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Abstract— The center idea behind the software radio architec-
ture is to place analog-to-digital and digital-to-analog converters
as near the antenna as possible, leaving the implementation of
the most radio functionality to a programmable micro or signal
processor. One way to accomplish this in a radio receiver front
end is by direct downconverting the desired radio frequency (RF)
signal to a target intermediate frequency (IF) using bandpass
sampling. Although the bandpass sampling theory for a single
RF signal is well developed, its counterpart for two or more
RF signals is relatively immature. For direct downconverting
multiple distinct RF signals, determining valid bandpass sam-
pling frequencies using the conventional approach could be a
computationally exhaustive process. In this paper, we propose an
efficient method to find the ranges of valid bandpass sampling
frequency for direct downconverting multiple distinct RF signals.
Simple formulas for the ranges of valid bandpass sampling
frequency in terms of bandwidths and frequency locations of
the RF signals are derived. The result can be used to efficiently
choose an appropriate bandpass sampling frequency for multiple
RF signals.

I. INTRODUCTION

The main design philosophy of the software radio is to
allow the most radio functionality be realized in the pro-
grammable digital domain via digital signal processors (DSPs)
[1], whereby achieves the highest design flexibility. Bearing
this in mind, one should, in designing a receiver front end,
push the analog-to-digital converter (ADC) as close to the
antenna as possible. One way to do this is by wideband
digitizing the radio signal at the RF using an ADC [2]. This
design eliminates the requirement of using analog mixers for
frequency downconversion. However, for most radio appli-
cations, the required sampling rate for the ADC would be
impractically high if Nyquist sampling [3] is employed. For
example, the GSM (Global System for Mobile Communi-
cation) 1800 digital cellular telecommunication system uses
carrier frequencies of about 1.8 GHz and has a bandwidth of
200 kHz per channel [4]. Therefore, Nyquist sampling a GSM
1800 signal requires a sampling frequency of about 3.6 GHz.
Such a high sampling rate could still be infeasible with present
technology. Alternatively, by aware of the bandpass nature of
the radio signal, one can use bandpass sampling instead to
directly downconvert the desired RF signal to an IF. According
to the bandpass sampling theory [5], the minimum sampling
rate is dependent on the bandwidth, but not the maximum
frequency, of the RF signal. Using the GSM 1800 signal as
an example, the minimum sampling rate is only about 400 kHz

if bandpass sampling is employed. This significantly relaxes
the demand for fast ADCs and DSPs. The lower processing
rate could in turn reduce the power consumption, which is of
importance for mobile devices.

To fully exploit the benefits of the software radio, direct
downconversion of multiple RF signals using a single receiver
front end may be desirable. In this regard, a method to
determine the bandpass sampling frequency for direct digiti-
zation of multiple RF signals has been proposed in [6], where
constraints on the sampling frequency for avoiding aliasing
were developed. This method, however, is computationally
intensive because exhaustive tests on the constraints for all
frequencies up to the Nyquist rate would be required. The
computational complexity can be alleviated to certain extent
by using the method presented in [7], where a modified inter-
pretation to a graph showing allowable sampling frequencies
for all desired RF signals was proposed. This method finds the
valid sampling frequency ranges for each RF signal and shows
the result with a graph. By overlapping the graphs of valid
sampling frequency ranges for all RF signals, one can obtain
the intersection of the graphs. Only those frequencies within
the frequency ranges of the intersection need to be tested
for their validity, thereby reduces the required computational
complexity.

In this paper, a novel method is proposed to obtain valid
sampling frequency ranges for direct downconversion of mul-
tiple RF signals. In the proposed method, we first determine all
the possible orders of spectral replicas in the spectrum of the
sampled signal. For each possible order of spectral replicas,
we derive the formula for its valid sampling frequency range in
terms of some parameters (such as bandwidths and locations
of the RF signals, etc). For a given problem, one only needs to
substitute the relevant parameters into the formulas to obtain
the valid sampling frequency ranges for direct downconversion
of the desired RF signals. Compared to the conventional
approach, the proposed method is superior in sense of both
computational complexity and ease of implementation. Com-
puter simulation on sampling GSM signals is conducted to
demonstrate the usage of the proposed method.

