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Abstract – Spurious performance of direct digital synthesis (DDS)
is partly caused by two quantization operations in its numerical
(i.e. digital) part. These errors are deterministic and periodic in the
time domain, therefore they appear as line spectra (undesired
components: spurs) in the frequency domain. Hence it is quite
natural to analyze the effects by DFT (discrete Fourier transform).
The amplitude quantization (AQ), being present permanently,
causes harmonically related spurs, while phase truncation (PT)
produces spurs around the output frequency by phase modulation.
However, as a consequence of DDS sampling process, spurs would
be folding back into the DDS bandwidth (first Nyquist zone) and
possibly overlapping. A simple procedure is presented for evalu-
ating location and level of spurs, which are due to numerical dis-
tortion in a standard DDS system. Examples using an interactive
math tool are available online.

Keywords – DDS, NCO, amplitude quantization, phase truncation,
spectral purity, simulation.

I. INTRODUCTION

Direct digital frequency synthesis (DDFS or simply DDS)
generates real-life waveforms of repetitive nature by using
digital data and mixed/analog signal processing blocks. The
open-loop DDS is used especially for precise, fast frequency
and phase tunable output. Solutions can be implemented in
LSI (large-scale integration) and they play an ever-increasing
role in digital waveform and agile clock generation and
modulation.

The high-level architecture of a generic DDS system can be
viewed as a simple assembly containing three parts (Fig. 1).
A fixed rate clock is the time reference part. Numerically
controlled oscillator (NCO), the digital part, consists of an
overflowing phase accumulator (ACC, register length r-bit)
and a lookup table (LUT, memory address length m-bit, data
width n-bit). Here we model all techniques of waveform
mapping as a simple lookup table operation. The
mixed/analog part reconstructs the analog wave with a digital
to analog converter (DAC) and anti-imaging filter (AIF).

NCO-based DDS is a point(memory location)-skipping tech-
nique and runs at a constant update(clock)-rate. There are
several applications that do not convert the numerical sam-
ples into an analog signal, as it is the case in many digital

communication systems (e.g. digital radios and modems,
software-defined radios, digital down/up converters etc.).
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Fig. 1. The standard DDS structure.

One of the most important specifications to the synthesis is
that of spectral purity. Spurious performance of DDS is partly
caused by two quantization operations in its numerical (i.e.
digital) part. The amplitude quantization causes harmonically
related spurs, while phase truncation produces spurs around
the output frequency by phase modulation. These numerical
distortions (algorithmic nonlinearities) due to finite-
wordlength effects present a major contribution to system
complexity. (Note: the actual realization of DAC is another
dominant source of spectral impurity, but here we concentrate
to spurs origin from numerical part only.) Knowing the loca-
tion and level of spurs is a good starting point for the NCO
design, selection or length customizing (as in FPGA: field
programmable gate array) for specific application.

Analytical results (particularly for amplitude quantization)
are rather complicated, not necessarily practically oriented
and because of spurs vary rather irregularly with tuning, in-
terpreting the parameter dependence of spurs is not easy. This
problem can be overcome by interactive computer simulation
knowing the fundamental spur structures. The paper presents
a simple procedure for evaluating numerical spurs in a stan-
dard single-tone (sinewave) DDS generator. The method can
be extended to multi-tone or dithered DDS, as well. Exam-
ples using an interactive math tool (Mathcad worksheets) are
available online.
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II. NUMERICALLY CONTROLLED OSCILLATOR

First recollect some familiar results regarding DDS numerical
frequency and numerical period of samples.  Consider a con-
tinuous-time, normalized amplitude sinusoid with f analog
frequency and a fixed zero initial phase: x(t) = 1⋅sin(2πft),
|x(t)| ≤ 1. DDS builds up (reconstructs) the waveform from its
numerical samples. Sampled at fc = 1/∆t rate, the discrete-
time version of sinusoid: xi = x(i⋅∆t) = 1⋅sin(2π(f /fc)⋅i), where
i: time index. The sample sequence xi is P-periodic only, if
the numerical frequency is rational: f/fc = L /P (some L
relative prime to P). This is the case of so-called coherent
sampling. The finite memory requirement of the DDS im-
poses the periodicity xi = xi+P .

