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DESIGN OF A NONLINEAR STATE ESTIMATOR FOR NAVIGATION 

OF AUTONOMOUS AERIAL VEHICLES 

The aim of this paper is to present a novel approach for the design and implementation of an onboard nonlinear state 

estimation system for an autonomous aerial vehicle. The tasks of such a system include collection of measurement 

data from different navigation sensors, and estimation of all the quantities describing the system’s state of motion 

based on the system dynamics and the measurement data. The widely accepted method for such a sensor fusion 

problem is the Kalman filter in the case of a linear system. The dynamics of a rigid body inherently involves nonlin-

earity, therefore a nonlinear extension of the Kalman filter is needed. The proposed solution relies on the Unscented 

Kalman Filter (UKF) technique with making use of both the quaternion and Rodrigues parameters representations 

of the attitude. The developed method is tested in MATLAB and implemented in the onboard embedded system in C 

code. The applicability of the proposed method is demonstrated in this paper by means of various examples. 
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INTRODUCTION 

The task of navigation and control of an autonomous aerial vehicle (sometimes called UAV) is 

the task of the robotic pilot or autopilot. The autopilot system consists of sensors for the de-

tection of the state of motion of the system, actuators for applying forces and an embedded 

microprocessor and appropriate software to execute the control algorithm. The control algo-

rithm is responsible for producing the appropriate driving signals for the actuators in order to 

keep the vehicle on the desired trajectory. This is accomplished by comparing the actual state 

(more precisely the estimation of the actual state) with the desired reference signal. The refe-

rence of the state variables is produced by the guidance algorithm based on the (estimation of 

the) actual state and the desired flight path. The estimation of the actual state of motion is pro-

duced by the state estimation algorithm from the navigation sensor measurements (Figure 1). 

This paper focuses only on the state estimation algorithm. The control and guidance algorithms 

are discussed in more detail in the accompanying paper [1]. 

 

Figure 1. The autopilot in an UAV system 

The first step in the control of an autonomous robotic vehicle is determining its position and state 

of motion. The vehicle as a rigid body has six degrees of freedom (6DoF): the position of its center 

of mass in some reference frame (three degrees) and its orientation (another three degrees). 



In order to describe the state of motion of the vehicle we must choose a reference frame. One 

obvious choice would be the one attached to fixed stars. Its greatest advantage is that it is an 

inertial frame of reference, so the laws of mechanics take their simplest forms. In case of a 

vehicle working in the geographical vicinity of its starting position it would be natural to choose 

the starting point as the origin of the reference frame and attach the frame to the Earth. This is 

not an inertial frame of reference in strict sense,1 but in our case the difference is negligible. 

Thus, the most common choice is the north-east-down (NED) system, called the Earth frame. 

One of the difficulties using the Earth frame is that the quantities describing the vehicle's mo-

ment of inertia are changing as the vehicle turns (changes its orientation). We can attach the 

axes of the coordinate system to the principal axes of the vehicle body: the 𝑥-axis points in the 

forward direction, the 𝑦-axis points to the right and the 𝑧-axis points downwards. We could fix 

the frame's origin at the vehicle's center of mass, but in that case the position would always be 

[0, 0, 0], which is rather useless. Therefore we define the body frame as follows: the origin of 

the frame fixed at the same point as the reference Earth frame origin, but the orientation of the 

axes are attached to the principal axes of the vehicle's body [1][3]. 

The motion of the center of mass obeys Newton's laws. These are a set of linear differential 

equations expressed in the Earth frame. However, the description of the orientation which is 

the rotation between the reference frame and the frame attached to the body is inherently non-

linear. Rotation can be represented in terms of rotation angles, but use of angle values involves 

the usage of trigonometric functions which are not linear. There are descriptions of rotation in 

which not the angle is the state variable but some quantity related to its sinusoid. In these cases 

the trigonometric functions may be eliminated but in exchange other nonlinear functions (like 

square and square root) are involved. These issues are examined in the next section in detail. 

During the processing some quantities are expressed in Earth frame while others are expressed 

in body frame. Time to time we need to transform the quantities from body frame to Earth frame 

and back, which involves multiplying state variables with each other. This is again a nonlinear 

operation, so we need to deal with nonlinear techniques [4][5]. 

DESCRIPTION OF ORIENTATION 

The orientation (also called angular position or attitude) is a part of the description of the state of 

motion of a rigid body. This is the transformation that rotates the Earth frame into the body frame.  

The orientation of the vehicle must be incorporated into the state space in some way, therefore 

its representation must be chosen appropriately. The orientation being a rotation in three-di-

mensional space can be described in several ways. In the following we summarize the ad-

vantages and drawbacks of the most common representations. 