II. BANDPASS SAMPLING OF A SINGLE RF SIGNAL

Consider sampling an RF signal whose spectrum is shown in
Fig. 1(a). Let the sampling frequency be fs Hz, then the spec-
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Fig. 1. The spectra of (a) the original and (b) the sampled bandpass signals.

trum of the sampled signal can be obtained by replicating the
spectrum of the original signal at multiples of fs. According
to the bandpass sampling theory, the spectrum of the original
signal must not straddle m fs

2 for any integer m, otherwise the
sampled signal would be aliased [8]. Therefore, for aliasing-
free sampling, the entire positive-frequency spectrum of the
original signal (labeled ‘+’ in Fig. 1(a)) must lie in the
frequency range [m fs

2 , (m + 1) fs

2 ] for some integer m. An
example for the case of the positive-frequency spectrum lying
in the frequency range [2fs

2 , 3fs

2 ] (i.e., m = 2) is shown in
Fig. 1(b), where solid and dashed lines are used for the original
spectra and the replicas, respectively. From Fig. 1(b) we see
that, in the frequency segment [nfs, (n+1)fs] for any integer
n (referred to as segment n), the center frequencies of the
positive-frequency and negative-frequency replicas (labeled
‘+’ and ‘-’ respectively in Fig. 1(b)) are symmetric with respect
to (n + 1

2 )fs. This property will be used in the following
section.

By using bandpass sampling, an RF signal centered at fc

will be downconverted to an intermediate frequency fIF. The
fIF is related to fc and fs as follows [6]:

fIF =

{
rem(fc, fs), if � fc

fs/2� is even

fs − rem(fc, fs), if � fc

fs/2� is odd
(1)

where rem(a, b) denotes the remainder of a divided by b, and
�x� denotes the largest integer less than or equal to x. Note
that, depending on the value of � fc

fs/2� (even or odd), either
the positive or the negative spectrum of the original signal will
be downconverted to fIF.

III. BANDPASS SAMPLING OF TWO RF SIGNALS

Consider the problem of sampling the two RF signals shown
in Fig. 2. The signal ‘i’ (i = 1 or 2) is labeled ‘i’. Its lowest,
center, and highest frequencies are denoted by fLi

, fi, and
fHi

, respectively. Its bandwidth is given by Bi = fHi
− fLi

.
The center frequencies of the two RF signals are related by
f2 = Rf1, where R is a positive real number.

Let the sampling frequency be fs. According to Section II,
the spectrum of each signal must not straddle any integer
multiple of fs/2, otherwise the sampled signal would be
aliased. Therefore, the positive spectra of signals ‘1’ and ‘2’
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Fig. 2. The spectrum of two RF signals.

must be inside some segments n1 and n2, respectively. In
addition, the positive spectrum of each signal may not straddle
the midpoint of its corresponding segment, it can only be
completely inside either the first or the second half of the
segment.

Since the sampling frequency is fs Hz, the spectrum of the
sampled signal can be obtained by replicating the spectrum
of the original signal at multiples of fs. Due to spectral
replication, a replica of spectrum ’i’ (i = ±1,±2) would
appear in each segment. To be immune from aliasing, the
replicas in each segment can not overlap. From Section II and
Fig. 1(b) we know that the relative positions of the replicas
‘1’ and ‘-1’ in each segment will be symmetric with respect
to the midpoint of the segment, so will the relative positions
of the replicas ‘2’ and ‘-2’ in each segment. That is, each RF
signal must have its positive or negative replica inside the first
half of a segment. Since the two replicas inside the first half
segment must not overlap, there are two choices for ordering
the two replicas. The total number of possible replica orders
in one segment is thus 2 × 2 × 2 = 8. The spectra of the
sampled signal for the 8 possible replica orders are shown in
Fig. 3, where we use solid trapezoids to denote the spectra
of the original signals and dashed trapezoids to denote the
replicas. The label on each trapezoid indicates the source of
the spectrum. For example, a dashed trapezoid labeled ‘-1’
denotes a replica of the negative spectrum of signal ‘1’.

Note that, as shown in Figs. 3(a) and (b), the replicas ‘1’
and ’2’ are neighbors in the first half of a segment in Case 1
and in the second half of a segment in Case 2. If those cases
having the same neighboring replicas in either the first or the
second half of a segment are considered as in one group, we
may categorize the 8 cases in Fig. 3 into 4 groups, as shown
in Table I. Each group contains two cases, and the two cases
share the same neighboring replicas in either the first or the
second half of a segment.

In the following, we will derive the ranges of valid bandpass
sampling frequency for the 8 cases shown in Fig. 3. For
a given replica order, the sampling frequency must satisfy
certain constraints. There are two types of constraints: one is
referred to as neighbor constraint and the other is referred to
as boundary constraint. The two cases in each group have the
same neighboring replicas and thus share the same neighbor
constraint. However, they have different boundary constraints
because the neighboring replicas show up in different halves
of a segment.
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Fig. 3. The spectrum of the two RF signals shown in Fig. 2 after bandpass
sampling. The 8 possible replica orders are shown in (a) to (h). The parameters
εLi

(i = ±2) and εHi
(i = ±1) are defined in (a) and (g).

