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Kivonat – Az orgonasípok hangkeltési mechanizmusa rendkívül bonyolult fizikai folyamat, mivel akusztikai és áram-
lástani jelenségek párhuzamosan, csatolva jelennek meg. Ennek ellenére, pusztán akusztikai rezonátorként modellezve
a sípot, megfelelő pontossággal becsülhetjük a hangzás több kulcsfontosságú paraméterét. A cikk célja az orgonasípok
szimulációjára alkalmas numerikus technikák bemutatása. Munkám során többféle numerikus eljárást használtam a mo-
dellezéshez, melyeket kereskedelmi és saját fejlesztésű szoftverekkel valósítottam meg. A szimulációk eredményeit anali-
tikus számításokkal és mérési adatokkal vetettem össze. Megmutattam, hogy a numerikus technikák jól alkalmazhatóak
a síp főbb akusztikai paramétereinek meghatározására.

Abstract – The sound generation of an organ pipe is a very complex physical process, since the acoustical phenomena
take place coupled with fluid flow effects. Even so, by modeling the organ pipe merely as an acoustic resonator, one can
predict several key parameters of the sounding with sufficient accuracy. The aim of this article is to examine the simulation
techniques that can be used for organ pipe modeling. In the course of the work reported herein, the author has modeled
organ pipes by means of various numerical techniques. Commercial and self-developed software packages were used,
and the obtained data were compared with analytical solutions and measurement results. It was shown that by using
these techniques one can approximate key acoustic parameters of the pipe.

1. Introduction

Scaling of organ pipes is still performed according to the rules
laid down in the 19th century. These rules prescribe pipe di-
mensions for the desired sounding, but in some cases changing
the traditional geometry parameters is inevitable (for aesthetic
and practical reasons). Then the organ builder can only rely on
his experience, attempting to tune the sounding parameters of
the pipe.

The aim of applying numerical techniques for organ pipe
simulation is twofold. On the one hand to speed up the scal-
ing and tuning processes, saving quite some time for organ
manufacturers as an organ consists of thousands of pipes. On
the other hand it will hopefully help developing new scaling
methods. The purpose of the latter is to predict, how the tradi-
tional organ sounds can be preserved with changed geometri-
cal parameters, and how new sounding characteristics can be
achieved.

Firstly, the sound generation mechanism of organ pipes is
examined and the acoustic parameters that typify the sounding
are described. Section 3 presents the numerical techniques, that
can be applied for modeling the pipe transfer function mea-
surement. Section 4 focuses on mesh generation and simula-
tion software. Impedance analysis and the results of pipe sim-
ulations are discussed in detail in section 5. Finally, conclusions
are summarized and an outlook on further researches is given.

This work was performed at the Budapest University of
Technology and Economics, Department of Telecommunica-
tions, Laboratory of Vibroacoustics.

2. Characteristics of the organ sound

The sound quality of pipe ranks depends on the dimensioning
(or scaling) of the pipes and on the voicing adjustment. Scal-
ing concerns all about selecting geometrical parameters of the
pipe, whereas voicing refers to tuning, the process of adjust-
ing the parts of the pipe to produce the desired tone. The aim
of scaling and voicing is to ensure the required quality of the
perceived sound.

The quality of the produced sound can be characterized by
various acoustical parameters that typify many aspects of the
sounding. To understand these factors, the basics of the sound
generation mechanism should be examined.

2.1. The sound generation mechanism

The organ sound is generated as the wind flows through the
pipes. The wind, that is delivered from the blower to the
pipes by complex mechanical structures of wind ducts, mov-
ing through metal or wooden pipes remains constant while a
key is depressed. As the sound evolves when the wind excites
the air column inside the pipe body, the pipe organ is classified
into the aerophones group.