  

                                                 
1 We need to calculate with the Coriolis force caused by the Earth’s rotation and some more complex transforma-

tion if we want to take into consideration the Earth's rather complex motion relative to the fixed stars. 



Rotation matrix 

A rotation transformation can be described by a rotation matrix (or direction cosine matrix, 

DCM). A rotation matrix in a three-dimensional space is a 3 by 3 matrix with nine real elements. 

The DCMs are orthonormal matrices, so their inverse coincides with their transpose. 

The greatest advantage of DCMs is the ease of calculating the transformed version of a given 

vector: obtained by a vector by matrix multiplication. 

The disadvantage of the DCM representation is redundancy. It has nine elements for describing 

the three degrees of freedom of the 3D rotation operation. The orthogonal property means a 

strong correlation between the elements which must be preserved during transformations. If we 

include the redundant DCM representation in the state space the covariance matrix of the state 

will be singular, and the system we get is not controllable [6]. 

Euler angles 

Another natural description of a rotation in three-dimensional space is by three rotations around 

the three main axes of the body. Unfortunately the order of the rotations does matter, altogether 

there are 12 possibilities. The most commonly used order is rotation around the 𝑥, then the 𝑦, 

and finally the 𝑧-axis. These are the roll, pitch and yaw angles, respectively. 

The Euler angles have three dimensions for describing the three degree of freedom system. For 

small angles (in the vicinity of level straight flight) it has a nice linear behavior by the approxi-

mation of sin(𝑥) by 𝑥. 

From the Euler angles description we can always get the rotation matrix description by: 

 

where 𝜙, 𝜃, 𝜓 are roll, pitch, yaw, respectively. 

 The Euler angle representation has some well-known drawbacks. First of all it has a disconti-

nuity at ±180°, which is one of the most severe non-linearity one can face with. The second 

problem is the so-called gimbal lock: For some orientations the description is not unique. For 

the roll–pitch–yaw order this occurs when the pitch angle is ±90°, in this case the roll and yaw 

angles describe a rotation around the same axis. This way we lose one degree of freedom, which 

leads to a singularity in the system equations [6]. 

Quaternions 

The orientation is a rotation, hence it can be represented by a rotation axis and a rotation angle. 

Let the rotation axis be the unit vector 𝑘 and the rotation angle be 𝛼. Hence we can represent 

an orientation (and any rotation) by a unit quaternion: 



 

This way for every orientation there are two unit quaternion representations: the sing of 𝑘 and 

𝛼 are interchangeable. If we restrict our description having only positive angles then the rep-

resentation is unique. 

Quaternions are similarly easy to use as rotation matrices: two rotations in series is the quaternion 

product of the two representing quaternions, and rotating a vector is expressed as a vector by 

quaternion product. The quaternion representation is also free from the discontinuity problem the 

Euler angles representation has. A quaternion represents a three degrees of freedom system by 

four values, therefore the same redundancy problem arises as in the case of DCMs [6][7]. 

Rodrigues parameters 

The Rodrigues parameters are a three-dimensional representation of a rotation projecting the 

four-dimensional hypersphere of unit quaternions onto a three-dimensional hyperplane. By pla-

cing the projection point and the hyperplane into different locations different variants of the 

Rodrigues parameters can be constructed. Choosing the projection focal point to be [-1, 0, 0, 0] 

and the first coordinate of the hyperplane to be 0 (Figure 2) we get a singularity free parameter 

representation up to a principal rotation of ±360°, also free from the gimbal lock phenomenon. 

 

Figure 2. The Rodrigues projection demonstated in 2 dimensions. [8] 

The Rodrigues parameters 𝑠𝑖 are derived from the quaternion elements 𝑞𝑖 with the following 

formula: 

 

The transformation in the opposite direction reads as: 



 

The rotation matrix representation of a rotation described by a set of Rodrigues parameters can 

be calculated as follows: 

 

where 𝑛 = 𝐬𝑇𝐬 is the norm square of the  Rodrigues parameters vector and 𝑢 = 1 − 𝑛. 

One additional advantage of using Rodrigues parameters for describing the orientation is that 

for small angles they are approximately proportional to the Euler angles, so similar linear app-

roximation apply to them. 

This way for the unit quaternions whose first element is positive (this is one half of all the unit 

quaternions, representing all possible rotations) we get Rodrigues parameters inside the unit 

sphere. The other half of the unit quaternions are mapped to the Rodrigues parameters outside 

the unit sphere, having counterparts (representing the same rotation) inside the unit sphere. This 

way the transition at the ±180° rotation boundary is smooth, but in case of large angles we are 

far from the linear approximation [8]. 

