The Agilent IntuiLink Arbitrary Waveform Editor application is an ActiveX document server. This application provides a graphical user interface (GUI) that allows you to *create, import, modify,* and *export* arbitrary waveforms, and to *send* these waveforms to the Agilent type 33120A, 33220A or 33250A Arbitrary Waveform (ARB) Generator instrument. The user interface is shown below with its main areas identified by numbers:

1. **Menu Bar** - provides standard Microsoft Windows style menus.
2. **Standard Toolbar** - provides toolbar buttons for such standard menu functions as Save, Cut, Paste, and Print.
3. **Waveform Toolbar** - provides toolbar buttons for the arbitrary waveform Creation and Edit functions. In particular, these buttons allow you to Add waveform segments to the active waveform edit window.
4. **Waveform Edit Windows** - each of these windows allows you to *create, edit,* and *display* an arbitrary waveform. (Waveform *defaults* – see: Appendix A.) The contents of the active waveform edit window can be *sent* to an Agilent ARB Generator.
5. **Status Bar** - displays messages about the following:
 - General status messages.
 - The current mode.
 - In Select mode, the start and end positions and number of points selected.
 - In Marker mode:
 - When an X marker is being moved, the positions of both X markers and the difference between them.
 - When a Y marker is being moved, the positions of both Y markers and the difference between them.
 - In Freehand or Line Draw mode, the cursor position and the length of the waveform.
 - The *address* of an arbitrary waveform generator (for example: GPIB0::10::INSTR) if one is *connected,* or else Disconnected.

Let's look at each of these numbered areas in turn.

1. **Menu Bar** - provides standard Microsoft Windows style menus.
2. **Standard Toolbar** - provides toolbar buttons for such standard menu functions as Save, Cut, Paste, and Print.
3. **Waveform Toolbar** - provides toolbar buttons for the arbitrary waveform Creation and Edit functions. In particular, these buttons allow you to Add waveform segments to the active waveform edit window.
4. **Waveform Edit Windows** - each of these windows allows you to *create, edit,* and *display* an arbitrary waveform. (Waveform *defaults* – see: Appendix A.) The contents of the active waveform edit window can be *sent* to an Agilent ARB Generator.
5. **Status Bar** - displays messages about the following:
 - General status messages.
 - The current mode.
 - In Select mode, the start and end positions and number of points selected.
 - In Marker mode:
 - When an X marker is being moved, the positions of both X markers and the difference between them.
 - When a Y marker is being moved, the positions of both Y markers and the difference between them.
 - In Freehand or Line Draw mode, the cursor position and the length of the waveform.
 - The *address* of an arbitrary waveform generator (for example: GPIB0::10::INSTR) if one is *connected,* or else Disconnected.
Connecting to Instrument:

From **Communications menu** select Connection …

- Make sure that your Instrument is physically connected to your computer and turned ON.
- In the **Connection Dialog** highlight the address from the Select Address and click Identify Instrument. (Or double-click to perform Identify task.) The instrument type, name and address appear. Highlight the instrument that you wish to connect and click Connect. (Or double-click to Connect to it.)

- A green icon appears to the left of instrument that is connected.
- Once you have established a connection, click OK. Waveform Editor will **remember** the connection for any future sessions. If the instrument I/O address is changed, be sure to reset the connection.

You are now ready to send waveform to the instrument.

Configuration of Waveform Edit Window parameters:

See – **Appendix A**.
About arbitrary waveforms

For most applications, it is not necessary to create an arbitrary waveform with a specific number of points since the 33220A ARB generator will repeat points (or interpolate) as necessary to fill waveform memory.

For *standard* waveforms, and arbitrary waveforms that are defined with fewer than 16,384 (16K) points, the function generator uses waveform memory that is 16K words deep. For *arbitrary* waveforms that are defined with more than 16K points, the function generator uses waveform memory that is 65,536 (64K) words deep.

The 33220A represents amplitude values by 16,384 discrete voltage levels (or 14-bit vertical resolution). The specified waveform data is divided into *samples* such that one waveform cycle exactly fills waveform memory. If you create an arbitrary waveform that does not contain exactly 16K or 64K points, the waveform is automatically “stretched” by repeating points or by interpolating between existing points as needed to fill waveform memory.

For the 33220A, you do not have to change the length of the waveform to change its output frequency.

All you have to do is create a waveform of any length and then adjust the function generator’s output frequency. However, in order to get the best results (and minimize voltage quantization errors), it is recommended that you use the full range of the waveform DAC: from –1 to +1 relative amplitude (or 0 to 16381 [14-bit] DAC codes).

