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ABSTRACT 
 
The principal idea behind the design of a software radio is to place the analog-to-digital and digital-to-analog 
converters as near to the antenna as possible, such that most of the radio functionalities can be implemented on a digital 
signal processor. One way to achieve this is by direct bandpass sampling of the desired RF signal band to baseband 
frequency. However, the design of a software radio receiver becomes more complicated when signals are to be received 
from multiple distinct RF bands. The traditional approaches for this case have been to bandpass sample a continuous 
span of spectrum containing all the desired RF signals. The disadvantage with this approach is that the required 
sampling rate depends upon the span of spectrum, instead of the information bandwidths of the signals. In this paper, 
we present an efficient algorithm to compute the minimum bandpass sampling frequency for direct downconversion of 
two distinct RF signal bands simultaneously. The novelty of this algorithm is that, at each iteration, it not only checks 
for a valid sampling frequency, but also determines the next possible minimum value of sampling frequency. 
 
INTRODUCTION 
 
The design of a software radio is based on two simple design goals [1]. First, the analog-to-digital converter (ADC) 
should be placed as near to the antenna as possible in the chain of RF front-end components. Second, the resulting 
samples should be processed softly in a reconfigurable digital domain using digital signal processors or field 
programmable gate arrays [2]. Generally, a RF front-end consists of multiple stages of amplification, filtering, and 
downconversion to process a single RF transmission, whereas in the direct digitization configuration, the RF signal is 
sampled directly without any downconversion. However, for most radio applications, the required sampling rate for 
direct downconversion would be impractically high if Nyquist sampling [3] is employed. One alternative could be to 
include multiple frequency translation stages, however, that would add additional hardware between the antenna and 
ADC. The other alternative is the utilization of bandpass sampling. Bandpass sampling is a special form of 
undersampling that translates a high frequency bandpass signal to baseband frequency [4]. The required sampling 
frequency depends on the signal bandwidth, rather than on its highest frequency component. The main advantage of 
this is, therefore, the reduced requirement of the sampling frequency and of the associated signal processing capability.  
 
In this regard, D. M. Akos et al. [2] proposed a method to compute the bandpass sampling frequency for direct 
downconversion of multiple RF signals. This method is, however, computationally intensive as it requires an 
exhaustive test of all frequencies up to the Nyquist rate, and at each such frequency we need to check 

22 NN C+ constraint equations. This computational complexity can be alleviated to a certain extent using the graphical 
approach of N. Wong et al. [5], where the search is restricted within the intersections of the valid ranges of sampling 
frequencies of individual signal band. C. H. Tseng et al. [6] proposed another method based on all the possible orders 
of spectral replicas of the sampled signal. However, the successful implementation of this algorithm lies in determining 
all the possible orders of spectral replicas, which varies as 2 !N N×  with the number of RF signals.  In this paper, an 
efficient algorithm is proposed to compute the minimum sampling frequency for direct downconversion of two distinct 
RF signal bands. In this method, we start with the theoretical minimum sampling frequency. If it is not found to be a 
valid sampling frequency, then we determine the next minimum value of sampling frequency, based on the given band 
specifications, and repeat the check for validity. 
 
PROPOSED APPROACH 
 
In this section, we present an algorithm for determining the minimum bandpass sampling frequency for direct 
downconversion of two distinct RF signal bands. For this we consider the bandpass signals ( )if t  (i = 1, 2… N), 

with li
f , ui

f  and iB representing lower bound, upper bound and bandwidth of signal ( )if t , respectively.  



Algorithm of minimum sf for two signal bands 
 
The algorithm for two signal bands is as follows, 

1. Select initial sampling frequency as ( )1 22sf B B= + . 

2. Check out whether any integer multiple of the chosen / 2sf  falls within any of these two bands. If yes, then 
increase the sampling frequency by sf∆  and repeat this step, otherwise move on to next step.  

3. Perform bandpass sampling operation of both the bands, with the chosen sampling frequency of step 2.  
4. Check out whether the bands overlap over each other in the sampled bandwidth ( 0 / 2sf− ). If yes, then again 

increase the sampling frequency by sf∆ and go back to step 2, otherwise the chosen sampling frequency 
represents one of the valid sampling frequencies for direct downconversion of two RF signals.  