NAVIGATION SENSORS AND SENSOR FUSION 

Navigation is based on data coming from various sensors. For some state variables there are 

direct measurements available. For example, the GPS sensor can measure the absolute position 

in the Earth frame. Some sensors measure in the body frame. For some other state variables 

there are no direct measurements, these states can only be obtained by derivation which may 

cause increased uncertainty or accumulation of errors.  

In the following the advantages and disadvantages of different sensors are addressed. 

Absolute measurement sensors 

There are some sensors that can measure some of the state variables in our reference frame, that 

is the Earth frame. These measurements are sometimes called absolute measurements (opposing 

to relative or difference measurements, which measure the rate of change of some quantity). 

The most commonly used absolute measurement is GPS position. It provides the absolute 

geographical position in the Earth frame. By differentiation we could get the velocity in the 

Earth frame, but due to the inaccuracy (the noise) of the position measurement, it would be 

practically useless. Most GPS receiver units provide an independent velocity measurement in 

the Earth frame based on the Doppler principle. 

An other type of absolute measurement is the altitude measurement based on barometric 

pressure. Although the values must be corrected by the pressure measured on the reference 



height, during the typical operation time window of an autonomous device the measurement 

can be regarded as an absolute altitude above the surface. 

Inertial sensors 

Inertial sensors are sensing the change of the object's state of motion. The two most commonly 

used inertial sensors are the accelerometer, and the angular velocity sensor (called gyroscope 

in this context). The third sensor widely used in conjunction with the previous two is a magnetic 

field sensor. Although it has nothing to do with the change of the object's state of motion, as a 

sensor it has very similar properties to true inertial sensors, and the three types of sensors are 

commonly used together for attaining the object's state of motion. A system composed of iner-

tial sensors is sometimes called inertial measurement unit or IMU. 

In a strapdown navigation system all of these sensors measure in the body frame. The measure-

ments have some errors. The measured values are corrupted by noise and other sensor errors. The 

noise can be well considered as zero mean additive white Gaussian noise. The offset and scale 

error can theoretically be eliminated by calibration [9][10]. The problem here is that the error may 

change over time and temperature, so the calibration procedure must be repeated frequently. 

Utilizing these measurements we can derive the attitude in several ways. By integrating the 

angular velocity over time from a starting orientation we may get the attitude. The inherent and 

inevitable problem here is that we also integrate the noise added to the measurement. By integ-

rating a zero mean noise we get a random walk process. This problem can only be eliminated 

by some kind of absolute measurement. 

The accelerometer measures both the specific force and the gravitational acceleration. If the 

body (the center of mass) does not accelerate we get the gravitational vector alone. Together 

with the Earth's magnetic vector measured by the magnetometer we may get an absolute meas-

urement for the orientation. 

On the other hand if the orientation is known the gravitational acceleration can be subtracted 

from the measured acceleration to get the acceleration of the center of mass. By integration we 

can get the linear velocity, and by one more integration we get the position. The same problem 

applies here as in the case of angular velocity and orientation: integrating the noise added to the 

measurement causes a random walk. Double integration makes the problem even more severe. 

Sensor fusion problem 

As we have seen previously all of the sensors have some errors. Not all of the state variables can 

be measured directly, but for most of the state variables we have several derivations, each having 

its own weaknesses and advantages. The method of taking different measurements and derived 

quantities for the same value and combining (averaging) them together is called sensor fusion. 

In the case of a 6DoF system a special problem has to be overcome: some of the measurements 

are available in the Earth frame, some others are available in the body frame. Since these are 

measurements for the same principal value, they should be fusioned together. We must choose 

one of the two frames and transform the values that are given in the other. The transformation 

is the rotation representing the orientation, which is part of the state space itself. That is, we do 



not know the exact value of the transformation, we only have the estimation of it. That is ext-

remely problematic when the measurements (directly or indirectly) are used for the estimation 

of the orientation. The system could be underdetermined and may not converge. This situation 

must be detected and some change of the system model may be required based on the available 

measurements. In the sequel a possible solution for that problem is proposed. 

THE KALMAN FILTER 

Linear optimal estimation problem 

The Kalman filter is the optimal solution for state space estimation of linear systems based on 

measurements corrupted by additive zero mean Gaussian white noise with known covariance. 

The filter is optimal in the sense of minimizing the mean square of the estimation error. The 

Kalman filter can be regarded as a special case of the least mean square method.  

Instead of giving the exact derivation of the Kalman filter (which can be found in many good 

books, e.g. [9][12]) we just state the most common form. We restrict the description to the 

discrete time version. 

Given a linear system with 𝐱(𝑛) as the state vector and 𝐮(𝑛) as the input vector for every 𝑛 

time instance: 

 

Here the matrices 𝐀 and 𝐁 together represent the linear system of equations describing the state 

transition through the 𝑇𝑠 sampling time interval. 𝐰(𝑛) is the so-called process noise, representing 

all the effects and errors not exactly modeled by the system equations. We suppose that the process 

noise comes from many independent sources and these are small enough to be described by a set of 

independent zero mean normally distributed random variables with covariance matrix 𝐐(𝑛). 