Remember, if you create an arbitrary waveform that includes three cycles of a waveshape (for example), the output frequency will be three times the value displayed on the function generator’s front panel.

When creating arbitrary waveforms, the function generator will always attempt to replicate the finite-length time record to produce a periodic version of the data in waveform memory. However, as shown below, it is possible that the shape and phase of a signal may be such that a transient is introduced at the end point. When the waveshape is repeated for all time, this end-point transient will introduce leakage error in the frequency domain because many spectral terms are required to describe the discontinuity.

Leakage error is caused when the waveform record does not include an integer number of cycles of the fundamental frequency. Power from the fundamental frequency, and its harmonics, is transferred to spectral components of the rectangular sampling function. Instead of the expected narrow spectral lines, leakage can cause significant spreading around the desired spectral peaks. You can reduce leakage errors by adjusting the *window* length to include an integer number of cycles or by including more cycles within the window to reduce the residual end-point transient size.

Some signals are composed of discrete, non-harmonically related frequencies. Since these signals are non-repetitive, all frequency components cannot be harmonically related to the window length. You should be careful in these situations to minimize end-point discontinuities and spectral leakage.
About signal imperfections

33220A type ARB generator (14-bit, 50 MSa/s, 64K [or 16K] points) ¹

For sine waveforms, signal imperfections are easiest to describe and observe in the frequency domain using a spectrum analyzer. Any component of the output signal, which has a different frequency than the fundamental (or “carrier”) is considered to be spurious. The signal imperfections can be categorized as harmonic, non-harmonic, or phase noise and are specified in “decibels relative to the carrier level” or “dBc”.

Harmonic Imperfections Harmonic components always appear at multiples of the fundamental frequency and are created by non-linearities in the waveform DAC and other elements of the signal path.

Non-Harmonic Imperfections The biggest source of non-harmonic spurious components (called “spurs”) is the waveform DAC. Nonlinearity in the DAC leads to harmonics that are aliased, or “folded back”, into the passband of the function generator. These spurs are most significant when there is a simple fractional relationship between the signal frequency and the function generator’s sampling frequency (50 MHz).

For example, at 15 MHz, the DAC produces harmonics at 30 MHz and 45 MHz. These harmonics, which are 20 MHz and 5 MHz from the function generator’s 50 MHz sampling frequency, will appear as spurs at 20 MHz and 5 MHz.

Another source of non-harmonic spurs is the coupling of unrelated signal sources (such as the microprocessor clock) into the output signal. These spurs usually have a constant amplitude (< -75 dBm or 112 µVpp) regardless of the signal’s amplitude and are most troublesome at signal amplitudes below 100 mVpp. To obtain low amplitudes with minimum spurious content, keep the function generator’s output level relatively high and use an external attenuator if possible.

Phase Noise Phase noise results from small, instantaneous changes in the output frequency (“jitter”). It is seen as an elevation of the apparent noise floor near the fundamental frequency and increases at 6 dBc / octave with the carrier frequency. The 33220A’s phase noise specification represents the amplitude of the noise in a 1 Hz bandwidth, 10 kHz away from a 20-MHz carrier (-115 dBc/Hz, typical).

Quantization Errors Finite DAC resolution (14 bits) leads to voltage quantization errors. Assuming the errors are uniformly distributed over a range of ±0.5 least-significant bit (LSB), the equivalent noise level is -86 dBc for a sine wave that uses the full DAC range (16,384 levels). Similarly, finite-length waveform memory leads to phase quantization errors. Treating these errors as low-level phase modulation and assuming a uniform distribution over a range of ±0.5 LSB, the equivalent noise level is -76 dBc for a sine wave that is 16K samples long. All of the 33220A’s standard waveforms use the entire DAC range and are 16K samples in length. Any arbitrary waveforms that use less than the entire DAC range, or that are specified with fewer than 16,384 points, will exhibit proportionally higher relative quantization errors. (Note: arbitrary waveform length 2 to 64K points.)

With the 33220A, you can output an arbitrary waveform to an upper frequency limit of 6 MHz. However, note that the useful upper limit is usually less due to the function generator’s bandwidth limitation and aliasing. Waveform components above the function generator’s -3 dB bandwidth will be attenuated.

¹ Signal imperfection for 33120A type ARB generator – see Appendix B.
About on-line help

The Waveform Editor **Help** provides the following help books in the table of contents:

- **Introduction** to the Waveform Editor provides a short introduction to the waveform editor application.
- **Using** the Waveform Editor provides task-oriented how-to topics on how to use the waveform editor.
- Waveform Editor **Reference** provides a reference topic for each waveform editor command or dialog box.

