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II. SFDE.: FUNDAMENTALS

An n-bit ideal quantizer exhibits a sawtooth etror charac-
teristic. With the FS input amplitude normahized to one (F5/2
= 1}, the periodic error function is parameterized with its fre-
gquency o, = 2n/L5B = 2"x, where the least significant bat
(LSB) represents the guantization step. The error distorts a
FS input sinewave and creates wideband harmenics, with sig
nificant spectral energy up to the order of w .. The Fourier se-
ries of either the quantized sinewave or the periodic sawtooth
error function lead to closed-form expressions for the harmonies
[8]-[11] and plots of distortion spectra as shown in Fig. 1{a).
The plots for varions n show that the largest harmomic 1s located
near w,. and 13 about %n dB below the fundamental, that 15

'r'-'m.-'ur Aty = 2“"7 {1]

SFDR =~ %n — ¢ _(dB) (2)

and

atiighly oversampled case (1)

where Iy, 15 the index of the largest harmonic and the offset ¢
ranges from 0 for low resclutions to 6 for high resclutions [10].

Though strict validation of these empirical egquations is
mathematically interesting, it gives better insight to derive
(2) from energy conservation. As n increases by one, the
gquantization error is halved in amplitude, and the total error
energy LSB</12, which is asymptotically independent of the
signal distribution [12]-[15], decreases by 6 dB. This leads to
the signal-to-noise-and-distortion ratio (SNDER)

SQNRpax (= SINAD) =SNDR. = 6n + 1.76  (dB). (3)

Also_ now the error sawtooth at double the frequency produces
twice as many important harmonics, so the overall spur level
must go down by an additional 3 dB to keep the total harmenic
energy unchanged. resulting in the %y term in (2). This suggests
that the key to high SFDE should be to spread a given error
energy across as large a number of spurs as possible.
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Uunlike the asymptotically constant guantization emwor energy,
spurs are sensitive to the waveform being quantized. For ex-
amyple, an ideal quantization of an FS sawtooth input signal leads
to a sawtooth error waveform which contains spurs much higher
than what is given by (2); a tiny deviation {~~LSB/4) from F5
amplitude may null some low-order harmeomics. The largest spur
rises by 3 dB for each 6-dB reduction in input amplitude, be-
canse the input signal sees half of the error sawtooth spreading
the same amouvnt of spur energy. This contradicts the “common
sense” that nonlinearity improves as signal decreases in power.

As a result, small-signal SFDE gets worse and a few bits of
margin is reguired over what (2) specifies to determine the res-
clution. In addition, the spurs can be drastically affected by the
noise (dither) at the input and the sampling frequency. Those
details are discussed in [11].
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Spectral Spurs due to Quantization in Nyquist ADCs

Hui Pan and Asad A, Abkadi, Fellow, IEEE

There is some prior literature on this subject; however, none
of it satisfactorily addresses the problem posed above. Most pre-
vious studies deal with the statistical and asymptotic aspects
of the quantization errors [10]-{14], without much attention to
the spectra of quantized periodic signals. The few exceptions
[15]-[19] involve intensive mathematics, at times even Inge-
nious technique, but are of little value to the circuit designer
of practical integrated ADCs. In this paper, we couple analysis
with simulation of ADC spectra on MATLAB, which leads to
ready wvisualization of the spectral signatures associated with
quantization imperfections. Then alded by an understanding of
the underlying physical phenomena, we seek practical solutions.

In this spirit, we offer an intuitive yet quantitative under-
standing of an ADC’s spectral properties.

To begin with, Section I analyzes the spectra of ide-
ally quantized sinewaves and considers the signal dependence
of the spectra. Sinewave inputs to the ADCs are given special
attention, not only because they are the basis of all periodic sig-
nals, but because full-scale (F5) sinewaves are used in the def-
inition of SFDR, a critical specification for radio receiver ap-
plications

II. SPECTRA OF QUANTIZFED SINEWAVES

ADCs usually consist of a sampler before the quantizer, as
shown in Fig. 1{a). For the purposes of analysis, the actions are
commutative, that is, it does not matter if the ADC guantizes
a signal before sampling [17]. as shown in Fig. 1{b). With the
order reversed, we need only focus on the quantization of con-
tinuous input signals and then impose the well-known aliasing
effects. Therefore, we will use the terms “ADC" and *“quantizer™
interchangeably.

We start by describing the output spectrum of an ideal quan-
tizer that is digitizing a FS sinewave. This is a sinewave whose
peaks reach the extreme thresholds of the ADC. An n-bit quan-
tizer is called ideal in this paper when its N = 2" output levels
it = 1,2, ..., W, are centered between adjacent quantization
thresholds x; and ;4. which themselves are uniformly dis-
tributed over the input FS, withequal step size 5, = 54 —2 =
Fs/N. The difference between the quantizer input—output char-
acteristic y = gqlx} (Fig. 1) and the straight line y = @ defines
the quantization error =(x). For an ideal quantization staircase
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PAN AND ABIDI: SPECTRAL SPURS DUE TO QUANTIZATION IN NYQUIST ADCs

sampler
x(t)=cos(wjnt)

x(t) Y %r"
—> —;

Fig. 1. ADC modeled as (a) a sampler preceding a quantizer or (b) a sampler
following a quantizer [17].