The outputs of the system are the quantities for which we have direct measurements, denoted 

by the vector 𝐲(𝑛): 

 

Here the matrix 𝐂 represents a linear mapping (function) between the states and the measure-

ments, and 𝐯(𝑛) denotes to the noise of the measurement, described by a set of independent 

zero mean normal distribution random variables with covariance matrix 𝐑(𝑛). 

The exact value of 𝐱(𝑛) is not known, it can only be estimated. Let us denote the latter by �̂�(𝑛), 

which is a random variable itself with normal distribution. The expected value of �̂�(𝑛) is 𝐱(𝑛), 

and the covariance is denoted by 𝐏(𝑛). This is the uncertainty we know about 𝐱(𝑛). 

The Kalman filter works in two steps. The first is called 'innovation', that is when the system 

equations are applied: 

 

That is the expected value of the transformed state vector. From that we can make a prediction 

about the output values (the measurements): 



 

After performing the actual measurements we can make a difference between the prediction 

and the reality: 

 

Here comes the second step, the so-called 'correction': 

 

This way we get an estimation of the state vector in the next time instance: 

 

The block diagram of the Kalman filter can be seen on Figure 3. 

 

Figure 3. The Kalman filter 

The 𝐊𝑛 feedback matrix is calculated based on the covariance of the estimation and the meas-

urement noise so that we get the new state estimation as a weighted average of the predicted 

and the measured values. 

The covariance (uncertainty) of the state vector after the innovation is expressed as: 

 

This is obtained by calculating the covariance of the transformation of a normal distribution 

random variable added to the process noise covariance. 

𝐊𝑛 is calculated as: 

 

Note that 𝐊𝑛 depends only on the noise covariance matrices (𝐑 and 𝐐) and the system matrices 

(𝐀 and 𝐂) and of course on 𝐏0. In a linear system it is independent of the actual measurement 

and the values of the state variables. 

The covariance (uncertainty) of the state vector after the correction is expressed as: 

 

In the case of a linear system with time invariant (constant) noise covariance matrices the un-

certainty matrix (𝐏) and the feedback matrix (𝐊) have a steady state value, the calculations in 



equations (13)–(15) do not need to be performed in every time step. The steady state 𝐊 can be 

precalculated and equations (8)–(12) applied in every time step. 

Extended Kalman Filter 

When the system is nonlinear we can use linear approximation and apply the Kalman filter on 

the latter. One way of doing so is the method of linearization about an operating point. We can 

calculate a different linear approximation based on the Jacobian method and use a different 

system matrix for every time instance. 

This method is called extended Kalman filter (EKF). In this case there is no steady state value 

for the feedback matrix, the equations (8)–(15) must be calculated for every time step. 

The linearization can be made by other methods too. One other method is called ‘State Depen-

dent Coefficients’ (SDC) or ‘State Dependent Riccati Equation’ (SDRE). The nonlinear system 

equation 

 

is factorized into a state dependent coefficients form as: 

 

and the Kalman filter equations (8)–(15) are applied to the state dependent matrices. 

The problem of factorization of the system equations is discussed in more detail in the accom-

panying paper [1]. 

Unscented Kalman Filter 

In the Kalman filter the feedback matrix (𝐊) is calculated using the covariance matrices by 

equation (14). The noise covariance matrices (𝐑 and 𝐐) are considered given, but the state 

covariance matrix (𝐏) is calculated based on the linear transformation of a normally distributed 

random variable. 

In case of a nonlinear system there is no general formula for calculating the expected value and 

the covariance of the transformed random variable (furthermore the transformed random vari-

able does not necessarily follow the normal distribution). 

By approximating some way the transformed mean and covariance of the state variables (�̂�) 

and the predicted output (�̂�) and the crosscorrelation between these two we can calculate the 

feedback matrix. 

This approximation for a random vector 𝐱 with covariance 𝐏 can be made by carefully choosing sigma points 

(𝐱𝜎) around the vector 𝐱 in a way that the mean of the sigma points gives the 𝐱 and covariance of these sigma 

points gives 𝐏 ( 

Figure 4). Then, by making the nonlinear transformation on all sigma points the mean and co-

variance of the transformed sigma points serve as an estimation of the transformed mean and 

covariance of the random variable 𝐱. 

 



 

Figure 4. Generation of sigma points 

The method is the following (denote the state vector by 𝐱(𝑛), its dimension by 𝑁, its covariance 

by 𝐏𝑛): 

1. In each timestep 𝑛 for the  state vector 𝐱(𝑛) choose 2𝑁 sigma points 𝐱𝑖
𝜎 as: 

 

where 𝛔𝑖 is chosen as the rows of the √𝑁𝐏𝑛 matrix. This way the statistics of the sigma 

points gives the statistics of the 𝐱(𝑛) random variable. 