There are endless types of configuration and structure for
organ pipes, whose main distinguishing features are: material
(wood or metal), form of the resonator (cylindrical, conical or
rectangular), sort of excitation (reed pipe or flue pipe) and end-
ing of the resonator (open or closed – also known as gedackt
or stopped). Longitudinal sections of a cylindrical metal and a
rectangular wooden flue pipe can be seen in figure 1.
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1. Figure: Longitudinal section of a cylindrical metal (left) and a
rectangular wooden (right) flue organ pipe
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3. Figure: Typical transfer function of an organ pipe
– – Exact harmonics of the fundamental – – Cut-off

Two main parts of the pipes are the foot and the body or res-
onator. The foot constitutes the bottom part of the pipe. At the
foot base is the foot hole or the bore, through which wind gets
into the pipe. The length of the pipe foot does not modify the
pitch. Therefore, organ builders design the foot lengths of their
pipes depending on several factors. The length and volume of
the resonator and the voicing determine the fundamental pitch
and timbre of the pipe.

The mouth of the pipe is the horizontal opening cut at the
joint between the body and the foot and is delimited by the up-
per and the lower lips. At this joint a sheet of metal or wood
called languid is attached horizontally inside the pipe. The lan-
guid divides the resonator and the foot completely, except for a
small groove parallel to the mouth named windway. This sep-
aration creates a cavity inside the pipe foot, which allows air to
flow into the resonator from the foot, but only as a thin jet of
wind directed towards the mouth.

The air jet that evolves in the windway starts to oscillate
around the upper lip, and this vibrating movement of air pro-
vides the excitation of the air column resonating inside the pipe
body. This air column can resonate at different characteristic
resonant frequencies.

As seen, the sound generation process of an organ pipe is a
very complex physical procedure as the acoustic phenomena
show up coupled with fluid flow effects. The examination of
this problem in full detail would require the analysis of a cou-
pled non-linear acoustic and fluid flow model.

At the same time, some key parameters of the sounding can
be obtained if the pipe is regarded merely as an acoustic res-
onator. By this simplification, transient attacks can not be taken
into consideration, our experiments are limited to the examina-
tion of stationary spectra. The stationary sound spectra of an
organ pipe is mostly determined by the transfer function of the
pipe resonator.

The aim of this brief summary was only to show the com-
plexity of mechanism. A more detailed review on the sound
generation process can be found in [1] or [2].

2.2. The pipe transfer function

The transfer function of the pipe determines how the resonator
will react to the excitation respect to the frequency. In figure 2
the measurement setup of the pipe transfer function is shown.
A loudspeaker is placed in the longitudinal axis of the pipe,
creating a sound field, which excites the air column resonating
in the pipe body. The excitation signal is a broadband signal,
e.g. a logarithmic sweep sine function. Microphones are usu-
ally placed near the mouth of the pipe and at the open end.
The signals of these microphones are analyzed by FFT analyz-
ers. The whole setup is placed into an anechoic room, which
provides the characteristics of a free sound field.

The geometry of the resonator determines the frequencies
of eigenresonances, i.e. the frequencies at which the air col-
umn inside the body can resonate at. At these eigenfrequencies
the transfer function shows peaks of significant amplification.
A typical organ pipe transfer function can be seen in figure 3.

The transfer function of the resonator also determines the
characteristics of the steady sound spectrum. Therefore, key in-
formation on the sounding can be obtained by the analysis of
the pipe transfer function. This data can be summarized by the
following acoustical parameters.

• Fundamental frequency
This is the first resonant frequency of the pipe. Even
though, other harmonics can be more dominant dur-
ing transient attacks (see [3, 2]), it is the fundamental
frequency that determines the tone of the pipe. This
frequency has the highest amplitude in the stationary
sound spectra.

• Frequencies of harmonic partials
As can be seen in figure 3, in case of an organ pipe,
the eigenresonances are not exact harmonics of the first
resonance. The frequencies of these modes are slightly
stretched. This effect is called stretching and it is an im-
portant attribute of the organ sound. The stretching effect
is especially sensitive to the geometry parameters of the
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5. Figure: Meshes of different organ pipe types

pipe (see [2]). Generally, stretching values are higher of
pipes with larger diameter.

• Q-factors of eigenresonances
The peaks of harmonic partials are not equally sharp. Q-
factors are higher in case of the first few harmonics and
lower for the further harmonics. This means that amplifi-
cation peaks become wider for the successive harmonics.
Q-factors are also dependent of the resonator geometry.
Larger diameter results in lower Q-factor in general.