(b)

function, the error is a sawtooth. The error in x; is expressed in
units of the least significant bit (LSB) = FS/N as integral non-
linearity (INL). In this paper, we assume () is on the order of
one LSB.

Before going into details of the spectral content, let us first
summarize the asymptotic properties of quantization error.

A. Asymptotic Properties of Quantization

An n-bit ideal quantizer divides the signal FS into 2" uniform
bins. Over time, a signal spanning the FS lands in each bin with
some probability density function (PDF). Accruing the PDFs
over the N = 2" identical bins into a distribution over a single
bin, [-LSB/2, +LSB/2], yields the PDF of the quantization
error € [13]. As long as the signal PDF is continuous over a
given FS—which is almost always true for real-life signals—the
individual and aggregate PDFs both approach uniform distri-
bution as the resolution n goes to infinity (see [12, p. 21] for
a derivation). The uniform distribution of ¢ over [-LSB/2,
+LSB/2] results in the well-known mean-square quantization
error, LSB? /12, asymptotically independent of the signal. For
an FS sinusoid, the signal power is given by (F'S/2)?/2, where
FS = 2" x (LSB). Divided by the quantization error power,
this leads to an expression for the signal-to-noise-and-distortion
ratio (SNDR)! given as follows:

SNDR = 6.02n + 1.76 (dB). (1)

Equation (1) is usually derived assuming that the “quanti-
zation noise” uniformly distributes over [-LSB/2, +LSB/2]
[10], [11]. However, this assumption is true under certain sta-
tistical conditions [13] or asymptotically for very large n. A
periodic signal passing through the quantization staircase actu-
ally suffers deterministic distortion, which appears in the output
spectrum as harmonics, not random noise. We will discuss this
next.

B. Error Waveform and Spectrum

Fig. 2 shows the quantization error as a function of input x
and time ¢ and the corresponding spur spectrum for a 5-bit ideal
quantizer digitizing an FS sinusoid. The spectrum is obtained
numerically by the (long-length) fast Fourier transform (FFT)

I'This is referred to as SNR in the literature where quantization errors have
been overwhelmingly treated as noise, but we think SNDR is a better term, es-
pecially in this paper which deals with quantization spurs.
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Fig. 2. A 5-bit quantizer (» = 5) digitizing a FS sinewave, simulated in
MATLAB. (a) Sawtooth input—output error characteristic. (b) Error waveform.
(c) Output spectrum.

of the quantized output or analytically by a Fourier series ex-
pansion, which leads to the spur amplitude expressed in terms
of Chebyshev polynomials or Bessel functions [17]-[19]. The
error waveform in Fig. 2(b) can be divided into three portions:
sawtooth, bell, and transition. The sawtooth portion arises from
quantization around the zero crossing, where the sinewave is
ramp-like. More precisely, this is the region where the input
sinewave 2’ = (FS/2)sin(wj,t) stays within £LSB/2 of the
linear ramp =z = (FS/2)wiyt, that is,

(5)= (&)

|2 — x| =

2
2 z3| LSB 0.91
Rl=] |[=|<—= ——FS.
(FS) 6| <2 7l <G
The period of this approximate sawtooth is
LSB/((FS/2)win) = Tin/(2"7), where Ty, = 1/fin

is the period of the input sinewave. An ideal sawtooth
waveform of this period corresponds to a series of harmonics
in the spectrum with the fundamental located at (2"7) fiy.
The sawtooth portion of the error repeats every cycle of
the sinewave, resulting in spectral energy at the sawtooth
fundamental and its harmonics, surrounded by skirts of lower
tones spaced by fi,. As is shown in Fig. 2(c), the sawtooth
fundamental constitutes the highest spur whose harmonic index
is given by

kmax ~ 2"T.
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Fig.3. SFDR and SNDR versus resolution n for ideal quantizers digitizing an

FS sinusoid, simulated in MATLAB.

Quantization at the peaks of a sinewave produces errors in the
form of bell-like pulses. The pulses are periodic at the sinewave
frequency and therefore contribute low-order harmonics. Since
the error pulses are small and narrow compared to the period, the
corresponding harmonics are low and flat in the spectrum, re-
sembling the spectrum of a train of impulses. It has been shown
that, as n increases, these harmonics at low indexes approach a
level of —9.03n (dB) relative to the fundamental of the quan-
tized sinewave at 0 dBc [17], [19]. Finally, the transition region
in the error curve between the sawtooth and the bell induces a
wide band of harmonics that fill in the frequencies between the
low-index harmonics and the high-index peaks. Fig. 2(c) shows
the signature spurs corresponding to the three portions of quan-
tization error.