2. For these sigma points apply the system equation. Denote the transoformed sigma points 

by 𝐱𝑖
𝜎∗. The mean of these transformed points will be the estimate for the new state 

vector: 

 
 and the covariance of the trasformed points is: 

 
 Adding the covariance of the process noise (𝐐) we get: 

 
3. In order to estimate the output vector (�̂�) and its covariance create sigma points around 

�̂�− with the help of 𝐏−. Apply the output equation on these sigma points and denote the 

result by 𝐲𝑖
𝜎. The mean of these vectors will be the estimation �̂�. Calcuate the covariance 

of the 𝐲𝑖
𝜎 vectors (𝐏𝑦𝑦) and the crosscorrelation with the 𝐱𝑖

𝜎∗ vectors: 

 
4. Calculate the feedback matrix as: 



 

Calculate the estimator of the state vector and its covariance after correction: 

 

 

The blockdiagram of the whole process is depicted on Figure 5. 

 

Figure 5. The Kalman filter with nonlinear system function 

State space augmentation 

The method above assumes that the process and measurement noises act in a linear manner (as addi-

tive white Gaussian noise) to the otherwise nonlinear system. Colored noise (not following Gaussian 

distribution and/or not being independent) can be handled as appropriately filtered white noise. The 

system equations and the state space can be extended by the filter equations and internal states. 

In many practical cases there is no better assumption for the noises but the white Gaussian 

noise, but in the system equations the noises do not act in a linear way. This is a case for example 

when two state variables (both with their process noise added) are multiplied. 

In this case the state space does not need to be truly extended, only the system equations are 

written as if the noise values would be incorporated into the state vector. Sigma points need to 

be generated around the zero noise vector and the system equations are applied to them. The 

statistics of the transformed 𝐱𝑖
𝜎∗ vectors yield the estimation �̂�− and its covariance �̂�−, but the 

𝐐 matrix does not need to be added to �̂�− as it has already been taken into consideration in the 

augmentation procedure. 

IMPLEMENTATION OF UKF 

In this section the implementation choices for the Kalman filter are investigated. The implementa-

tion is based on the Unscented Kalman Filter algorithm with state space augmentation. For hand-

ling the gimbal lock problem a special state space choice is applied. For handling the severe non-

linearities arising during attitude measurement a virtual measurement procedure is defined. 

State space choice 

The state space must represent the state of motion of the vehicle including its three degrees of freedom 

translation and also its orientation and angular velocity. For the linear motion there are measurements 

available for the position and the acceleration, therefore the position, the velocity and the acceleration 



should all be included in the state space. The estimation of the offset of the gyroscope sensor is also 

included in the hope of the successful compensation of this disturbing effect. 

The proposed choice of state space is the following: 

 

where 𝐩, 𝐯 and 𝐚 are the position, velocity and acceleration vectors, 𝛚 is the angular velocity 

vector and 𝛃 is its estimated offset, 𝐫 is the Rodrigues parameter triplet, while the upper index 
(B) or (E) means that the quantity is represented in the body or the Earth frame, respectively. 

The Rodrigues parameters vector is a minimal representation of the orientation behaving nicely 

for small angles but as discussed in the navigation sensors section it has discontinuity, therefore 

it is not applicable for representing arbitrary angles. The quaternion representation is free from 

discontinuities but it is a redundant representation resulting in a singular covariance matrix 

which causes numerical difficulties. The absolute orientation is chosen to be stored in a separate 

quaternion 𝐪 while the Rodrigues parameters representing the difference to the quaternion 

(delta Rodrigues parameters) are stored in state space. The covariance matrix (𝐏) is updated 

based on the Rodrigues parameters. 

The system equations for the integration step are written using quaternions. The delta Rodrigues 

parameters for each sigma point are converted to delta quaternions (𝛿𝐪𝑖) using formula (4) and 

multiplied by the stored quaternion: 

 

where 𝐪+ is from the previous step and  ⊗ denotes to quaternion multiplication. 

The integration is as follows: 

 
where 

 

From the transformed quaternions we compute the transformed delta qutaternions: 

 



and finally the transformed delta quaternions are converted to transformed delta Rodrigues pa-

rameters. 

The other state variables are integrated as usual: 

 

The statistics for the covariance matrix 𝐏 is calculated from the state vector containing the delta 

Rodrigues parameters according to the rules presented in the previous section. 

The output equation is the following: 

 

where 𝐚∗(𝐵) and 𝛚∗(𝐵) are formed to be directly comparable to the measurable values: 

 

where 𝐠 denotes to the gravitational acceleration. 

