
SCPI and VISA a valuable combination
By John M. Pieper

(C) ACEA, Wierden The Netherlands

Recently the VXI Plug and Play Alliance introduced an
open system architecture for virtual instrumentation,
called VISA. A hardware and system level software
environment is created on different computers and
operating systems in order to allow end users of
instrumentation systems to apply multi-vendor products
in an interoperable way.
Key technologies for the remote operating of
instruments are the SCPI (Standard Commands for
Programmable Instruments) and its underlying IEEE
488.2 standard.
This article explains the importance of these standards
to both end users and instrument vendors when
applying instrument drivers on a VISA platform and
describes the valuable combination of SCPI/IEEE
488.2 and VISA.

The VISA concept has been driven by the vendors of VXI hard and software products. VXI
instruments cannot be controlled, except by software; virtual instruments, who display a front
panel image on a computer screen, is the keyword. But the vendor's hard and software products
being used to create VXI applications, were mutual incompatible. Application programs couldn't
be ported among the different vendor specific platforms. It is the merit of the alliance that this
interoperability is much improved, if not yet guaranteed.

Apart of the interoperability issue, the alliance did also require a number of additional provisions
which are deemed to be part of a professional development environment for virtual instrument
control.

Relation of VISA with the other ATE
standards
The VISA protocol is a next logical step in a series of standards ATE systems. As VISA's main
objective is to guarantee interoperability, main part of the requirements apply to the interfacing of
the application layer functionality with its environment. In this context, 'environment' is a rough
indication of all the components which interacts with the functionality of the application, like the

computer hardware and the operating system, the environment in which the application is
developed, the interface platform via which the application communicates with the instruments
and the corresponding I/O drivers and interface cards which are used for that purpose.

Rather than standardizing the instrument control, the processing functionality or the users
interface, VISA provides a number of requirements and guidelines for the interaction with their
environment. Suppliers of VISA compatible products must comply to these requirements in order
to offer their customers the possibility to port their applications to different 'environments', which
can be linked with all needed functions and be linked to other commercial available software
packages, which, for example are needed for documentation and archiving the test results and
procedures.

VISA is complementary to the other ATE industry standards, and does certainly not leave these
standards behind. On the contrary, it builds on the standardization results, achieved for the
underlying functional layers, which are needed to meet the demands of modern instrumentation
systems. To clarify their mutual relations, figure 1 gives a survey of the applicable ATE
standards. Notice that the grey shaded parts reflect the areas which are subject of standardization.

On the lowest level there is the definition of the interface platform itself. This can be the well
known IEEE 488.1/IEC 625-1 interface, commonly called GPIB, but other type of interface
media of later date, like VXI or RS 232 with IEEE 1174, can be associated also with this layer.
The functionality found in this layer, defines the electrical and mechanical properties of the
interface medium and contains protocols for establishing the data path between the controller and
the instruments.

Figure 1. Survey of the ATE standards.

These lower layer standards do not deal with the contents of the data itself. For example, one may
have a phone connection of excellent technical quality with Japan, but if one does not speak
Japanese, communication may become troublesome.

The IEEE 488.2 concept
Therefor, by defining the message syntax (spelling), the IEEE 488.2 provides a concept that
meets the demands for instrumentation systems. The syntax is a perfect balance between the
communication needs of a modern instrumentation system and the requirement to unambiguously
parse (interpret) the messages in an efficient way.

But IEEE 488.2 is more than a syntax definition only. It was clearly shown by the experiences of
the instrument manufacturers who took the initiative to this standard, that a protocol was needed
to guarantee a reliable communication, which would not hang up under any condition. Therefor,
the so called Message Exchange Protocol - MEP - was established. This protocol is based on the
principle that 'an instrument may not send data until it is asked for'. For that purpose, IEEE 488.2
distinguishes between commands and queries. This concept is anchored in the language
construction, since commands and queries follow different syntax's.

The requirements of the Message Exchange Protocol are simply to be met by an application
program (controllers), but its implementation requires more effort from the side of the instrument
designer. This is because an instrument has to detect any communication error from the side of
the controller and be able to recover from any possible 'hang-up' or 'lock' condition.