• Cut-off frequency
Since the diameter (or depth, e.g. in case of wooden
pipes) of an organ pipe is much smaller than its length,
pure longitudinal eigenmodes appear at lower frequen-
cies. The frequency, where transversal resonances start to
appear, is called cut-off frequency as the sound spectrum
above this frequency shows irregularities compared to
the slightly stretched harmonic peaks at lower frequen-
cies. These irregularities are caused by the combined ex-
citation of longitudinal and transversal modes.

There are many other attributes of the organ sound, which
are not examined here. Detailed description of transient attacks
and other characteristics of the organ sound can be found in [1],
[3] or [2].

3. Numerical techniques

Since the computational capacity of computers has aug-
mented exponentially in the last few decades, more and more
accurate models can be examined by computer simulations.
While analytical computations are limited to the simplest cases,
problems that can be solved by numerical techniques can be
much more complicated. The other reason why simulations get
a wider and wider scope, is that they are more cost and time
effective than prototyping for example.

There are two numerical methods that are applied in a very
wide range in linear acoustics: the finite element method (FEM)
and the boundary element method (BEM). These two are able
to solve the Helmholtz equation with specified boundary con-
ditions, i.e. they give a solution to a boundary value problem.

Both the FEM and the BEM are based on discretization of the
geometry and – making use of the linearity – transforming the

integral equations into a large number of linear equations, that
can be expressed in matrix form. The matrices of these equa-
tions are called system matrices.

As the aim of our simulations is to simulate stationary spec-
tra, it is obvious to solve the problems in the frequency domain.
Therefore, effects such as transient attacks cannot be taken into
consideration, but the transfer function of the pipe can easily
be obtained.

In the following, two numerical methods that can be applied
for organ pipe modeling will be presented.

3.1. The indirect boundary element method

The indirect boundary element method is a modification of the
classical BEM, that is able to solve the internal and external
acoustic radiation and scattering problem simultaneously. The
indirect representation uses layer potentials that are the differ-
ences between the outside and inside values of pressure and its
normal derivative respectively.

The acoustic variables at any point in the entire volume
are computed as a function of these two layer potentials. The
boundary conditions can also be formulated in terms of the
layer potentials.

The system matrices in case of the indirect BEM are fre-
quency dependent full matrices. This means that the system
of equations must be solved one-by-one for each testing fre-
quency and because of the denseness of the matrices fast ma-
trix inversion techniques can not be used. On the other hand,
the geometry is given as a surface mesh, which requires less
nodes than a volume geometry and therefore the size of system
matrices is reduced.

3.2. The coupled FE/BE method

The coupled FE/BE method is a combination of the finite ele-
ment and the direct boundary element method and is able to
solve the interior and exterior acoustic radiation and scattering
problem, like the indirect BEM. The main difference is that the
problem is solved here by means of FEM in the interior domain,
while direct BEM is applied to set up boundary conditions.

The key of this method is the theory of superposition. As
the model is linear, the evolving sound field is a superimposed
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Perfectly Matched Layers

Many problems in acoustics, as well as in
other fields of application like geophysics,
oceanography and electro magnetics, in-
volve waves in an unbounded medium.
The solution of such problems using the fi-
nite element method or other domain-type
methods usually requires the use of a finite
computational domain, in which the entire
calculation is to be done.
Thus, one has to introduce an artificial
boundary that encloses the region of inter-
est. To describe a well-posed mathemati-
cal problem in the finite computational do-
main, some boundary conditions must be
imposed on the artificial boundary.
There are various methods that can be ap-
plied for this problem, like classical infinite
elements (see [4, 5, 6]), low and high or-
der boundary conditions (see [7], [8]) and
absorbing layers (see [9, 10, 11]).
An absorbing layer is an artificial bound-
ary layer, which is designed to damp or
eliminate reflecting waves from the bound-
ary of domain of interest. The perfectly
matched layer (PML) is a special absorbing
boundary, that was invented by Bérenger
in the mid 90’s for electro magnetic prob-
lems (see [12]). It is equipped with two ba-
sic properties:

1. It is designed to have zero reflection
at the interface of the layer and the

interior domain for any plane wave;
2. It is designed to make the solu-

tion decay exponentially inside the
layer.