Let’s consider the neighbor constraint first. From Table I
we see that the neighboring replicas in Group 1 are (1, 2).
Therefore, in each segment, the relative highest frequency of
replica ‘1’ must be less than or equal to the relative lowest
frequency of replica ‘2’. For simplicity, we define εLi

(i = ±2)
and εHi

(i = ±1) as the relative lowest and highest frequencies
of replica ‘i’ in a segment, as shown in Figs. 3(a) and 3(g).
Based on the definitions in Figs. 3(a) and 3(g), one can easily
obtain the values of εLi

and εHi
. The result is shown in

Table II. Using these definitions, we may write the neighbor
constraint for Group 1 with a shorthand representation as
εH1 < εL2 , which can lead to

fs ≤ fL2 − fH1

n2 − n1
(2)

with the aid of Table II. Following the same procedure, one
can easily find the shorthand representations of the neighbor
constraints and their corresponding inequalities for the other
three groups. The result is summarized in Table I.

The boundary constraint for each case can be obtained by
observing Figs. 2 and 3. Taking Case 1 as an example, the

TABLE I

THE CATEGORIZATION OF THE 8 CASES IN FIG. 3 INTO 4 GROUPS. THE

SHORTHAND REPRESENTATIONS AND THEIR CORRESPONDING NEIGHBOR

CONSTRAINTS FOR THE 4 GROUPS ARE ALSO SHOWN.

Group Neighbors Case Shorthand Constraint

1 ( 1, 2)
1

εH1 ≤ εL2 fs ≤ fL2−fH1
n2−n12

2 ( 1,-2)
3 εH1 ≤ εL−2 fs ≥ fH1+fH2

n1+n2+14

3 (-1, 2)
5 εH−1 ≤ εL2 fs ≤ fL1+fL2

n1+n2+16

4 (-1,-2)
7 εH−1 ≤ εL−2 fs ≥ fH2−fL1

n2−n18

TABLE II

THE FREQUENCY VALUES OF εLi
(i = ±2) AND εHi

(i = ±1).

Notation Frequency Value
εH1 fH1 − n1fs

εH−1 (n1 + 1)fs − fL1
εL2 fL2 − n2fs

εL−2 (n2 + 1)fs − fH2

neighboring replicas (1, 2) must be completely inside the first
half of a segment. We therefore see from Figs. 2 and 3(a) that
the boundary constraints for spectra ‘1’ and ‘2’ are

fL1 ≥ n1fs (3)

fH2 ≤ (n2 +
1
2
)fs, (4)

respectively. For Case 2, the boundary constraint only differs
from Case 1 in that the neighboring replicas (1, 2) are now in
the second half instead of the first half of a segment. Therefore,
the boundary constraints for spectra ‘1’ and ‘2’ can be obtained
from (3) and (4) by replacing n1 and n2 with n1+ 1

2 and n2+ 1
2 ,

respectively. This leads to

fL1 ≥ (n1 +
1
2
)fs (5)

fH2 ≤ (n2 + 1)fs. (6)

Following the same procedure, it is straightforward to derive
the boundary constraints for all other cases. The result is listed
in Table III.

A valid sampling frequency must satisfy both the neighbor
and boundary constraints. By combining Tables I and III, one
obtains Table IV, where the ranges of valid sampling frequency
for the 8 cases in Fig. 3 are shown.

IV. FINDING AN APPROPRIATE RANGE OF VALID

SAMPLING FREQUENCY

From Table IV we see that all the parameters required to
determine the ranges of valid sampling frequency are given in
Fig. 2 except the integers n1 and n2. Since n1 is the number
of the segment where spectrum ‘1’ is located, we know that
n1 = � fL1

fs
�. This indicates that the larger the value of n1, the
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TABLE III

THE BOUNDARY CONSTRAINTS FOR THE 8 CASES IN FIG. 3.

Case
Boundary Constraint

Spectrum ‘1’ Spectrum ‘2’
1 fL1 ≥ n1fs fH2 ≤ (n2 + 1

2 )fs

2 fL1 ≥ (n1 + 1
2 )fs fH2 ≤ (n2 + 1)fs

3 fL1 ≥ n1fs fL2 ≥ (n2 + 1
2 )fs

4 fL1 ≥ (n1 + 1
2 )fs fL2 ≥ n2fs

5 fH1 ≤ (n1 + 1)fs fH2 ≤ (n2 + 1
2 )fs

6 fH1 ≤ (n1 + 1
2 )fs fH2 ≤ (n2 + 1)fs

7 fH1 ≤ (n1 + 1)fs fL2 ≥ (n2 + 1
2 )fs

8 fH1 ≤ (n1 + 1
2 )fs fL2 ≥ n2fs

TABLE IV

THE RANGES OF VALID SAMPLING FREQUENCY FOR THE 8 CASES.