Furthermore, the IEEE 488.2 standard provides protocols for:

• status and error reporting and retrieving.
• synchronization between the controller program and instrument actions and events, and

between different instruments mutually.
• dealing with coupled functionality and resolving coupling conflicts; an issue which is

commonly left unmentioned, but certainly exists in major part of modern instruments.

The definition of the semantics (meaning) of program messages is not part of the IEEE 488.2
standard. This was left to higher level standards like SCPI, or to the instrument designer.
However, the so called 'common commands' is the exception to this rule. Most of these common
commands deal with general 'house keeping' functionality from which today's modern
instruments cannot desist.

It is therefor not a coincidence that the VISA required set of instrument drivers is based upon
these IEEE 488.2 common commands. To implement these drivers for a IEEE 488.2 compliant
device, little or no modification is needed. Non-IEEE 488.2 compliant instruments have to
develop equivalent functionality for the VISA drivers or to return warnings.

The VXI platform

Originally, IEEE 488.2 was defined as a layer above GPIB (IEEE 488.1/IEC 625-1). When the
VXIbus standard was created, much attention is paid to keep the value of IEEE 488.2 available
for VXI devices and to maintain compatibility with the other ATE standards. The VXI Word
Serial protocol therefor defines a number of commands which emulate GPIB functionality.
VXIbus instruments are defined as a class of message based VXIbus devices which use these
emulation commands. This means that the Data Link and Physical layer functions of GPIB and
VXI instruments are transparent for the higher level protocols, like IEEE 488.2. This implies also
that IEEE 488.2 functionality does not need to distinguish between both platforms and can be
ported to VXI as well as to GPIB interfaces. This enables VXIbus instruments to fully comply to
IEEE 488.2; such VXIbus devices are called 'VXIbus-IEEE 488.2 instruments'.

VXIbus instruments belong to the category of 'message based' VXIbus devices. The program
messages being used to control this device category are ASCII based commands. As such, they
can be compared with the way the traditional GPIB instruments are controlled. Also, all ATE
standards can be applied to message based VXIbus devices.

Another category of VXIbus devices are the so called 'register based' VXIbus devices. They
communicate with arbitrary 8 or 16 bit binary codes, which are 'peeked' and 'poked' into registers.
Although this low level way of communication may be very fast, no standards applies to this type
of data transfer. The control of register based VXIbus devices is entirely determined by the
manufacturer and is very device specific. Programming this type of instruments, for example by
creating VISA drivers, may easily become a time consuming and tedious job.

IEEE 1174
To maintain the compatibility among instrumentation interfaces, the new IEEE 1174 standard has
a similar philosophy as the VXIbus. This serial instrument standard, whose publication is to be
expected about the end of this year, defines a GPIB function emulation on a serial RS 232 port.
Additionally, it describes the implementation of the IEEE 488.2 protocols on a serial port.

SCPI
The primary goal of the Standard Commands for Programmable Instruments SCPI is to reduce
the time needed to create an application program. Although instrument drivers existed before
SCPI was established, major part of programmers did write their applications using I/O drivers.
This type of drivers do send only the specified command to the instrument and retrieve their
response directly and do not depend upon the instrument functionality. The VISA/VTL I/O
drivers are a good example of such a driver set.

The wide variety of different remote programming concepts was one of the biggest problems
which a programmer had to face. Different commands were used to control identical functions in
instruments from different suppliers. But also the reverse occurred; identical commands had
different meaning in instruments from different vendors. As will be explained in this article, these
problems are not solved by simply using VISA instrument drivers.

SCPI solved this problem in several steps. As a first step, a generic model of a programmable
instrument is created. This so-called 'instrument model', maps the instrument functionality and
belonging data and control flows into a structured chart. Based upon this 'instrument model', the
hierarchical command tree is developed as a second step. The programming commands, which
use the IEEE 488.2 syntax, are directly linked to the structured functionality of the 'instrument
model'; they are easy to learn and self-explanatory to both novice and expert users. The structured
approach of the instrument model did contribute a lot to achieve the primary goal: reducing
multiple ways to control the same functionality.