Note: Certain standard dialog boxes such as **Communication** | Connection or Send; **Math** | Filter | Low Pass; **Math** | Waveform Math; **Tools** | FIR Filter etc. have a help. Click on this button, and then click on the area of interest in the dialog box to obtain help for these dialog boxes.
Creating and editing waveforms:

Inserting a segment

You can insert standard waveform segments using the waveform toolbar icons. When you click the desired icon the segment is inserted (with its default parameters) in the active waveform edit window.

To change the parameters (or waveform) of an existing segment, double-click on the segment and **Segment Parameters** dialog box appears.

You can insert standard waveform segments using the menu (**Edit** | Insert Segment) and the Segment Parameters dialog box.

You can continue to insert segments to an existing waveform, provided there is room in the edit window for the segment to be inserted. Segments are always inserted on the right side of the waveform.
Drawing an Arbitrary Waveform

Freehand mode allows you to draw any shape that you want, while Line Draw mode allows you to draw a series of straight lines. Both Freehand and Line Draw mode may be used anywhere within the window, except where a standard segment has been inserted. If the window already contains a waveform segment, the drawing will start at the right edge of that segment.

Selecting (i.e. highlighting) waveform data

You can select all or a portion of a waveform as described below.

> **Note:** Once you have selected the waveform data, you can operate on the data with one of the **Math** menu functions, or with **Cut**, **Copy**, or **Paste** in the **Edit** menu.

1. To select a standard waveform segment within the waveform:
 - Click on the small blue triangle above the waveform segment.
 - Or, double-click anywhere within the waveform segment.
2. To select the entire waveform:
 - In the **Edit** menu (or after right mouse click within waveform window), click on Select All.
3. To select a portion of the waveform:
 - If you are not already in Select mode, click on the icon in the toolbar (or from the **Edit** menu click on Select).
 - Click the left mouse button at the start of the desired portion of the waveform, drag, and release the mouse button when the desired area is highlighted. (You can drag either left-to-right or right-to-left.)

Using Markers (click on the icon)

Markers can be used as guides for freehand or line drawing, or to specify an area of a waveform to be clipped.

In **Marker** mode, when you move an X marker, the X marker positions are shown in the status bar. When you move a Y marker, the Y marker positions are shown in the status bar.

Use Pin Markers to define an area where you can perform freehand or line drawing over standard segments. You can draw only in the area defined within the pinned X and Y markers. (Note that any potential discontinuities at the ends of the freehand area are automatically corrected with straight lines connecting to the original waveform.)

The pinned markers change color and the handles disappear. You cannot move markers that are pinned.

Clipping a Waveform: The Clip math function clips the selected waveform data to the specified Y values. Position the markers to the desired clipping values (click and drag the triangular handles at the left end of the markers), select the portion of the waveform, then Clip the waveform (from the **Math** menu select Clip) to the values specified by the pinned Y markers.
Zoom using a ‘magnifying glass’

Allows you to zoom into a specified area of the waveform edit window. Select Zoom to turn zoom mode on. The cursor changes to a magnifying glass.

The zoom locator box in the Thumbnail View window outlines the portion of the waveform currently displayed in the waveform edit window. This box changes as you zoom in and out and can be moved by clicking and dragging it.

Sample Files

Use File | Open … or click the File Open icon to open these files. Once open, the waveform can be edited, inserted, or copied.

Importing waveform from Scope

See: Tools | Import Waveform (Agilent 546xx Scope)
Performing waveform Math

The Math menu contains several math functions to be performed on waveforms. The first three (add, sub, and mult) combine two operands (point-by-point) while the remaining functions performed on a single operand.

Note: The first waveform is the waveform or portion of a waveform that you have selected (i.e. highlighted) in the active waveform edit window. The second waveform is either a standard waveform or a waveform that has been copied to the clipboard.

The Windowing or the Low Pass filter function always applies to the entire waveform, whether or not the waveform or a portion of it has been selected.

The Extended Cosine, Raised Cosine, and Hamming windowing functions can be used to correct for distorted spectral information where there are discontinuities at the end point of the window, or when the frequency components of the waveform are not harmonically related to the window length. (More filter … Tools | FIR Filter.)

By default, the Smoothing filter performs a 7-point moving average. However, you can change the number of points from the Properties dialog box (from the File menu, select Properties).

Example:

More Math … Tools | Equation Calculator; Tools | Pulse Maker.
Send Arbitrary Waveform:

Click on the icon in the waveform toolbar (or select the ‘Send Waveform …’ command from the Communications menu) to display the Send Arbitrary Waveform dialog box.