The rate at which the r-bit phase accumulator overflows in
NCO is controlled by the D frequency tuning word. Accu-
mulator overflow (mod 2r) corresponds to a mod 2π opera-
tion: D/2r = ∆θ /2π, so the output frequency (the rate of phase
change): f = (1/2π)⋅(∆θ /∆t) = ( fc /2

r)⋅D. Hence the numerical
frequency of  DDS

f /fc = D/2r  = L /P < 1/2,  some L (prime to P),

and P = 2r/gcd( D, 2r
 ) ≤ 2r is the numerical period of sample

sequence. Note: gcd = greatest common divisor, and P is a
power of 2.

A simple algorithm describes the operation of the NCO:

The input to NCO is the integer D tuning word. The actual
content of an r-bit phase accumulator is Ai = mod(D⋅i, 2r).
Note: mod(a, b) = remainder of a when divided by b. Only
high m-bit will index the LUT: Ii = trunc(Ai /2

r-m). There is
one cycle of sine waveform in LUT, so a high precision table
output is Ti = 1⋅sin((2π/N)⋅Ii) and N = 2m, but actually the
NCO output with n-bit precision: Qi = ∆⋅round(Ti /∆), where
∆ = 2/2n.

Since the output numerical sequence Qi is P-periodic, a P-
point FFT transform of Qi results in the exact output
spectrum of NCO. Frequency indices greather than P/2 are
redundant for real signals.

Varying L, prime to a given P, is equivalent with uniform(U)-
permutation of samples within a P-block waveform (i.e.
temporal reversible rearrangement of sample position i into
position j, with j = D⋅i (mod P), i = 0,1,2 ... P-1), as showed
by Kak and Jayant (1977). U-permutations produce an
uniform shuffling in the DFT spectrum, as well. This means
that only the position of the lines change but not its level, and
for example the SNR (signal to noise (i.e. spur) ratio for full
DDS bandwidth) is independent of L. The inverse mapping is
another U-permutation.

Some remarks: (1) Simply change Ii → Ti mapping for
smaller amplitude, nonzero phase or just another arbitrary
(ARB) waveform or special sample-generation simulation.
(2) One can use dither before phase or amplitude quantization
if any. (3) Other type of quantization can be use for Ii  or Qi .

So far it seems that the procedure is free from major
difficulties. However, for example, if D is odd then P = 2r.
Since r can be as high as 32 (or 48) for fine frequency
resolution, extremely long periods can occur. In these cases
practically some short-term FFT (with reasonable window
against FFT artifacts), i.e. a global viewpoint can be used.
But knowing the fine structure of spur locations, a local
viewpoint: zoom DFT on interested area (on only suspect
frequencies) also can be applied.

III. NUMERICAL DISTORTION

Amplitude quantization (AQ), being present permanently,
and phase truncation (PT) are the two separate mechanisms
which lead to the occurrence of spurs in NCO. These spurs
vary rather irregularly with tuning word (D) and parameters
(r, m, n), so revealing the fundamental structure of spur loca-
tions helps in interpreting the spectrum, as well.

A. AQ-spurs: overlapped harmonic structure

An n-bit amplitude quantization (AQ) is a strong determinis-
tic nonlinearity, hence its rigorous analysis is quite compli-
cated (if possible). But in some cases the behavior of AQ-
error could be exactly quantified. Clavier, et al. (1947) pro-
vided an exact analysis when a uniform quantizer is driven by
a continuous-time sinusoid. (Theoretical results were redis-
covered later several times, sometimes without reference to
the original paper.) Rounding operation, i.e. minimum dis-
tance (nearest neighbor) mapping has odd symmetry and
generates odd harmonics only, the level of which oscillates
violently and its dependence on the signal amplitude and
resolution is very complicated.