The efficiency of this algorithm is solely dependent on the value of sf∆ that needs to be chosen in step 2 and 4. Hence, 
we need to develop some analytical formulations to specify the values of sf∆ in step 2 and 4.  
 
Determining Value of sf∆  for Step 2 
 
In step 2, we actually try to find a sampling frequency such that none of the bands alias with itself. To avoid aliasing 
with itself each individual band needs to satisfy two constraint equations [2, Eq. (2), (3)]. We can combine these two 
constraints into a simple constraint as ( , / 2)u srem f f B> . If this constraint is not satisfied then one of the integer 

multiple of the chosen / 2sf would lie within the signal band, i.e., 1 / 2s uf n f f< < where n is an integer. In such a 

case, we need to increase the sampling frequency to '
sf  such that the nth multiple of this new ' / 2sf  would lie 

beyond uf , i.e. ' / 2s un f f≥ . This logic is schematically depicted in Fig. 1. For two-band case this can be written as 

 ( ) ( )1 2
max 2 , 2s s u uf f f m f n� �+ ∆ ≥

� �
 (1) 

where  ( ) ( )
1 2

/ / 2 , / / 2u s u sm floor f f n floor f f� � � �= =� � � � (2) 

are two integer values. While computing the minimum sampling frequency we must use (1) with the equality condition. 
 
Determining Value of sf∆  for Step 4 
 
In step 4, we try to compute a sampling frequency such that the two bands do not overlap over each other within the 
sampled bandwidth ( 0 / 2sf− ). For that, we need to consider eight different spectral orientations of these two bands, as 
presented in [6]. However, we group these orientations in four different subgroups depending on whether m and n are 
even or odd,  
 ( ) ( )

1 2
/ / 2 , / / 2l s l sm floor f f n floor f f� � � �= =� � � � (3) 

When both m and n are even, there are two possible spectral orientations, as shown in Fig. 2. The alias version of signal 
( )1f t resides within (a, b), and that of signal ( )2f t within (c, d) in the sampled bandwidth. For the orientation of Fig. 

2(a), let us compute the band overlap ∆ , at the chosen sampling frequency sf , as  

 ( ) ( )
1 2

2 , 2 and    u s l sb f m f c f n f b c= − = − ∆ = −  

Now let us increase the sampling frequency to ( s sf f+ ∆ ), and compute the band overlap '∆  as  

 ( )( )' ' ' 2sb c n m f∆ = − = ∆ + − ∆  

As from (3) we have n >m, and the chosen value sf∆ must always be a positive quantity, we get  
 '∆ > ∆  (4) 
Hence, band overlap increases for any increase of sf for this spectrum orientation. Let us denote this condition as ‘no 
further improvement’ case. Similarly, for the band orientation of Fig. 2(b), we compute the band overlap '∆  as 
 ( )( )' ' ' 2sd a n m f∆ = − = ∆ − − ∆  (5) 
To make the band overlap ( '∆ ) zero, we need to choose the next modified sampling frequency as 
 ( )( )

2 1
2 ( )s s u lf f n m f f+ ∆ = − −  (6) 



Performing similar analysis for other cases, we get eight different expressions for ( s sf f+ ∆ ), all of which are tabulated 
in Table 1. The overlap conditions are expressed in terms of (a, b) and (c, d). 
 

 
Fig. 1. Choosing sf∆ in step 2 for single band 

 
Fig. 2. Band overlap when both m and n are even 

 
Fig. 3. Changes in band orientations (m even, n even) 

 
Table 1. Expression for s sf f+ ∆ in step 4 

m and n Band overlap 
a<c<b<d 

Band overlap 
c<a<d<b 

m even n even No further improvement ( )2 1
2 ( ) ( )u lf f n m− −  

m even n odd ( )1 2
2 ( ) ( 1)u uf f n m+ + +  No further improvement 

m odd n even No further improvement ( )1 2
2 ( ) ( 1)u uf f n m+ + +  

m odd n odd ( )2 1
2 ( ) ( )u lf f n m− −  No further improvement 

 