Note:
If you click on the icon or ‘Send Waveform …’ command when no instrument is connected, the Connection dialog box appears. (See Connecting to Instrument.) Once a connection has been established, the Send Arbitrary Waveform dialog box appears.

The dialog box provides two tab pages.

Manage Waveforms Tab:
Activate or delete the waveforms currently in the instrument’s memory.

![Send Arbitrary Waveform dialog box]

Waveforms on the Instrument:
Lists the available waveforms stored on the instrument.
- To activate one of the waveforms, select its name and click on the Activate button.
- To delete one of the non-permanent waveforms from the instrument, select its name and click on the Delete button.

Permanent, built-in waveforms are indicated with an asterisk (*) preceding the name. These waveforms cannot be deleted from the instrument. Also, you cannot delete the currently active waveform. (To get around this, activate a different waveform and then select the one that you want to delete.)
Send Waveform Tab:
Specify parameters and then send (download) of the contents of the active waveform edit window to previously connected instrument.

Waveform Parameters:
- Frequency (kHz): The function generator repeat-frequency.
- Amplitude (Vp-p): The peak-to-peak amplitude of the repeating waveform.
- Offset (Vdc): The dc offset to the waveform.

Reset Parameters:
Click on Reset to restore the selected parameters:
- Defaults for Waveform: The default parameters saved with the waveform in the file.
- Current from Instrument: The current parameters retrieved from the instrument.

Waveform Location on Instrument:
- Volatile Memory: Save the waveform in the instrument's volatile memory.
- Memory Name: Save the waveform in the named location on the instrument.

Send to Instrument:
- Waveform and Parameters: Send the waveform and its parameters.
- Waveform Parameters Only: Send only the parameters to save time when the waveform has already been sent.

Once you have specified all the parameters, click on Send to send the waveform to the instrument. A message is then displayed with an estimated time to complete the send operation. (Click OK.)
Supported Data File Formats:

The Agilent IntuiLink Arbitrary Waveform Editor supports several data file formats, which are listed below.
Data files can be saved with the Save and Save As commands, and opened with the Open command from the File menu.

1. **Waveform (.WVF) File Format.** This is the default format used for arbitrary waveform files saved using the waveform editor.

2. **Comma-Separated Values (.CSV) File Format.** This format uses the comma as the delimiter between columns, and a carriage-return/line-feed to terminate each row.
 - The waveform editor reads .CSV files from Microsoft Excel and other applications. The waveform editor reads the last column containing data as the waveform data column to be compatible with Agilent BenchLink Arb and most other applications including Excel.
 - The waveform editor saves .CSV files in a special format, shown below in an Excel spreadsheet:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data</td>
<td>Name</td>
<td>Freq (kHz)</td>
<td>Ampl (VPP)</td>
<td>Offset (VDC)</td>
<td>Points</td>
</tr>
<tr>
<td>2</td>
<td>0.315166</td>
<td>VOLATILE</td>
<td>2</td>
<td>0.5</td>
<td>0.2</td>
<td>13577</td>
</tr>
<tr>
<td>3</td>
<td>-0.1919</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-0.9704</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.0049</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.9363</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.2413</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.0164</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.6583</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.717</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Row 1 is used to store the column headers. The waveform data points are saved in the column A, which may be several thousand points in length. Succeeding columns are used to store the waveform parameters. In our example, columns B through F store the name, frequency, amplitude, offset, and number of points in the waveform.

Note:
The .CSV file format supports only the US English number format, with periods used as decimal points. This is because the comma is used as the delimiter. (See Appendix D.)

3. **Text (.TXT) File Format.** This format puts all of the data points in a single column, with a carriage-return/line-feed after each value.
If you read the file into Excel, the data points will be in column A, and that column may be several thousand points in length. This format can be used with localized number formats (for example, using the comma as the decimal point).
4. **Text (.PRN)** File Format. This format puts all of the data points in a single row, using the space as the delimiter between data points. If you read the file into Excel, the data points will be in row number 1, and that row may be several thousand points in width. This format can be used with localized number formats (for example, using the comma as the decimal point).

5. **Picture (.BMP)** File Format (**Save Only**). You can save a raster representation of your waveform in a Windows Bitmap (.BMP) file. This makes it convenient to include a picture of your waveform in Microsoft Word or other applications. However, this picture no longer consists of waveform data. You cannot open a .BMP file in the waveform editor, and you will need to save your waveform data in one of the other supported formats.

(Note: There is also a waveform setup file format (.WFG), which is used to save the current instrument setup for type 33250A ARB generator: File | Save, Load ...)