The 𝐫 Rodrigues vector is not directly measurable, but a virtual measurement is defined for the 

attitude measurement based on vector measurements. This virtual measurement is discussed in 

detail in the following subsection. After the correction step the stored quaternion (𝐪+ in the 

previous step) is updated by the delta Rodrigues parameters resulting in the new 𝐪+. 

Virtual attitude measurements 

In many navigation applications, the attitude determination is based on vector or direction 

observations. In the case of small UAVs, these reference directions are usually the Earth’s mag-

netic field vector and the gravity vector. Measuring the known reference vectors in the airplane-

fixed body frame the orientation of the airplane can be estimated. Almost all attitude determi-

nation algorithms using vector observations are based on the minimization of the loss function: 

 

or in alternative form: 

 



proposed by G. Wahba [13]. In equation (34) and (35) 𝐛𝑖 denotes a set of unit vectors measured 

in the body frame, 𝐫𝑖 are the corresponding unit vectors in a reference frame, and 𝑎𝑖 are non-

negative weights. The problem is to find the orthogonal matrix 𝐀 that minimizes the above loss 

function. There are several different algorithms to find 𝐀, but they have different robustness, 

speed and accuracy properties. The most robust yet computationally most intensive algorithm 

is based on the singular value decomposition of 𝐁: 

 

where 𝐔 and 𝐕 are orthogonal matrices and the singular values obey the inequalities 

∑ ≥ ∑ ≥ ∑ ≥ 0332211 . The optimal orientation defined by the optimal rotation matrix can be 

calculated as [14]: 

 

This rotation matrix can be converted to the orientation representation used in the state space. 

Switching between models 

In a real environment special conditions can occur that must be handled properly. The robust-

ness of the system means that it can react and behave properly in cases outside the normal 

operating conditions. 

In our system the position and attitude estimation is based both on the GPS and IMU sensors. 

The interaction between the GPS and the IMU sensors is twofold: 

1. The GSP sensor produces measurement data less frequently than the IMU. In the cycles 

between two GPS sensor measurement the position data is updated by integration of the 

acceleration estimate. 

2. The gravity vector measurement is based on the accelerometer sensor by subtracting the 

linear acceleration, which is corrected by the position data from the GPS sensor. 

The GPS signal is sometimes lost due to various disturbances. The navigation system must be 

prepared to be able to work without GSP data. In our system this case is handled by switching 

to a reduced system model whenever the position estimate becomes uncertain. The problems 

that arise in case of GPS signal outages: 

1. The acceleration data obtained by the accelerometer sensor is not corrected by the GPS 

position data become uncertain, which causes instability in the gravity vector measurement. 

2. Large uncertainty values in the 𝐏 covariance matrix can cause numerical instabilities at 

the matrix square root calculation during the generation of sigma points. 

In the reduced model the following simplifications apply: 

1. The accelerometer is assumed to be measuring solely the 𝐠(𝐵) vector. This approxi-

mation is correct when the linear acceleration of the center of mass is small enough 

(|𝐚| ≪ |𝐠|). 

2. In the 𝐏 covariance matrix the values belonging to the 𝐯(𝐸) velocity and the 𝐩(𝐸) position 

vectors are not updated but kept constantly equal to the initial 𝐏0 values. These 𝐏0 va-

lues are large enough to allow fast convergence should the GPS data become available 

again, but at the same time small enough to guarantee numerical stability. 



3. All the feedback from the position data is disabled by zeroing the columns of the 

𝐊𝑛 matrix belonging to the position measurement. 

Matlab simulation and embedded implementation in C 

For the quantitative analysis of the proposed algorithm a Matlab simulation model is created. 

The input of the simulation is the ideal measurement data corrupted by artificial noise and other 

errors. The input data can be created by different sources. For simple cases a Simulink model 

of the 6DoF rigid body is used. For a more realistic case the mathematical model of a real life 

UAV and the airplane simulation method introduced in [15] are utilized. Finally, the same Mat-

lab model is used to test the algorithm on collected real sensor readings. The Matlab code is 

created using only basic linear algebraic operations (no special toolbox is used) in order to 

facilitate the translation to C code. 

The goal is to create a realtime application running on an embedded ARM processor under 

Linux operating system. The performance of the system depends highly on the efficient imple-

mentation of the linear algebraic operations. Some of the latter are quite complicated, like the 

Householder transformation or the QR decomposition. For this matter the LAPACK library 

[16] is utilized. The C version of the algorithm is created in such manner that the Matlab input 

data can also be used for its testing. The estimation data produced by the C algorithm can be 

imported into Matlab and the results can easily be compared. Finally, the implementation is 

tested realtime, fed by real sensor data, and both the raw measurements and the estimation data 

are saved for later analysis in Matlab. 