Case Range of Valid fs

1
fH2

n2+ 1
2

≤ fs ≤ min{ fL1
n1

,
fL2−fH1

n2−n1
}

2
fH2

n2+1 ≤ fs ≤ min{ fL1
n1+ 1

2
,

fL2−fH1
n2−n1

}

3
fH1+fH2
n1+n2+1 ≤ fs ≤ min{ fL1

n1
,

fL2
n2+ 1

2
}

4
fH1+fH2
n1+n2+1 ≤ fs ≤ min{ fL1

n1+ 1
2

,
fL2
n2

}

5 max{ fH1
n1+1 ,

fH2
n2+ 1

2
} ≤ fs ≤ fL1+fL2

n1+n2+1

6 max{ fH1
n1+ 1

2
,

fH2
n2+1} ≤ fs ≤ fL1+fL2

n1+n2+1

7 max{ fH1
n1+1 ,

fH2−fL1
n2−n1

} ≤ fs ≤ fL2
n2+ 1

2

8 max{ fH1
n1+ 1

2
,

fH2−fL1
n2−n1

} ≤ fs ≤ fL2
n2

smaller the value of the sampling frequency fs. However, the
bandwidth of a segment should at least accommodate the 4
nonoverlapping replicas (i.e., replicas ‘1’, ‘-1’, ‘2’, and ‘-2’).
This means fs ≥ 2(B1 + B2). Therefore, the value of n1 is
upper bounded by

n1 =
⌊

fL1

fs

⌋
≤

⌊
fL1

2(B1 + B2)

⌋
(7)

In most situations, one would prefer choosing a smaller
sampling frequency to lower the processing rate. Therefore,
the largest integer n1 satisfying (7) should be a good starting
point for searching the ranges of valid sampling frequency. In
addition, since spectrum ‘1’ is in segment n1, one can write

n1fs < f1 < (n1 + 1)fs. (8)

Multiplying (8) by R
fs

and using the relation of f2 = Rf1, one
obtains

Rn1 <
f2

fs
< R(n1 + 1). (9)

Taking � � on (9) leads to

�Rn1� ≤ n2 ≤ �Rn1 + R� , (10)

where the fact that spectrum ‘2’ is in segment n2 and thus
n2 = � f2

fs
� has been used in deriving (10). This suggests that,

for a given n1, the possible values of n2 are confined by (10).

In typical situations, the value of R is not large, which makes
the range of n2 relatively small.

Based on the above analysis, we may summarize the pro-
cedure for obtaining a range of valid sampling frequency for
two RF signals as follows:

1) Choose an appropriate n1 using (7).
2) Choose an appropriate n2 using (10).
3) Use Table IV to find the ranges of valid sampling

frequency.

As mentioned earlier, the larger the value of n1, the smaller the
value of the sampling frequency. Therefore, one might want
to choose a relatively large value of n1 which satisfies (7) to
obtain a low sampling frequency. Note that (7) and (10) are
only theoretical bounds on n1 and n2, respectively. In practice
a choice of (n1, n2) satisfying them does not necessarily
guarantee a solution. In addition, for a particular choice of
(n1, n2), some of the 8 cases may yield sampling frequency
ranges which are empty. When that happens, it simply means
that there is no valid sampling frequency available for the
particular replica order under the chosen (n1, n2).

V. COMPUTER SIMULATION - BANDPASS SAMPLING OF

TWO GSM SIGNALS

To demonstrate the usage of the proposed method, we
consider a mobile station receiving signals from GSM 900
and GSM 1800 base stations. For the base to mobile link,
the GSM 900 system operates in the band of 935-960 MHz,
while the GSM 1800 system operates in the bnad of 1805-
1880 MHz. The bandwidth per channel for both systems is
200 KHz. In this simulation, it is assumed that receiving the
GSM 900 signal from the channel 935.2-935.4 MHz and the
GSM 1800 signal from the channel 1805.2-1805.4 MHz is
desirable for the mobile station. The GSM 900 signal was
simulated by passing a wideband noise through a 4-th order
Butterworth bandpass filter with a passband of 935.2-935.4
MHz, while the GSM 1800 signal was simulated by passing
the same wideband noise through a 4-th order Butterworth
bandpass filter with a passband of 1805.2-1805.4 MHz. The
two GSM signals were then added up to obtain the simulated
received signal for the mobile station. The power spectrum of
this signal is plotted in Fig. 4, where two bands centering at
935.3 MHz and 1805.3 MHz are clearly shown.