Table 2. Modified expression for s sf f+ ∆ in step 4 

m and n Band overlap 
a<c<b<d 

Band overlap 
c<a<d<b 

m even n even ( )2 1
2 ( ) ( )u lf f n m− −  ( )2 1

2 ( ) ( )u lf f n m− −  

m even n odd ( )1 2
2 ( ) ( 1)u uf f n m+ + +  ( )1 2

2 ( ) ( 1)u uf f n m+ + +  

m odd n even ( )1 2
2 ( ) ( 1)u uf f n m+ + +  ( )1 2

2 ( ) ( 1)u uf f n m+ + +  

m odd n odd ( )2 1
2 ( ) ( )u lf f n m− −  ( )2 1

2 ( ) ( )u lf f n m− −  
 

Table 3. Final expression for s sf f+ ∆ in step 4 

m and n n-m Expression for s sf f+ ∆  
both even or both odd even ( )2 1

2 ( ) ( )u lf f n m− −  

one is even and other is odd odd ( )1 2
2 ( ) ( 1)u uf f n m+ + +  



Decision Making at ‘No Further Improvement’ Cases 
 
In this subsection, let us address the issue that when one of such ‘no further improvement’ situations arises what the 
algorithm should do, as it can not take any random decision about the value of sf∆ , even at the ‘no further 
improvement’ cases. We discuss these, as before, depending on whether m and n, defined by (3), are even or odd.  
 
When both m and n are even, for any increase in the value of sf , all the values (a, b) and (c, d) decrease, which is 
depicted in Fig. 3. Hence, ultimately we can have two different band orientations having zero band overlap. However, 
if we consider the incremental changes in the values of (a, b) and (c, d), due to an incremental change in sampling 
frequency ( sf∆ ), we get  

 ( ) ( )2 , 2s sa b m f c d n f∆ = ∆ = − ∆ ∆ = ∆ = − ∆  

Since n > m, from (3), therefore , ,c d a b∆ ∆ > ∆ ∆ . This suggests that orientation of Fig. 3(a) is infeasible. Then 
considering the band orientation of Fig. 3(b), we see that we need to choose the next sampling frequency ( s sf f+ ∆ ) in 
such a way that the band positions ‘a’ and ‘d’ become the same. Equating the expressions of ‘a’ and ‘d’ we get 

 ( )( )
2 1

2 ( )s s u lf f n m f f+ ∆ = − −  (7) 

Performing similar analysis for the other ‘no further improvement’ cases, as mentioned in Table 1, we get Table 2 with 
modified expressions of ( s sf f+ ∆ ). But because of the similarities between 1st and 4th row and between 2nd and 3rd row, 
we can represent these eight conditions by two simple cases, as presented in Table 3, depending on (n-m).  
 
SIMULATION RESULTS 
 
To get a better feeling of the effectiveness of this algorithm, let us consider a hypothetical situation where we try to 
incorporate the GSM and IS-95 CDMA standards over a single system. The GSM standard operates over (890 - 915)/  
(935 - 960) MHz [8], whereas the IS-95 CDMA operates over (824 - 849)/ (869 - 894) MHz [9]. We applied this 
algorithm for both uplink and downlink bands separately. After nine iterations, sf =117.6 MHz is found to be the 
minimum bandpass sampling frequency for direct downconversion of the uplink bands, and for the downlink bands the 
same is found to be sf = 120 MHz, after eleven iterations. 
 
CONCLUSION 
 
While expanding the digital signal processing boundary toward the antenna, in a software radio implementation, the 
application of bandpass sampling technique can be very helpful to achieve the design goal. In this paper, we have 
presented an algorithm to determine the minimum bandpass sampling frequency for direct downconversion of multiple 
distinct RF signals. The essence lies in the determination of a sampling frequency closest to the theoretical lower 
limit ( )1 22 B B+ . This minimization, indirectly, is also critical in estimating the computational requirements, one of the 
primary bottlenecks in software radio design. 
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