Moreover, because of sampling, some harmonics can fold
back into the desired band and possibly overlap depending on
value of numerical frequency. Overlapped spectral lines may
contribute constructively or destructively to the level of the
resulting component depending on their actual phase (and
amplitude) values. Therefore the practical way to determinis-
tic analysis of the irregular shape of AQ-spur levels is di-
rectly given by an FFT transform of the NCO output.

Because of odd harmonics only, the number of AQ-spurs is
(P/4)−1.

Aliasing phenomenon exposures the locations of AQ-spur
(overlapped harmonics). Lines in the odd Nyquist zones map
directly into the baseband (1st Nyquist zone, single sided),



while components in the even zones map in a mirrored fash-
ion with phase inversion

zh = mod(h⋅D, S),     S = 2r  and  h = 1, 3, 5 ... (P/2)−1

     sah = if (zh < (S/2), zh, (S − zh)) .  

Note: the expression if(cond, t, f) equals to t if cond holds and
equals to f otherwise. Here h = 1 is the signal component. The
analog frequency of AQ-spurs is fah = (sah /S)⋅fc.

Some consequences: (1) There is no numerical distortion
especially if P = 4, because samples match exactly the quan-
tization levels. At this f /fc = 1/4 numerical frequency only the
DAC nonlinearities cause distortion in DDS. (2) The worst
case, a highly massive overlapping occurs at P = 8 (i.e. if f /fc

= 1/8 or 3/8) when energy of spurs apparently "concentrates"
on one AQ-spur. A simple estimate of bound on maximum
AQ-spur to signal (carrier) ratio is SpSR ≈ (−6⋅n + 3) dBc.
(3) The other limiting case occurs if P is long, then a "sea" of
finely spaced AQ-spurs appears (or alternatively one can de-
tect a background "noise floor").

B. PT-spurs: overlapped modulation structure

Truncating an r-bit phase accumulator output to high m-bit,
modifies accordingly the effect of D tuning word on instanta-
neous phase that leads to phase truncation (PT) - error, but do
not modify the average numerical frequency. Dropping the
lower bits permits extremely fine-tuning with reasonable
LUT size at the expense of spectral purity.

Let d be the nominal frequency tuning word (i.e. the nominal
address change of LUT) and let us write it in mixed fraction
form:

d  = D/2r-m = V + (L /E),

here V = trunc(d) is the integer part and (L /E) = mod(d,1) is
the fractional part, where E = 2r-m/gcd( D, 2r-m

 ) ≤ 2r-m can be
identified as the numerical period of phase error (as we see
next).

From this form, it is obvious that the actual address change is
V or V+1 (if d is not integer), i.e. a "phase hiccap" occurs. Or
viewing it another way: if mod(d,1) ≠ 0 then nonuniform
sampling occurs and for this reason distortion is  presented.
Notice that if d is integer (i.e. if  E = 1), then there are no PT-
spurs.

The source of the PT-spurs is a fractional part of d. For the
calculation of spur locations consider a discrete-time sinusoid
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here N = 2m, the integer part Ii  is the actual LUT address, and
the fractional part ei = mod(Ai /2

r-m, 1) ∈ (0,1) is the phase
error sequence.

PT-error sequence ei varies periodically and results from the
sampling of a hipothetical sawtooth waveform with a period
of 1/mod(d,1), measured in clock cycles. Hence the funda-
mental numerical frequency of phase error ei  is

fe /fc = mod(d,1) = ε /2r  <  1 ,

where ε can be considered as a (hipothetical) "tuning word"
for phase error (and this integer data will be used to compute
the PT-spur locations). Since mod(d,1) = L /E, therefore the
numerical period of PT-error sequence is E (a factor of 2).

Using small angle approximation for realistic NCO imple-
mentations (N = 2m >>1 and disregarding scaling constant)
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Consequently, the high precision NCO output Ti ≈ xi − psi

will be composed of the desired clean xi sinewave corrupted
by psi PT-spurs, a cosine modulated harmonics of the
(2π/N)⋅ei sawtooth waveform. Spur components are
symmetrically located in pairs around the desired signal
component, and it follows from the E periodicity of phase
error sequence that the number of PT-spurs is E−1.