Printing waveforms:

Click on the icon to output a printout using the current configuration. From the File menu select either Print or Print Preview to display the Print dialog box. This dialog box provides two tabs: the Preview tab shows what your printout will look like with the current layout; go to the Page Layout tab page to change the layout.
Tools:

Tools | Import Waveform (Agilent 54622A Scope)

From the Tools menu, select **Import Waveform** (Agilent 546xx Scope) to display dialog box. The dialog box provides two tab pages. From the **Waveform tab** page you can specify parameters for importing a waveform. From the **Connect to Oscilloscope tab** page you can establish a connection to your oscilloscope.

Waveform Tab:
- Currently Connected Oscilloscope: Shows the address of the currently connected oscilloscope.
 - If no scope is connected, go to the **Connect to Oscilloscope tab**.
- Channel: Specify the oscilloscope channel to import.
- Number of Points (Agilent 546xx only): Specify the number of points to import.

Connect to Oscilloscope Tab:
- The Oscilloscope Address is shown. To connect an oscilloscope, click on the Connect to Oscilloscope button. The **Connection Dialog** box appears.
Tools | Equation Calculator

Creates noise waveforms (see: next page) or waveform from mathematical expressions (see: Appendix E). Use the View page to verify that you’ve built the waveform you want.

Select Waveform
In the Selection tab, select the number of points required and select either Equation to create a waveform from an equation, or select one of the noise types available.

Maximum and Minimum value
The minimum and maximum value can be either 0 to 1, -1 to 0 or -1 to 1. When selecting -1 to 1, the zero value is preserved and only one polarity may have a minimum of -1 or 1.

White uniform noise
Creates noise whose amplitude is equally distributed.

White normal noise
Noise whose amplitude is normally distributed.

Pink noise
Noise with a flat frequency distribution. The noise falls off in frequency at 10dB/decade.

Random Walk
Noise where each subsequent point is created by adding a random number to the previous point.

Brown noise
Same as Random Walk, except that the end point is forced to zero by avoiding a step at the end of the data set. Frequency falls off at 20dB/decade.

View Waveform
You preview the waveform by selecting the View tab.

Selected point
You can select the y-axis value and the corresponding amplitude on the line graph by clicking once. If you select more than one point, the points are connected by a line.

Fourier Transform
Select FFT or right-click on the chart to create a simple plot of the frequency domain. A dialog will pop up. Enter the highest required frequency on the frequency plot. The higher the frequency, the longer the computation will take.

Copy
Right-click on the chart to copy the data and a picture of the waveform or the Fourier transform to the clipboard. You can then paste the data into Excel or Word. Use Paste Special... to paste the picture.

Click on OK to transfer the waveform to the Waveform Editor.
Examples: “colors of noise”

Many tests of electronic equipment and components use white noise, pink noise or Brown noise. The figures show the four types of noise plotted and Fourier transformed with Equation Calculator (4000 points).

[Graphs of uniform, white noise, normal (Gaussian), white noise, pink, $1/f$ (-10dB/decade), and Brown, $1/f^2$ (-20dB/decade).]

W. Haussmann: Create noise and signals with software
Tools | Pulse Maker

Creates pulse waveforms with variable rise/fall time. The shapes for the rise/fall times can be Linear, Exponential, Half-Cosine or Gaussian.
Intended for use with slow (> 100 nsec) rise/fall times.

Note: after saving in a file, you can export (download) the pulse waveform with ‘Reset parameters’ in ‘Send waveform’ tab to ‘Default for Waveform’.

papay@hit.bme.hu

IntuiLink: Waveform Editor (ARB generator)
Tools | FIR Filter

FIR filter Tool requires data in the active waveform edit window! When you click OK in any tab, the tool will apply the selected (Kaiser or moving-average) filter to the data and then plot the filtered waveform.

W. Haussmann: Filter your data in software
Appendix:

(A) Parameters for all Waveform editor Windows: File | Properties …

33120A type ARB generator: 16K points and 12 bits resolution

33220A type ARB generator: 64K (or 16K) points and **14 bits resolution**

33250A type ARB generator: 64K points and 12 bits resolution
Most signal imperfections are easiest to observe in the frequency domain using a spectrum analyzer. Sampling theory predicts the location and size of spurious signals resulting from the sampling processes used by DDS generators.

In fact, since DDS generators use a fixed sampling rate (40 MHz for the 33120A), spurious signals can be removed with a fixed frequency “anti-alias” filter. A 17 MHz, ninth-order elliptical filter providing a sharp cut-off (in excess of 60 dB attenuation for signals greater than 19 MHz) is used for sine wave outputs. A 10 MHz, seventh-order Bessel filter is used for non-sine wave outputs. The Bessel filter provides slower amplitude roll-off for anti-alias filtering, but maintains linear phase response to minimize shape distortion for complex waveshapes. The 33120A automatically selects the appropriate filter when the output function is selected.