The VISA concept
The main benefit of the VISA concept is that it establishes a solid and rigid hard and software
environment for virtual instrumentation and allows end users to port their applications among
different tools. Within these tools, different types of functionality, dealing with instrument
control is distinguished, as is shown by figure 2.

Figure 2. Application layer functionality

The user interface
The way the user interacts with the application is called the 'user interface'. Such an interface can
be accomplished by:

• a virtual instrument, being created with one of the supplied tools. All kinds of objects are
available for visualization in a way that best suits the nature of the quantity to be
presented. To show measuring results and status information, meters, bars, plotter
functions, numeric displays, etc. are available. Also the outcome of processed results, like
trends, filtered waveforms, hystograms, etc. may be displayed by such objects. Objects,
like knobs, slides, switches, etc. provide input to the application and often interacts

directly with the instrument drivers. In this way a mechanism is created for intuitive
visualization of the application.

• a traditional application or user program which as a higher level software program calls
instrument driver functions to perform remote operations on the instruments.

Process and System functions
An application might need to process the outcome of the measurements, as for example, to
monitor the results, to alarm when specified limits are exceeded. Calculations, as domain
transformations by FFT algorithms, statistical analysis or calculating border limits are functions
which are commonly needed in major part of applications; they can be accessed via what is called
by VISA a 'subroutine interface".

Instrument drivers
An instrument driver basically is a piece of code, which is called from inside an application
program (programmatic developer interface), or by a virtual instrument (interactive developer
interface); they perform one or more specific remote controls to an instrument. The functionality
of the instrument driver is entirely determined by its designer and is deemed to do exactly what
the user needs for a particular application. This may vary from sending a simple command to the
instrument up to a complex high level test which operates on multiple instruments and uses
support libraries, for data analysis or domain transformation.

As a software support for their instruments, vendors may supply instrument drivers. Major part of
this type of drivers perform a simple control of a single function; they just send the command
needed to set the desired function.

For example, to set the voltage attenuation of a hypothetical instrument, the driver acea2111_set_volt_att(vi,a) might
be provided. In this example, the prefix 'acea2111' is entirely determined by the instrument manufacturer, except for
the first two characters. The two leading characters need to be approved by the VPP consortium who is responsible
for the VISA standard. This is to prevent that two different vendors use identical driver names for their instruments.
The prefix unambiguously identifies the manufacturer and model of the instrument. In the example given, 'acea'
would be the company name and '2111' the model number. The parameter vi is the instrument handler, which is
assigned to the instrument during initialization by the acea2111_init() procedure. The instrument handler 'vi'
uniquely identifies the instrument and is used by the drivers to refer to the particular instrument. Finally, the
parameter 'a' specifies the desired attenuation value.

In order to achieve the desired attenuation, all the driver has to do is sending the appropriate
command to the instrument, which in this case would be the SCPI command SENS:VOLT:ATT
<value>.

Low level I/O drivers
Instrument drivers acces the instruments by sending commands and retrieving results, using so
called 'low level I/O drivers'. Such drivers take care about the data transfer over a particular
interface platform, like GPIB, VXI, RS 232, etc. They just send or retrieve data from an address

at a particular interface platform and do not depend upon the type of instrument being connected
at the address. Hence they are instrument independent. Up to now, their naming and functionality
depended upon the vendor or the manufacturer of the interface card used.

It is the merit of the VPP consortium, that they have established a VISA standardized set of low
level I/O drivers which are independent upon the manufacturers of I/O driver and interface
boards. Furhtermore, the VISA I/O drivers calls do not distinguish between the interface
platforms being used. This is done by the instrument handle vi, which within the I/O driver
uniquely identifies the instruments on the particular interface platform. There are I/O procedures,
which are common to all platforms, like viWrite() and viRead(). Calls to this category of I/O
drivers do not distinguish between the interface platforms. Other procedures support functionality
which is provided by the interface platform only. The usage of this group of I/O drivers is
therefor limited to the particular platform only, like for example, viPeek() and viPoke() for VXI
register based instruments.