These two properties ensure excellent
wave absorbance, at least on the contin-
uous level. A wave outgoing from the inte-
rior domain enters the layer without any re-
flection, and then decays exponentially. By
the time it arrives at the outer boundary of
the PML it is very weak. Then it maybe re-
flected back into the PML, it decays expo-
nentially again, and by the time it reaches
the interface of the layer and the domain of
interest it is too weak to cause any dam-
age.
The damping is introduced as a modifi-
cation of the wave equation, where the
derivative operator is substituted by a
damping operator. The PML can be for-
mulated in many ways, as described in
[10]. The most important of these are the
split (Bérenger) and the unsplit (Zhao-
Cangellaris) evaluations.
The PML has the distinct advantage that
on the continuous level it is ’perfect’ by con-
struction. Indeed it performs extremely well
in many circumstances, especially for high-
frequency waves. However there are still a
number of PML-related issues that remain
open and are a subject to current research.

These include:

• While the PML is perfect on the con-
tinuous level, it is not perfect on the
discrete level. In some cases the
PML performs poorly when incorpo-
rated in a discrete model, especially
in low frequencies.

• The performance of the layer is sen-
sitive to the choice of the PML pa-
rameters, i.e. the PML thickness
and the PML damping function.

As there is no commercial software avail-
able that handles the acoustic PML,
the author has implemented the per-
fectly matched layer for a simple, one-
dimensional case by the split formulation,
under Matlab environment.
First results showed, that the PML can per-
form well in a finite element implemen-
tation if the parameters are set correctly.
However, the basic formulation should be
improved in order to be able to extend
the model efficiently for three-dimensional
problems.
Since the PML is able to model the proper-
ties of a free sound field, a 3-D implemen-
tation will be able to be applied for setting
up pipe simulation environments. Pipe sim-
ulations using perfectly matched layers are
planned for further researches.

field of the incident and the reflected fields. The former is pro-
duced by the acoustical source placed in the vicinity of the res-
onator, while the latter is a scattered field that is determined by
the shape and dimensions of the examined object.

For the inner sound field (inside the pipe) the Helmholtz
equation is solved by the finite element method. The interaction
between the exterior and interior fields is prescribed as admit-
tance boundary conditions. These conditions can be obtained
by expressing the load of the exterior field at the openings, by
means of the direct boundary element method.

This way, the solution is carried out in the following steps.
1. Computation of the incident sound field.
2. Calculation of BE system matrices to determine the re-

lation of sound pressure and particle velocity for the re-
flected field on the boundary. Admittance boundary con-
ditions can be set up, expressed from these matrices.

3. Solving the interior problem with boundary conditions
by means of FEM and evaluating the pressure field at
any point of the exterior domain by the BEM.

4. Steps 1–3 have to be completed for each testing fre-
quency. There are some simplification options that can
be applied to speed up the process.

Since the geometry consists of openings and perfectly rigid
walls in the simplest case, the boundary can be split up into
two sub-domains (as it is seen in figure 4):

1. Openings: Admittance boundary conditions. (vn = Hp)
2. Walls: The normal particle velocity is zero. (vn = 0)

As the normal particle velocity is known at the walls, the BE
system matrices can be expressed in their Schur’s complement
form. Hence the storage size of the admittance condition matrix
can significantly be reduced.

To complete a solution, the pressure field of the region of
interest must be computed for each testing frequency. This re-
quires a large number of computational steps as the BE and
FE equations have to be evaluated, which may take quite some
time if the resolution of the model is fine. To speed up the pro-
cess there are some options that can be applied.

Firstly, the acoustic stiffness and mass matrices (FE system
matrices) are independent of frequency, so they have to be cal-
culated only once. These matrices are sparse, which means that
their storage size can be reduced and fast matrix inversion al-
gorithms can be used on them.