All digital-to-analog converters (DACs), including those used in DDS generators, produce spurious signals resulting from non-ideal performance. These spurious signals are harmonically related to the desired output signal. At lower frequencies, the 33120A’s 12-bit waveform DAC produces spurious signals near the -74 dBc level (decibels below the carrier or output signal). The 33120A uses the complete vertical resolution (N=1) of the DAC for all internal waveshapes, thus minimizing amplitude quantization error.

At higher output frequencies, additional DAC errors produce non-harmonic spurious outputs. These are signals “folded back” or aliased to a frequency within the signal bandwidth. A “perfect” DAC will also produce a wideband noise floor due to amplitude quantization. The noise floor for a 12-bit DAC will be near the -74 dBc level; this corresponds to a noise density of -147 dBc/Hz for sine wave outputs from the 33120A.

Another type of waveform error visible in the frequency domain is phase truncation error. This error results from time quantization of the output waveform. Whenever a waveshape is described by a finite number of horizontal points (length), it has been sampled in time (or quantized) causing a phase truncation error. Spurious signals caused by phase truncation introduce jitter into the output waveform. This may be regarded as time (and phase) displacement of output zero crossings.

Phase truncation causes phase modulation of the output signal which results in spurious harmonics (see the equation below). For lower output frequencies, the phase accumulator periodically does not advance RAM addresses, causing the DAC to deliver the same voltage as recorded on the previous clock cycle. Therefore, the phase “slips” back by 360°/points before continuing to move forward again. When RAM address increments are the same on each cycle of the output, phase truncation error (and jitter) are essentially zero. All standard waveshapes in the 33120A are generated with at least 16,000 waveform points which results in spurious signals below the wideband noise floor of the DAC.

\[
\text{Phase Truncation Harmonics} \leq -20 \times \log_{10}(P) \text{ dBc}
\]

where “P” is the number of waveform points in RAM.

2 The noise power is normalized to a 1 Hz bandwidth by simply subtracting

\[10 \cdot \log(f_{sample}/2) = 10 \cdot \log(40 \cdot 10^6 / 2) = 73\] from the SNR value.
(C) Sample files:

<table>
<thead>
<tr>
<th>File name</th>
<th>Description</th>
<th>Size (N" of points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dtmf_0.csv</td>
<td>Telephone Dual Tone Multi-Frequency (DTMF) Signal – Key 0 (really: Key *) Send: 10 Hz</td>
<td>8K</td>
</tr>
<tr>
<td>Dtmf_9.csv</td>
<td>Telephone Dual Tone Multi-Frequency (DTMF) Signal – Key 9 Send: 10 Hz</td>
<td>8K</td>
</tr>
<tr>
<td>Full_rec.csv</td>
<td>Full wave rectified sine wave</td>
<td>8K</td>
</tr>
<tr>
<td>Gaussian.csv</td>
<td>Gaussian pulse created in Mathcad and imported</td>
<td>8K</td>
</tr>
<tr>
<td>Half_rec.csv</td>
<td>Half-wave rectified sine wave</td>
<td>8K</td>
</tr>
<tr>
<td>Hc_Gate.csv</td>
<td>74HC family digital signal, captured and imported from HP BenchLink/Scope</td>
<td>4K</td>
</tr>
<tr>
<td>NoiseSine.csv</td>
<td>Sine wave with high frequency noise added</td>
<td>8K</td>
</tr>
<tr>
<td>nonlin_1.csv</td>
<td>Sine wave with third harmonic distortion (Fourier synthesis)</td>
<td>8K</td>
</tr>
<tr>
<td>Pk_spike.csv</td>
<td>Sine wave with spike added to each peak</td>
<td>8K</td>
</tr>
<tr>
<td>Psk.csv</td>
<td>Phase Shift Keying modulated signal</td>
<td>8K</td>
</tr>
<tr>
<td>Pulse_10.csv</td>
<td>10 level sine wave approximation</td>
<td>8K</td>
</tr>
<tr>
<td>Ring.csv</td>
<td>Square wave with ringing (Fourier synthesis)</td>
<td>4K</td>
</tr>
<tr>
<td>Scr.csv</td>
<td>Quarter cycle SCR signal</td>
<td>8K</td>
</tr>
<tr>
<td>Serial.csv</td>
<td>11-bit frame of serial data</td>
<td>4K</td>
</tr>
<tr>
<td>Sm_duty.csv</td>
<td>0.1% duty cycle square wave signal</td>
<td>4K</td>
</tr>
<tr>
<td>Stair.csv</td>
<td>10 step staircase ramp signal</td>
<td>8K</td>
</tr>
<tr>
<td>Trapazd.csv</td>
<td>Trapezoidal pulse **</td>
<td>4K</td>
</tr>
<tr>
<td>TwoTone.csv</td>
<td>Two tone signal for intermodulation test</td>
<td>8K</td>
</tr>
</tbody>
</table>

