SINAD, SNR, THD calculator

A commonly used specification is signal to noise-plus-distortion ($\mathrm{S} /[\mathrm{N}+\mathrm{D}]$, or $\mathrm{S} /[\mathrm{THD}+\mathrm{N}]$), also called SINAD. This is essentially the inverse of THD+N, when referred to the signal; its dB number is the same, but with opposite polarity.

Another performance measure describing the test results is the signal to noise ratio, S/N or SNR, which is a measure of the relative noise power, most useful for estimating response to small signals in the absence of harmonics.

If S / N is not specified, but THD and THD+N are provided, relative to the input signal, THD can be rss-subtracted from THD+N to obtain the noise to signal ratio $[=1 /(\mathrm{S} / \mathrm{N}]$. If the numbers are given in dB , the rss subtraction formula for logarithmic quantities in the APPENDIX can be used as follows

$$
S N R=-10 \log _{10}\left(10^{(T H D+N / 10}-10^{T H D / 10}\right)
$$

to yield the input signal power relative to noise power expressed in dB .

APPENDIX

RSS addition of logarithmic quantities:
The root-square sum of two rms signals, S_{1} and S_{2}, has an rms value of $\sqrt{\mathrm{S}_{1}{ }^{2}+\mathrm{S}_{2}{ }^{2} \text {. } \text {. } \text {. }{ }^{\text {, }} \text {, }}$
One often needs to calculate the rss sum of two numbers that are expressed in dB relative a given reference. To do this one has to take the antilogs, perform the rss addition, then convert the result back to dB. These three operations can be combined into one convenient formula: If D1 and D2 are ratios expressed in dB , their sum, expressed in dB , is

$$
10 \log _{10}\left(10^{D_{1} / 10}+10^{D / 10}\right)
$$

Similarly, to find the difference between two rms quantities,

$$
x=\sqrt{S_{2}^{2}-S_{1}^{2}}
$$

the result, x, expressed in dB , is

$$
10 \log _{10}\left(10^{D_{2} / 10}-10^{D_{1} / 10}\right)
$$

http://www.analog.com/library/analogDialogue/Anniversary/16.html
Note:

$$
\left.\begin{array}{l}
T H D_{d B c}=10 \log \left(\frac{\sum_{i=2}^{6} P_{i}}{P_{1}}\right)^{;} \quad S N R_{d B c}=10 \log \left(\frac{P_{1}}{P_{a l l}-\sum_{i=0}^{6} P_{i}}\right) \\
S I N A D_{d B c}=10 \log \left(\frac{P_{1}}{P_{\text {all }}-\sum_{i=o}^{1} P_{i}-\sum_{i=2}^{6} P_{i}}+\sum_{i=2}^{6} P_{i}\right.
\end{array}\right)=-10 \log \left(10^{\frac{T H D}{10}}+10^{-\frac{S N R}{10}}\right)
$$