CASE STUDIES 

In the sequel, we demonstrate the capabilities of the implemented UKF algorithm by means of 

simulated measurement data. The preprocessing (input data file generation) and the postproces-

sing (output data visualization) were carried out using Matlab. 

The case study presented here simulates forces and moments acting on a 6DoF rigid body. Let 

us suppose there are inertial sensors and GPS fixed to the center of mass of the simulated body. 

The motion of the body and the ideal (noiseless and errorless) measurement readings were si-

mulated in Simulink. Artificial band limited white Gaussian noise and other errors were added 

to the ideal measurements according to the datasheet parameters of real sensors used in our 

experimental system. 

Loss of GPS signal 

In the following the behavior of the presented implementation will be investigated in the case 

of GPS signal loss. The sampling time of the algorithm and the inertial sensors is 𝑇𝑆
IMU = 0.01s 

while the sampling time of the GPS measurements is 𝑇𝑆
GPS = 0.1 s. The simulation time interval 

is 𝑇sim = 200 s. During the simulation GPS outages were assumed in the time intervals 20 s <

𝑡 ≤ 60 s and 100 s < 𝑡 ≤ 160 s. 



 

Figure 6. Model switch and GPS outages 

 

Figure 7. Gyroscope bias estimation 

In Figure 6 the system model switch and GPS signal outages can be seen. The value 1 means 

normal system model and strong GPS signal, while the value 0 means reduced system model 

and GPS outages, respectively. Selecting an appropriate value for the maximal acceptable po-

sition covariance in 𝐏max the normal system model double integrating the acceleration can pro-

vide usable position information up to 13 s after GPS outage. Selecting an appropriate value for 

the minimal acceptable position covariance in 𝑃min an instant system model switch (in a single 

sampling interval) can be achieved when GPS measurement becomes available again. 

In the simulation the modeled gyroscope measurement data is corrupted by noise and bias error. 

The knowledge or the proper estimation of the bias term is crucial in attitude estimation. The 

bias term is set to [𝛽𝑥 𝛽𝑦 𝛽𝑧]
T

= [+3   − 3   + 6]T °/s. As can be seen in Figure 7 the bias 

converges fast (in couple of seconds) to the correct value. The GPS outages do not affect the 

bias estimation process. 

 

Figure 8. Orientation estimation error in Euler angles 



In Figure 8 the error of the orientation estimation can be seen. During GPS outages the error 

variation is smoother yet higher. At 𝑡 ≈ 170 s a high Euler angle error can be observed, but it 

is a false error signal due to the gimbal lock effect. The variance of the Euler angle error calcu-

lated in the simulation time interval is 

 

where 𝛔Euler
norm and 𝛔Euler

redu  are variances belonging to the normal and reduced system models 

respectively. The simulation results show the GPS measurement based correction has a sig-

nificant influence on the orientation estimation when the body is subject to a long-term accele-

ration. However, in the present simulation the attitude estimation error remained in an accep-

table range even in the case of the reduced system model. 

 

Figure 9. Time function of the variation of the Rodigues parameters 

Beside the state estimation, the Kalman filter also provides an estimation of the covariance 

matrix of the state variables. In Figure 9 the time function of the diagonal elements of the co-

variance matrix can be seen corresponding to the Rodrigues parameters. To enhance the visibi-

lity a sliding window averaging filter is applied. The results show that the estimated and real 

variances are close using the normal system model; however, in case of the reduced system 

model the estimated variances are lower than the real ones. 

As can be seen in Figure 10 the position estimation in the 𝑥–𝑦 plane starting from the (𝑥, 𝑦, 𝑧) =

(0, 0, 0) point is close to the ideal trajectory. However, the error of the position estimation is 

continuously increasing during GPS outages. The error of the position estimation from the ideal 

trajectory can be characterized by the calculated variances: 

 

In the absence of GPS measurements, the variance of the position estimation with the reduced 

system model is clearly unusable. It should be noted that this situation is identified based on the 

operating mode of the filter and the end user can be notified. 



 

Figure 10. Position estimation using normal and reduced models 

Airplane in a descending spin 

It is a hard task to estimate the state of an airplane when it is exposed to large accelerations and 

angular velocities during aggressive maneuvers. To demonstrate the capabilities of the pro-

posed state estimation algorithm, sensor (gyroscope, accelerometer, magnetometer and GPS) 

measurement readings of a spinning UAV were simulated using the mathematical model of a 

real life UAV and the airplane simulation method introduced in [15]. 

  



 

Figure 11. Position measurement and estimation (top) and a part of the simulated trajectory (bottom) 

As seen in Figure 11 after a short straight flight, the plane was driven into a descending spin. 