For the given problem, we have fL1 = 935.2 MHz, fH1 =
935.4 MHz, fL2 = 1805.2 MHz, fH2 = 1805.4 MHz, B1 =
B2 = 200 kHz, and R = 1805.3/935.3 = 1.93. According to
(7), the value of n1 is upper bounded by

n1 ≤
⌊

935.2
2(0.2 + 0.2)

⌋
= 1169. (11)

For those n1 which satisfies (11), we used (10) to determine
the possible values of n2. For each possible combination
of (n1, n2), we substituted the relevant parameters into the
formulas in Table IV to obtain the ranges of valid bandpass
sampling frequency for the 8 cases. In Table V, we show the 10
lowest frequency ranges of valid sampling frequency we found
using the proposed method. Note that, although the theoretical
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Fig. 4. The original spectrum of the simulated GSM signal.

TABLE V

THE TEN LOWEST FREQUENCY RANGES OF VALID fs .

case n1 n2 Range of Valid fs (Hz)
2 1122 2166 833133.4 ≤ fs ≤ 833140.3
5 1122 2167 832947.5 ≤ fs ≤ 832948.3
3 1126 2173 830545.5 ≤ fs ≤ 830549.8
6 1129 2179 828165.2 ≤ fs ≤ 828165.6
4 1133 2188 825045.2 ≤ fs ≤ 825045.7
5 1136 2194 822693.1 ≤ fs ≤ 822695.8
8 1140 2201 820169.7 ≤ fs ≤ 820172.6
1 1144 2208 817478.0 ≤ fs ≤ 817481.2
4 1147 2215 814986.7 ≤ fs ≤ 814988.7
6 1158 2235 807424.0 ≤ fs ≤ 807424.8

upper bound for n1 is 1169, no solution can be found until n1
goes down to 1158, where the Case 6 for n2 = 2235 yields
a valid sampling frequency range of [807424.0,807424.8] Hz.
Sampling frequencies in this range are slightly larger than the
theoretical minimum sampling frequency of 2(200+200)=800
kHz. Also notice that, for (n1, n2) = (1158, 2235), only Case
6 appears in Table V. This is because that for such a large value
of n1 the bandwidth of a segment is too small to accommodate
the 4 nonoverlapping replicas with other particular orders. This
phenomenon happens to other choices of (n1, n2) listed in
Table V as well. The smaller the n1 value, the better chance
a particular case can yield a solution.

One may have noticed that the ranges of valid fs listed in
Table V are very narrow. If one choose the sampling frequency
based on Table V, a slight frequency offset of the sampling
circuit could drive the sampling frequency out of the valid
range. In actual implementation, one might want to choose a
valid sampling frequency which corresponds to a smaller n1.
For demonstration purpose, we chose Case 8 for (n1, n2) =
(352, 680) as an example. In this case, we obtained the valid fs

range of [2653617, 2654705] Hz. We selected fs = 2654280
Hz to sample the simulated GSM signal. With this choice of
fs, one can use (1) to calculate the intermediate frequencies,
say fIF1 and fIF2 , for the two GSM signals as follows:

fIF1 = rem(935300000, 2654280) = 993440 Hz,⌊
935300000
2654280/2

⌋
= 704 (even) (12)

fIF2 = rem(1805300000, 2654280) = 389600 Hz,

2 1
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Fig. 5. The spectrum of the sampled GSM signal.

⌊
1805300000
2654280/2

⌋
= 1360 (even) (13)

Note that positive spectra of the two GSM signals are down-
converted to fIF1 and fIF2 , because � fc

fs/2� is even in both
(12) and (13). The power spectrum of the sampled signal is
shown in Fig. 5, where two nonoverlapping bands centering
at fIF2 = 0.3896 MHz and fIF1 = 0.99344 MHz are clearly
shown. This result matches the replica order given by Case 8
in Fig. 3(h).

VI. CONCLUSION

In this paper, we have presented an efficient method to
determine the ranges of valid bandpass sampling frequency
for two distinct RF signals. We have derived formulas for
the ranges of valid bandpass sampling frequency in terms
of bandwidths and frequency locations of the RF signals.
Although the developed formulas are for two RF signals
only, extension of the derivation to three or higher number of
RF signals is straightforward. The simplicity of this method
guarantees its easy implementation on a microprocessor.
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