** Example: if you cut the last 1K points from a ‘Trapazd’ segment, you get a 50% duty cycle trapezoidal pulse series with the following spectrum:

```
<table>
<thead>
<tr>
<th>k</th>
<th>dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>-13.1</td>
</tr>
<tr>
<td>5</td>
<td>-28</td>
</tr>
<tr>
<td>7</td>
<td>-33.8</td>
</tr>
<tr>
<td>9</td>
<td>-32.1</td>
</tr>
<tr>
<td>11</td>
<td>-41.7</td>
</tr>
<tr>
<td>13</td>
<td>-44.6</td>
</tr>
<tr>
<td>15</td>
<td>-41</td>
</tr>
<tr>
<td>17</td>
<td>-49.2</td>
</tr>
</tbody>
</table>
```

Send (download): 1 kHz

Oscilloscope **screen image** with IntuiLink Toolbar (for Word):

IntuiLink: Waveform Editor (ARB generator)
(D) Exporting waveform to Excel:

If you want to export waveform data from the waveform editor to Microsoft Excel, you can save the data as a .CSV file. Follow these steps:
1. Create and edit the waveform to be saved.
2. From the File menu, select Save As. The Save Waveform As dialog box appears:
 a. Enter a name in the File Name field.
 b. For Save as Type, select CSV (comma delimited) (*.CSV).
 c. Click on Save to save the file. The .CSV extension is appended to your file name automatically.
3. The file is now saved as a .CSV file, and can be read into Microsoft Excel.

Note:
The .CSV file format uses the comma as the delimiter. Therefore, the European localized number format cannot be used, with commas as the decimal point. However, the waveform editor also can export files in the .TXT file format, which does support localized number formats (see Supported Data File Formats).
(E) Waveform: Equation
(Amplitude: -1 to +1, Total number of points: 4000)

Operator menu: +, -, *, /, ^ (raise to the power), (,) – parentheses, pi (3.1416),
t (time 0-1), w (2*pi*t), var (variable), 1 = .1E1 – numerals

Function menu:
Abs(), ArcTan(), Cos(), Exp(), Fact(), Ln()
Noise(1) uniform, Noise(10) normal
Point(), Sin(), Sqrt(), Step(), Tan()

Sample menu:

Step, rise: Step(t-.5)
Step, fall: Step(.5-t)

Step at point 1000: Step(t-Point(1000))

Pulse 20% duty cycle: Step(var)*Step(0.2-var) var = t-.5

Pulse negative: Step(var)+step(-(var+.2)) var = .5-t

Pulse train: Step(Sin(5*w)), pulse frequency: 5

Sine, one cycle: Sin(w) or Sine, alternate: Sin(2*pi*t)

Sine, 2 cycles: Sin(2*w)

Sine, 45deg offset: Sin(w-pi/4)
Sine, burst: \(\text{Step}(\text{var}) \cdot \text{Step}(1/10-\text{var}) \cdot \sin(10 \cdot 2\pi \cdot \text{var}) \)
\(\text{var} = t - .4 \)

Sine, burst 3 cycles: \(\text{Step}(\text{var}) \cdot \text{Step}(3/10-\text{var}) \cdot \sin(10 \cdot 2\pi \cdot \text{var}) \)
\(\text{var} = t - .4 \)

Noise(5): the argument “5” tells Equation Calculator to take the average of five random values and use the result for the value of the noise() function. Note: averaging a random set of numbers produces a Gaussian distribution, which produces a more realistic noise signal than pure white noise.