C. SFDR and Energy Conservation

Single-tone SFDR is usually defined as the difference in
decibels (dBc) between the fundamental and the largest spur
of a quantized sinewave. By default, we assume that the input
sinewave covers the ADC FS and the SFDR is simply specified
in decibels. Fig. 3 plots the numerically simulated SFDR of
ideal quantizers digitizing an FS sinusoid with a resolution of n
bits. For n below 4, the SFDR follows a 9.03n (dB) asymptote,
where low-index harmonics dominate; for n > 4, it retreats to
an asymptote of (9.03n — 6) dB, where the high-index spurs
dominate. On this basis, we postulate an expression [18] for
SFDR as follows:

SFDR = 9.03n + ¢(n) (dB) 3)

where ¢(n), an empirical quantity, ranges from 0 to —6 over the
spann € [1,12].

The 9n term in (3) can be justified using energy conservation
[19]. As ADC resolution n increases by one bit, the amplitude
of e(z) drops by 2 x or 6 dB, as (1) also indicates. However,
the sawtooth periodicity of e(x) doubles, which means that, ac-
cording to (2), the index of the largest harmonic is pushed out

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 51, NO. 8, AUGUST 2004

2 x. Also, there are now twice as many harmonics that fill the
gap between the fundamental and the largest harmonic. With
half of the error distributed across twice as many harmonics,
the height of each harmonic must go down, and therefore the
SFDR rises by 9 dB. On the other hand, when the input ampli-
tude halves, the asymptotic error power remains unchanged, but
the periodicity of the error waveform goes down 2 X because
the input sinusoid traverses half of the quantization thresholds.
There are now half as many significant harmonics sharing the
same amount of power as before. The spurs must rise by 3 dB,
and the SFDR worsens by 3 dB FS (or 9 dBc). This trend is
the opposite to what happens in continuous-time nonlinear sys-
tems, where we are accustomed to improvements in linearity
with smaller inputs. This shows why quantizer SFDR must be
specified as a function of the input magnitude.

D. Spectrum Aliasing

Sampling the quantized signal aliases high-order spurs into
the Nyquist band [0, fs/2), where f; is the sample rate. If the
sample rate is an integer multiple of the input frequency, aliased
spurs will coincide in frequency with unaliased low-order spurs
and add to them as phasors, worsening the SFDR. This can
confuse the interpretation of our numerical experiments, which
is why we use a very large number of points in numerical
FFTs—up to 16 x2™—and place the input sinusoid in the
lowest FFT frequency bin. In ADC testing, the input frequency
is usually chosen to lie in a prime numbered bin and the number
of FFT points is set to some power of two. In real applications,
careful frequency planning makes it unlikely that harmonics
will clump together.

E. Signal Dependence

Equations (2) and (3) would not be very useful if they pre-
dict a peak spur which is sensitive to small perturbations in the
phase, offset, or amplitude of the input sinusoid. Let us examine
these one by one. Phase shift in the sinusoid has no effect on the
spur spectrum, except to induce an identical phase shift in the
output. On the other hand, as the input amplitude falls below
FS, the bell portion of the error waveform shrinks in width and
magnitude, creating smaller harmonics at low indices [19], [33].
If the input is offset from a zero baseline, it breaks the odd sym-
metry in the quantization error, causing even harmonics to ap-
pear. Although the average spur level goes down by up to 3 dB
because now there are roughly as many even harmonics as there
are odd, the maximum spur, which arises from the sawtooth por-
tion of the error waveform, remains almost unchanged.

Quantization of nonsinusoidal inputs may create markedly
different patterns of spurs. It is impossible to analyze all possible
signals, but we should be able to construct some worst-case sig-
nals for which the ADC output error energy, which is asymptot-
ically LSB? /12 for ideal quantization, collapses onto just a few
dominant spurs that, for reasons of energy conservation, should
be of the order —6n (dB FS).

One such case is a periodic sawtooth input, whose quantiza-
tion error waveform is also a sawtooth. The spurs consist only of
the harmonics of the sawtooth error waveform. A second case
is that of a small input sinewave whose amplitude is lower than
one LSB. Now the quantizer degenerates into a one-bit slicer,
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whose entire error waveform is a square wave toggling between
—LSB/2 and + LS55 /2.

Two equal tones closely spaced in frequency create a
sinewave fully modulated in amplitude at the beat frequency.
As the sawtooth portion of the error waveform shrinks with the
modulated amplitude, the bell-like portion expands. As a result,
error energy moves from high-index to low-index spurs and
simulations show that the SFDR in dB FS is not much affected.
Generally, the signal that consists of M (> 3) tones evenly
spaced at a small frequency step and identical in amplitude and
phase is a sinewave at the center frequency modulated by sharp
pulses which are M times the magnitude of the individual tones
and separated by (A — 2) small ripples of amplitude compa-
rable to the individual ones. When 2 = M exceeds the number
of quantization thresholds, /¥, that are distributed over the full
range of the multitone signal, the ripple amplitude reduces
below one LSB, causing the aforementioned worst-case spurs.

In some instances, this dependence of the quantized spectrum
on input waveform can be used to advantage. As we will de-
scribe in Section I'V, noise accompanying the signal [13] scram-
bles the emror waveform and converts the spurs into a near-con-
tinuous spectrum resembling white noise

bell and transition portion
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