The VISA I/O drivers access the interface boards regardless their manufacturers. Therefor,
instrument drivers performing calls to these drivers are independent upon the vendor supplied
products; applications using VISA I/O drivers, can be ported among different environments.

The VISA Transition Library VTL

Figure 3. Survey of the structure of an instrument driver

Up to now, applications had to use vendor specific I/O drivers. These drivers mutually deferred
by name, parameters and functionality. In order to allow VISA I/O drivers to be used on a vendor
specific platform, a VISA Transition Library VTL to that platform is supplied. The VTL transfers
the VISA I/O driver calls to the vendor specific I/O driver or interface boards direclty.

Properties of instrument drivers
A property of instrument drivers is that they return information about the operational status. This
information can be warnings, error reports or just an "Ok" flag which signals that the driver has
properly executed. This property is certainly valuable for a number of applications, which have to

be setup quickly and where flexibility is needed. Such features cause a certain programming
overhead within the driver design itself, and therefor need more execution time. In order to tune
the system to the performance needs of an application, the end user has to modify the instrument
driver according to his own desires. If the driver itself uses a properly organized and hierarchical
command set and provides a well structured status reporting and error handling mechanism, like
IEEE 488.2 and SCPI compatible instruments do, this may not be a difficult job and easily to be
done. However, it will become a tedious and time consuming task if a vendor uses the supplied
instrument driver to hide the imperfections of the command set or the status and error reporting
structure. Therefor, end users have to take care about instrument's remote operating facilities at
the command level.

As said before, most instrument vendors will supply drivers for the control of single instrument
functions. More complex drivers need to be created by the end users themselves. For that purpose
the vendor supplied instrument drivers or utilize the low level VISA I/O drivers could be used.

It is said that the benefit of using instrument drivers is that the application programmer hasn't to
worry about the details of the instrument control and does not need to be aware about the
instrument command strings. Instead, he has to figure out which instrument driver is to be used to
perform the desired control. As can be easily seen from the example given before, instrument
driver names differ by manufacturer, model number and function.

For example, an instrument vendor called TMA, may name the driver to set the attenuation for the P4058 model
'tmap4058_config_atten()', which performs exactly the same functionality as the 'acea2111_set_volt_att()' driver.
Another example is when the company ACEA would introduce a new or another model 2211, and the user wants to
replace the existing 2211 model by the new model. In that case, the calls to the 'acea2111' drivers in his application
program are to be replaced by calls to the 'acea2211' driver, provided they offer identical functionality.

It has to be noticed that the VISA standard does not require drivers to perform identical
functionality. This type of standardization is entirely left to the instrument vendors. Therefor it
may occur also that drivers having similar names, perform slightly different functionality.

For example, the acea2211_set_volt_att() driver may set the DC attenuation, whereas the
acea2111_set_volt_att() driver relates to the AC attenuation, just because model 2111 is an AC
meter.

This comes to the conclusion that, although instrument drivers can have identical names, they
may perform a different functions. This is an observation, which may not be considered as a
criticism to the VPP consortium. This is merely a consortium of manufacturers of computer and
interface platform related products. Therefor, the scope and objective of the VISA standard is
limited to provide compatibility among the computer hard and software platforms.

Achieving compatibility among instrument functionality is a responsibility of instrument
manufacturers. For that purpose they established a consortium and created the SCPI standard.
Only using both the SCPI and VISA standard will result in the highest level of compatibility.
This is not only valid to end users, creating application programs, but also instrument
manufacturers may considerably benefit from the concepts.

Combining VISA and SCPI
Within application programs, instrument drivers may want to go beyond the complexity level
being established by the vendor provided functionality.

A first reason to do so is to gain more precise control over what the provided driver does. He
might want to customize the driver and modify to exactly do what he wants the driver to do,
diminishing overhead, or extend the standard functionality. For that purpose, the programmer
may use the existing vendor provided driver as a template and example of how to program the
instrument.