The BE system matrices are frequency dependent dense (or
full) matrices, but their values are varying slowly with respect
to the frequency. The same holds for their Schur’s complement
forms. Making use of this, the computational process can be
sped up by using interpolation formulae to approximate their
values. Taking this into consideration it is sufficient to evaluate
BEM matrices only for a fraction of the whole number of testing
frequencies.

By these simplifications, the coupled method can be effi-
ciently applied for the solution of a combined interior and ex-
terior problem.

4. Simulation setup and software

In case of the simulation model, the organ pipe is given as a ge-
ometry mesh. The simplest case implies that the mesh consist
of perfectly rigid, infinitely thin walls and openings. The rigid-
ness of the walls means that the resonances of the mechanical
structure of the pipe body are negligible, i.e. the resonating air
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6. Figure: Simulation setup in LMS Sysnoise
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7. Figure: Pipe simulation in Matlab: Pressure distribution of
different modes (pressure values given in Pa)

does not produce vibrations in the walls. This yields that the
normal component of the particle velocity is equivalent to zero
on the walls. Note, that this is just an approximation, in the real
case the walls and the air inside are in active interaction, which
would require the analysis of a coupled structure and air vibra-
tion model. For the following, the walls are considered to be
perfectly rigid.

Simulation setups model the measurement of the pipe trans-
fer function. As it was mentioned before, the excitation is pro-
duced by a loudspeaker and the response is recorded by micro-
phones. The loudspeaker is simulated as a point source with
given amplitude for each testing frequency, which is an accept-
able approximation for the simulations. The microphones are
substituted by simple measurement points, that can be placed
anywhere in the domain of interest.

4.1. Mesh generation

The acoustic parameters of the organ sound are highly affected
by the pipe’s dimensions. Even small changes of the geometry
can have major influence on the sounding and therefore, the
discretization should be adequately fine. At the same time, by
increasing the resolution of the model, storage size of the ge-
ometry and the computational effort will raise enormously.

The storage size of a mesh is proportional to the number of
its nodes and elements. Hence in case of a surface geometry the
storage size is O(n2), while for a volume geometry this value
is O(n3), n denoting the average number of nodes in a unit
length. As the system matrices are the size of N ×N (where N
represents the number of nodes), the storage sizes of the system
matrices are O(n4) and O(n6), respectively. This means that a
compromise must be made between the accuracy and the com-
putational effort.

The validity range of the simulation is also dependent of
the mesh resolution, the relation between the maximal element
sizes (lx, ly and lz) and the upper frequency limit (fmax) is given
as:

fmax =
c

8max{lx, ly, lz}
. (1)

It is useful to create a mesh that is discretized symmetri-
cally and with uniform resolution. This way the values of lx,
ly and lz will be approximately equal, and effects of numeri-
cal instabilities caused by irregular meshing is minimized. The

pipe meshes that were used for simulations were created by
an algorithm that provides these attributes. Example meshes of
different types of organ pipes can be seen in figure 5.

4.2. Simulations by the indirect BE method

In the case of the indirect BEM the region of our interest and
thus, the sound field is split into an interior (inside the pipe)
and an exterior (outside the pipe) domain. The connection and
continuity between these two fields are described with bound-
ary conditions, namely that the jump of pressure (the double
layer potential) is zero at the boundaries (i.e. at the free edges
of the mesh).

The resonator geometry is given here as a surface geometry.
The acoustic parameters at the measurement locations are com-
puted for each testing frequency, one at a time.

The LMS Sysnoise software package was used for simu-
lation tests involving the indirect BE method. The simulation
setup screen is shown in figure 6. A field point mesh can be
seen in the longitudinal axis of the pipe, its nodes are the mea-
surement points.

4.3. Simulations by the coupled FE/BE method

The application of this method involves the usage of the FEM
for the interior domain, and utilization of the BEM to calculate
the boundary conditions. The mesh is given here as a volume
geometry, but the surface geometry is also needed, to be able to
apply the BEM. This way the storage size required by the mesh
is somewhat bigger than in case of the indirect BEM.

