 or

Φyeye
(ejω) = σ2

e [2sin(ω/2)]2 (14)

B. Second-order Noise Shaping

The second-order noise shaper shown in figure 12c passes the input
unadulterated, but shapes the noise still further:

Y (z) = E(z) + V (z) (15)

V (z) = −z−1E(z) + U(z) (16)

U(z) = (z−2 − z−1)E(z) (17)

Y (z) = (1 − z−1)2 (18)

This yields a noise-transfer function of the form

Φyeye
(ejω) = σ2

e [2sin(ω/2)]4 (19)
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TABLE I
XILINX SPARTAN-II DEVICE UTILIZATION

Component Number Percent
Number of SLICEs 1785 out of 2352 75%
Number of BLOCKRAMs 8 out of 14 57%
External GCLKIOBs 1 out of 4 25%
External IOBs 21 out of 140 15%
Number of DLLs 2 out of 4 50%

C. Noise-shaping results

Noise shaping increases the total noise power but moves it away
from ω = 0. Since oversampling has the effect of scaling the input
bandwidth so that it takes up less of the total [0, π] spectrum, it is
complementary to noise shaping – to achieve a given SQNR, lower
order noise-shapers require greater oversampling and vice versa.

Noise-shaping only produces benefits if the output quantization
noise can be removed by an analog filter. In figure 13 we plot the
analytic noise transfer functions (in dB) for first, second, and third-
order NTFs, and then the analytic output noise spectra assuming
the post-DAC analog filter was a 4-pole Butterworth with ω−3dB =
22kHz. Although a third-order noise-shaper was not implemented,
with the given analog filter it would be necessary to achieve true
16-bit resolution (96 dB SQNR).

V. IMPLEMENTATION RESULTS

The FPGA implementation was developed using VHDL, a
hardware-description language for digital systems. The final digital
behavior of the system can be simulated, including effects of propaga-
tion delay, setup-and-hold timing violations, and device temperature.
The following numerical results for this implementation were created
via simulation of the final FPGA design. This obviously only looks
at digital behavior, neglecting the post-DAC analog filter.

A. Simulated Device Performance

VHDL simulation yields the plots shown in figure 14. The first plot
contrasts the performance of first- and second-order noise shapers at
an oversampling ratio of 128. Input was a half-scale 5 kHz sinusoid,
and is clearly visible at 5 kHz. The analytic projections for the noise
shaping closely match measured results. SNR ofthe overall system is
dependent on performance of the post-DAC analog filter; however, we
can measure performance here by assuming an ideal low-pass filter
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Fig. 15. Oscilloscope plot of second-order noise shaper at 128x oversampling.
Top trace is output following low-pass filter; input waveform was half-scale
5 kHz sinusoid. Bottom trace is 1-bit DAC output. Note intensity changes
corresponding to sine peaks and troughs – intensity variations slightly precede
sine output due to group delay of filter.

with ωc = 32kHz. This gives the first-order shaper (at 128-times
oversampling) an SNR of 64 dB, and the second-order an SNR of
94 dB.

The second plot shows the affect of oversampling ratio on the
second-order noise shaper. The 128fs system has the above-indicated
SNR (94 dB) and the 256fssystem an SNR of 110 dB. In both cases,
the SNR is limited by the quantization noise floor from previous
stages.

B. Actual Analog Output

The post-DAC analog filter used was a fourth-order cascade of two
second-order Butterworth filters using a Texas Instruments TLV2782.
This device was selected due to its rail-to-rail capability on both the
input and the output, and its 8 MHz bandwidth. Each second-order
section uses a Sallen-key implementation with F−3dB = 22kHz [6].

Figure 15 shows an oscilloscope screen capture for a 50% fullscale
5 kHz sinewave input. The bottom trace is the 1-bit output from the

FPGA; even though the oscillations are far too rapid to be seen on this
timescale, note that their overall intensity correlates with the peaks
and troughs of the post-filter sinusoid.

VI. CONCLUSION

This implementation of a one-bit digital-analog converter in com-
modity FPGA hardware has been a wonderful learning experience,
especially because it actually works. You can hear the tremendous
difference in sound quality when the noise-shaper is engaged.

The two potential sources of non-idealities in the system result
in barely-audible differences when using different combinations of
noise-shapers and oversampling ratios. First is the non-linearity of the
output DAC – that is, the output pin of the FPGA. Parasitic capacitive
and inductive effects cause very noticeable ringing at the input to the
filter, substantially lessening the actual SNR. Additionally, nonlinear-
ities in the Butterworth filter can cause some higher-frequency noise
to alias down into the passband, further degrading the SNR.

The VHDL simulations confirm the system works as it should,
with expected performance for the different parameters. Real delta-
sigma converters typically use switched-capacitor implementations
for the one-bit DAC which are capable of delivering exact quantities
of charge and thus have much more linear response, and careful effort
is made to minimize both clock feed-through and jitter, which both
can lessen the overall SNR.
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