He might also go beyond the level of complexity of the standard provided instrument driver. This
is not only valid to create complex test setups for multiple instruments, but may also be needed
for more simple purposes, as for example, to resolve possible coupling conflicts as exist in a lot
of today's instruments. The next example shows how such a detail, which may look unimportant
may have annoying consequences for the design of a properly operating application program

A good example of a device coupling is a data acquisition with a total acquisition time Ts, consisting of Ns samples
with an interval time Ts. These parameters are mutually coupled by the equation Ts = Ns x Ts. When either
parameter is modified by a remote program message, another parameter has to change accordingly to satisfy the
coupling equation. Which parameter changes is entirely device dependent.

Assume a device whose initial settings being set to Ns = 500, Ts = 5s and Ts = 2,5 ms are to be altered to Ts = 1 ms
and Ts = 1 s. This devie is such designed that it changes the sample interval time Ts when the total acquisition time
Ts is programmed, meanwhile leaving the number of sample Ns unmodified. Similarly, when Ns is programmed, Ts
is changed (Ts unmodified) and when Ts is programmed, Ts is changed (Ns unmodified).

If first the total interval time Ts is programmed to 1 ms and next the sample interval time Ts to 1 s, the final result
would be Ns = 500, Ts = 1 s and Ts = 0,5 ms. If the programming would occur in the reverse order, the result would
be Ns = 500, Ts = 2 s and Ts = 1 ms.

This clearly shows that the desired result cannot be simply achieved by instrument drivers performing a single
control command. An unambiguous solution is neither possible with another design of the coupling relations. A
known solution to the coupling problem is to send both parameters of the coupled functionality within a single
terminated program messages, making use of the hierarchical syntax structure of the IEEE 488.2 standard. For that
purpose, the programmer has to create an instrument driver which handles both parameters within one command
string; furthermore, the instrument being controlled needs to be IEEE 488.2 compatibility.

A very good reason to go beyond the scope of a standard VISA driver is to provide an instrument
driver set which does not only provide compatibility among the computer hard and software
platforms, but also among instrument functionality.

As the examples already did show, VISA instrument drivers do achieve only half of this goal and
need to distinguish by vendor specific prefixes. From the view point of an application program,
this prefix is redundant. This is because the instrument handle vi, which is passed as a parameter
with every instrument driver call, already unambiguously identifies the instrument (manufacturer,
model, revision, interface platform, bus address, etc.) Therefor, an application program may want

to rely upon a set of instrument drivers which do neither depend upon its environment nor upon
the instrument manufacturer.

In order to establish compatibility among instruments, their functionality need to be defined.
Identifying common instrument functionality and defining corresponding remote control is
exactly what is achieved by the SCPI standard. Therefor, this standard provides an excellent
approach to create an instrument driver set which answers the intended purpose. Standard
instrument driver functionality can be identified by making use of the precisely defined, remote
control functionality of the SCPI commands, whereas the drivers can be named according to the
corresponding SCPI command headers.

The following SCPI command illustrates this.
The SENSe:VOLTage:ATTenuation <value> is used to program the voltage attenuation of the
sensor part of an data acquisition device. The corresponding generic instrument driver call would
be sens_volt_att(vi,a)' where the parameter 'vi' is the instrument handle and 'a' is the attenuation
value. Because SCPI commands are self explanatory, the intended purpose and meaning of the
corresponding instrument driver will be easy understandable.

Within the generic SCPI instrument driver, the instrument handle 'vi' is used to identify the
instrument to be controlled. Two approaches, as are shown in figure 4, are possible to actually
program the instrument:

• the vendor supplied instrument driver may be called. For example:

acea2211_sens_volt_att(vi,a)
tmax4058_config_atten(vi,a)

• the low level VISA I/O driver may be used, ignoring the vendor supplied driver. For
example:

viWrite(vi,C$) where C$="SENS:VOLT:ATT 3" for acea model 2211
viWrite(vi,C$) where C$="CONF:ATTEN3" for tma model x4058

Figure 4. Vendor independent Instrument driver structure

If vendor supplied instrument drivers are used, a status reporting concept is invoked,
which monitors for a proper execution and returns error messages and warnings. If this
would cause to much overhead, or and optimal performance is desired, the instruments are
to be directly programmed by using the VISA I/O drivers. Instruments which are SCPI
(and therefor IEEE 488.2) compatible are simply to program and provide a consistent
status reporting system which is easy to handle.