At a given E, varying whether V or L (prime to a given E)
will just permute the same spectral lines (only relative
location of the signal and PT-spurs varies but not the levels).

Due to aliasing and taking into account the modulation
theorem of Fourier transform, the locations of PT-spur
(overlapped modulation structure)

zh = mod(D + h⋅ε, S),      S = 2r  and  h = 0, 1, 2 ... E−1

    sph = if (zh < (S/2), zh, (S − zh)).  

Here h = 0 is the signal component. The analog frequency of
PT-spurs is fph = (sph /S)⋅fc .

The levels of PT-spur are also calculated by an FFT trans-
form taken at the NCO output.

Some of the special cases: (1) There are no PT-spurs if E = 1,
and zeros in the truncated low r−m phase accumulator bits
indicate these favourable cases. (These tuning states are suit-
able to test the AQ-spurs only in NCO. Full testing of the
AQ-spurs is only possible with simulation. Similarly, testing
separately the PT-spurs is only possible with simulation using
a high precision Ti table output.) (2) The worst case occurs



when E = 2 (independently of V), in these cases spur energy
apparenly "concentrates" on one PT-spur. A simple estimate
of bound on maximum PT-spur component to signal ratio is
SpSR ≈ (−6⋅m + 7) dBc. As a general rule, LUT m-bit address
length is 2 bits higher than the n-bit data precision to make
the highest PT-spur component smaller than the background
AQ "noise floor". (3) There are many PT-spurs in the other
limiting cases, if E is long.

IV. EXAMPLES OF SIMULATION

The two sources of numerical distortion (AQ and PT) appear
simultaneously and they possibly exercise mutual influence
on each other. Simulations help to discover the composed
spectral maps for specific applications and tuning ranges (e.g.
for the proper selection of the data before parameterization of
an NCO core in FPGA).

A set of interactive Mathcad worksheets based on structural
relations described above was developed that exemplified
some topics of DDS numerical distortion. One can reach
some of them online at the URL:

www.hit.bme.hu/people/papay/sci/DDS/simul.htm,
where a freely downloadable interactive viewer is also pro-
vided. Here only two illustrative examples are given, as a
drop in the bucket, to demonstrate the method. The first one
illustrates an interaction between AQ and PT (Fig. 2), while
the second one presents a multi-sine (Fig. 3). All spectra were
computed by 8K FFT with BH7 (a 7-term Blackman-Harris)
window.

As the desired  f /fc is the ratio of small integers but the de-
nominator is not a power of 2, the actual (tunable) numerical
frequency has a "small offset" (because of finite frequency
resolution), hence spurs will concentrate close to the funda-
mental frequency and near some other lines (Fig. 2a). Modi-
fying only the data precision (n-bit: 10 → 7), an unforeseen
interaction occurs (Fig. 2b).
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Fig. 2a. Spectra of a synthesized single-tone (sinusoid). Simulation parame-
ters: r = 32, m = 12, n = 10 and the desired  f/fc = 2/15 (i.e. actual D is all

two in hexa).
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Fig. 2b. Same as Fig. 2a, but with limited data precision: n = 7.

In multi-tone case, the simple superposition is invalid be-
cause of the strong nonlinearities and only simulation proves
to be the usable tool (Fig. 3, where the levels of harmonically
related components change with −5 dB). The limited memory
capacity (1K, i.e. m-bit: 10) causes unpleasant spurs, which
can be lowered significantly by choosing a higher m-bit (i.e.
by increasing the waveform length, as it would be the case in
many DDS-based ARB generators).
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Fig. 3. Spectra of synthesized multi-tone with limited (1K) memory. Simula-
tion parameters: r = 48,  m = 10,  n = 12 and the desired fundamental f /fc =

0.7/40.

To summarize, although our description was mainly re-
stricted to a single-tone case, by simulations the investiga-
tions can further be extended to other practical cases, as well.
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