Beside the gravity vector the onboard accelerometer measurement is also affected by the ac-

celeration of the plane. The difficulty of the orientation estimation arises when the acceleration 

of the airplane is comparable to the gravity vector that is the case in the simulation results 

presented in Figure 12. The part of the trajectory where the largest accelerations occur is illust-

rated on the bottom panel of Figure 11. As can be seen on Figure 12 the estimation of the 

acceleration is quite accurate. 

 

Figure 12. The acceleration during simulation 



Theoretically, in order to acquire the gravity vector for the virtual measurement of the orienta-

tion the accelerometer readings are corrected by the GPS measurement. This correction is in-

corporated into our UKF implementation. As can be seen in Figure 13 the proposed state esti-

mation algorithm can estimate the orientation of the UAV with acceptable error. The largest 

attitude estimation errors observable in the first interval of the simulation are due to the initial 

converging state of the filter. 

 

Figure 13. The orientatin error 

The variance of the Euler angle, the acceleration, the velocity and the position estimation errors 

calculated in the simulation time interval are: 

 

Performance of the implementation 

The execution time of our algorithm was 15 s in a today’s average PC meaning 7.5% CPU load 

in a real time implementation. In contrast, the execution time was 60 s in our embedded expe-

rimental system meaning 30% CPU load of a single core of the four core system with real time 

measurements. Based on these results it can be stated that this highly complicated sensor fusion 

algorithm can be used in practice on a relatively small and cheap embedded system. 

CONCLUSIONS AND OUTLOOK 

In this paper the task of state estimation of unmanned aerial vehicles was discussed. The non-

linear behavior of the orientation description was introduced and the advantages and drawbacks 

of various possible attitude representations were discussed. After surveying the properties of 

some navigation sensors the Kalman filter and some of its nonlinear extensions were presented. 

A possible solution of the problem based on the Unscented Kalman Filter algorithm was presen-



ted. A Matlab simulation and a C implementation of the proposed algorithm were also discus-

sed. The implementation utilizes the LAPACK library and runs effectively in an embedded 

onboard computer with ARM processor and Linux operating system. Several scenarios were 

tested during the study, including the outage of the GPS signal, the elimination of the gyroscope 

offset and the effect of severe accelerations during aggressive maneuvers. The results presented 

in the case studies section of the paper indicate that the proposed sensor fusion algorithm could 

also be applied in real-life UAV flight scenarios. 

There are several aspects of the implementation that could benefit from further study. The effect 

of magnetic anomalies corrupting the measurements of the magnetic sensor is out of the scope 

of this paper. However, these anomalies inevitably occur in real environments. Such distortions 

can be caused by either soft and hard iron part of the vehicles or the currents running in the 

vicinity of the sensors. Such anomalies must be eliminated or at least reduced in a successful 

application by means of a sophisticated calibration procedure. Another possibility for further 

development is optimizing the computational effort of the algorithm. Although it was shown 

that the computational power of such an embedded system is capable of running the imple-

mentation, further optimization of the algorithm can speed up the execution time providing 

safety and offloaded CPU. 
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NEMLINEÁRIS ÁLLAPOTBECSLŐ TERVEZÉSE ROBOTREPÜLŐGÉPEK NAVIGÁCIÓJÁHOZ 

Jelen cikk célja egy új módszer bemutatása robotrepülőgépek nemlineáris fedélzeti állapotbecslő rendszerének tervezé-

séhez és megalósításához. A feladat magában foglalja különböző navigációs szenzorokból származó mérési adatok gyűj-

tését és a rendszer dinamikája valamint a gyűjtött mérési adatok alapján a rendszer mozgásállapotát leíró értékek becs-

lését. Ilyen szenzorfúziós feladat megoldására lineáris rendszerek esetében a széleskörben elterjedt megoldás a Kálmán-

szűrő alkalmazása. Mivel a kiterjedt merev testek dinamikai leírása eredendően nemlineáris, a Kálmán-szűrő nemline-

áris kiterjesztésére van szükség. Az általunk javasolt módszer az úgynevezett Unscented Kalman Filter (UKF) technikán 

alapul. Az orientáció leírására kvaterniók és Rodrigues-paraméterek egyidejű használatát javasoljuk. A kifejlesztett 

módszert MATLAB-ban teszteltük, majd egy, a fedélzeti beágyazott környezetben futó C kódú implementációt készítet-

tünk. A módszer alkalmazásának lehetőségeit a cikkben példákkal is szemléltetjük. 

Kulcsszavak: UAV, szenzorfúzió, Unscented Kalman Filter (UKF), kvaternió, Rodrigues-paraméterek 

 

 

 

 

 

 
http://www.repulestudomany.hu/folyoirat/2015_3/2015-3-19-0241_Belso_Z_et_al.pdf 