For vendors of SCPI compatible instruments, the definition and creation of instrument
drivers for their SCPI compatible instruments can easily be achieved. No additional driver
definition process is needed; just the manufacturer prefix is to precede the global SCPI
instrument driver name.

For example, to program the voltage attenuation of the data acquisition sensor of the acea
model 2211:

the command string is: sens:volt:att <value>
the vendor supplied instrument driver is: acea2211_sens_volt_att(vi,a)

the vendor supplied instrument driver is: acea2211_sens_volt_att(vi,a)
the SCPI instrument driver is: sens_volt_att(vi,a)

Conclusions
1. VISA instrument drivers guarantee a portability among computer

hardware/software environments and interface platforms, but do not provide
compatibility among instruments; a 'plug and play' of instrument functionality is
not provided

2. Application programmers will certainly benefit from the VISA concept, but:
� they still have to deal with a wide variety of the VISA instrument driver

names, where apart of the prefix, vendors supplied instrument drivers may
still use different names to control identical functionality. Instead of
worrying about the proper command strings, programmers now have to
figure out which instrument driver is to be used to perform the desired
function.

� If a functionality is needed which goes beyond the often limited control of
a vendor supplied instrument driver, he still needs to be familiar with all
details of the instrument programming commands.

3. SCPI (and IEEE 488.2) compatible instruments accommodate the creation and
customizing of instrument drivers and provide convenience to both instrument
manufacturer and the users of their products in several aspects:
� The consistent SCPI programming environment simplifies and reduces the

efforts to create instrument drivers.
� Because the SCPI concept:

� provides an easy understandable command set
� guarantees a well defined instrument behavior under all conditions,

preventing unexpected instrument behavior.
� maintains compatibility when new functionality is added,

it facilitates the creation and maintenance of a higher level of instrument
drivers and simplifies customizing vendor supplied instrument drivers to
optimally suit the needs of the application

4. The SCPI concept allows for the definition of a instrument drivers set, which:
� can be ported among several environments and does not depend upon the

instrument manufacturer or the vendor supplied instrument driver.
� reduces multiple ways to control identical functionality
� is self explanatory to both novice and expert users

5. In addition, instrument manufacturers of SCPI compatible instruments:
� will benefit because:

� their instrument command set is simply to map to their (vendor
supplied) instrument drivers.

� the functionality of the VISA required instrument drivers is based

upon the IEEE 488.2 common commands.
� will not only face an increased efficiency in the definition and creation of

their instrument drivers set, but similar benefits will be gained in the
design and maintenance of the instrument software itself. This is caused by
the fact that SCPI:
� considerably simplifies the definition process of the remote control

part of the instruments.
� allows to be expanded with new commands, meanwhile

maintaining backwards compatibility with previously defined
commands

� allows for the development of standard and re-usable software,
which can be ported among different types of instruments

About the author

Mr. John Pieper was awarded a Master’s Degree in Electrical Engineering from the
University of Delft, The Netherlands. He has many years of outstanding industry
experience and has been involved with the development of many test and measurement
instruments and software products for ATE systems.

Mr. Pieper participates in several international ATE standardization activities. He was a
member of Working Group 3 of IEC/TC65/SC65C (responsible for GPIB and related
standards) and is closely involved with the IEEE Instrumentation and Measurement
Society, TC8, responsible for IEEE 488.1, IEEE 488.2, and the new RS 232 based serial
instrument interface IEEE 1174. He actively cooperates with the sub committee UK951.1
of the German DKE - Deutsche Elektrotechnische Kommission - on interface
technologies.

Until recently he was the Vice President of the Board of Directors of the SCPI consortium
and a member of their Large Technical Committee. He now is the European SCPI contact
address.

Mr. Pieper is the Managing Director of ACEA, a company residing in Wierden, The
Netherlands, providing products, consulting services, educational training and
applications for Automatic Test and Measurement systems.