Sine with noise burst: \(\sin(w) + \text{Step}(.01+\text{var}) \cdot \text{Step}(.01-\text{var}) \cdot \text{Noise}(5) \)
\(\text{var} = t - .25 \)

Sine(x)/x: \(\sin(5w)/w \)

Impulse: \(\sin(25\cdot\text{var})/\text{var} \) \(\text{var} = 2\pi*(t-.5) \)

Impulse, windowed: \((1-\cos(w)) \cdot \sin(25\cdot\text{var})/\text{var} \) \(\text{var} = 2\pi*(t-.5) \)

Ramp: \(t \)
Ramp, negative: \(.5-t \)

Ramp, partial: \(\text{Step}(\text{var}) \cdot \text{Step}(.3-\text{var}) \cdot \text{var} \) \(\text{var} = t - .2 \)
Exponential, decay: \(\text{Exp}(-5t) \)

Exp, rise: \(1 - \text{Exp}(-5t) \)

Damped Sine: \(\text{Exp}(-5t) \cdot \sin(10w) \)

Gaussian: \(\text{Exp}(-.5((t-.5)/.1)^2) \)

Ringing square wave:
\[
\text{Step}(-\text{var})(.2\text{Exp}(-15t)\cos(50w)+1)-\text{Step}(\text{var})(.2\text{Exp}(-15(\text{var}))\cos(50*2\pi(\text{var}))+1)
\]
\(\text{var} = t-.5 \)

Modulation, AM: \(\sin(20w)(1+0.75\cos(2w)) \)

Modulation, frequ.: \(\sin(20w+10/2\cos(2w)) \)

Modulation, phase: \(\sin(20w+\pi\sin(2w)) \)

Modulation, pulse width:
\[
\text{step}((\sin(20w+\text{var}\cos(1w)))(\sin(20w+\text{var}\sin(1w))))
\]
\(\text{var} = \pi/2 \)

Rectified, full wave: \(\text{Abs}(\sin(3w)) \)
Rectified, half wave: $0.5 \times (\text{Abs(var)} - \text{var}) \quad \text{var} = \sin(3 \times \text{w})$

Window, extended cosine bell: $2 - (1 + \cos(5 \times \text{w})) \times (\text{step}(0.1 - \text{t}) + \text{step}(\text{t} - 0.9))$

Window, half cycle sine: $\sin(0.5 \times \text{w})$

Window, Triangle: $0.5 + \text{var} \times \text{Step}(-\text{var}) - \text{var} \times \text{step}(\text{var}) \quad \text{var} = \text{t} - 0.5$

Window, Hanning: $1 - \cos(\text{w})$

Window, half cycle sine^3: $\sin(0.5 \times \text{w})^3$

Window, Hamming: $0.08 + 0.46 \times (1 - \cos(\text{w}))$

Window, Cosine^4: $(0.5 \times (1 - \cos(\text{w})))^4$

Window, Parzen:

\[
\text{Step(var)} \times \text{Step}(-0.5 - \text{var}) \times (1 - 6 \times (2 \times \text{t} - 1)) \times 2 \times \text{abs}(2 \times \text{t} - 1) \times 3 \times (1 - \text{abs}(2 \times \text{t} - 1))^3 \times \text{step}(-\text{var} - \text{point}(1)) + \text{step}(\text{var} - 0.5 - \text{point}(1))
\]

$\text{var} = \text{t} - 0.25$
Examples:

Lorentz pulse: \(\frac{1}{1+((t-0.5)/0.1)^2} \)

Sine\(^3\): \(\sin(w)^3 \)

PAM (pulse amplitude modulation): \(t \cdot \text{step}(\sin(7w)) \)

Sine amplitude sweep: \(t \cdot \sin(7w) \)

Linear frequency sweep: \(\sin(10w + \pi (20-10)/0.5t^2) \)

Logarithmic frequency sweep:
\[
\sin(2\pi(10/var)(\exp(var*t)-1)) \quad \text{var} = \ln(20/10)/0.5
\]

Multi-tone: \(\cos(w) + \cos(2w) + \cos(3w) \)

Test signal (bandwidth limited square wave):
\(\sin(w) + 0.24\sin(3w) + 0.07\sin(5w) + 0.0125\sin(7w) \)
Combined sine and straight line: $\sin(1E1*w) - 2*t$

Fourier transform:
Modulation: $\sin(w)\cos(3E1*w)$

Fourier transform:
100 cycles of sine Amplitude Modulated with 10 cycles of sine with a modulation depth of 20% (note: upper and lower sidebands are defined separately and added to the carrier): $\sin(1E2*w) + .2\cos(1.1E2*w) - .2\cos(.9E2*w)$

Fourier transform:
FM broadcast stereo composite signal: left channel, sine, 1 kHz
$0.5*\sin(w) + 0.1*\sin(19*w) + 0.25*\sin(37*w+\pi/2) + 0.25*\sin(39*w-\pi/2)$

20% second harmonic distortion: $\sin(w) + .2*\sin(2*w)$

Disturbance on an AC waveform (note: the disturbance is decayed 400Hz sine on a 50Hz signal): $1.2*\exp(-t/.13)*\sin(400/50*w) + \sin(w)$

Chopped sinewave: $\sin(w)*\text{step}(\sin(10*w))$