As the openings of the pipe consist of far less nodes than
the walls, the Schur’s complement technique can efficiently be
used to set up the admittance boundary conditions for open-
ings. Therefore, the frequency dependent part of the system
matrices is relatively small compared to the size of the whole
matrices. To speed up the computational process a spline in-
terpolation formula were used on the admittance matrices, and
thus, the BEM was only invoked for only a small fraction of the
testing frequencies in case of pipe simulations. This resulted in
a remarkable reduction of the computational time.

Simulations involving the coupled FE/BE method were run
using a solution program, developed by the author in Matlab
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Analogous circuit:

Low frequencies (kr < 5)

High frequencies (kr � 5)

R = 1.505%0c

M = 0.613r%0

Z(ω) = R × iωM

MR

Z = %0c

8. Figure: Comparison of analytic and simulation results of the terminating impedance of a cylindric pipe. L = 857.5 mm; r = 42 mm.

(a) 100 Hz (b) 2 kHz (c) 100 Hz (d) 2 kHz

9. Figure: Distribution of terminating impedances of cylindrical (left) and rectangular (right) organ pipes. Values given in Rayl.

language. The AcouFEM toolbox (see [13]) and the AcouBEM
software were also used under the Matlab environment. All
geometry meshes that were used for simulations (both indi-
rect BEM and coupled FEM/BEM) were created by self-written
scripts. Simulation plots can be seen in figure 7.

5. Results

5.1. Analytic calculations

The simplest analytic formula, which determines the eigenfre-
quencies of an air column resonating inside a tube with both
ends open is the well known relation

fn = 2n
c

4l
; n = 1; 2; 3 . . . , (2)

where fn is the frequency of the n-th eigenmode, c is the speed
of sound, and l denotes the length of the resonator. This means
that an integer multiple of the half wavelengths of the longitu-
dinal modes are equal to the length of the tube. For a tube with
one end closed we get

fn = (2n− 1)
c

4l
; n = 1; 2; 3 . . . . (3)

Note, that these modes are the eigenfunctions of the wave
equation with boundary conditions p = 0 at an open end and
v = 0 at a closed end. As these conditions naturally does not
apply in a real case, an end correction formula (see e.g. [14]) can
be used to take the interaction between the interior and exterior
field into consideration. This prescribes the effective length of
the tube as

leff = l + 0.62r, (4)
r denoting the radius of the tube. If both ends are open, the
correction factor is doubled.

5.2. Impedance analysis

Characteristics of the pipe transfer function and the organ
sound itself can be understood by taking into consideration
that the air column that resonates inside the pipe body is in-
teracting with the exterior sound field.

The interaction between the interior and exterior sound
field can be expressed by introducing terminating acoustic
impedances at the enclosures of the pipes, i.e. the open end and
the mouth. These impedances describe the load represented by
the exterior sound field.

The radiation impedance in case of a plane piston moving
in a long cylindric tube can be calculated analytically. In this
case, the termination impedance can be described as an anal-
ogy of an electrical parallel R-L circuit (see: [14]). The equiva-
lent acoustic circuit of concentrated parameters consists of an
acoustic resistance and an acoustic mass. At high frequencies
(kr � 5) the effect acoustic mass is negligible and the equiva-
lent circuit is simplified to a pure acoustic resistance.

The impedance analysis of an organ pipe can be done by nu-
merical means, using the boundary element method. The com-
parison of the results of analytic computation and simulation
by the BEM can be seen in figure 8.

Despite, that in case of the piston problem, the piston is con-
sidered to be perfectly rigid, which would be a very rough ap-
proximation of the resonating air column, the similarity of the
two curves is remarkable. It is also worth to mention, that for
high frequencies the curves converge to the value of %0c.

The analysis of the terminating impedances gives an expla-
nation of some attributes of the pipe transfer function.
• The end correction formula and thus, the shifting of the

fundamental frequency can be understood taking into
consideration that the finite values of the terminating
impedance is not equivalent to the ideal p = 0 case,
which prescribes zero impedance for the open end.
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• The stretching effect is caused by the frequency depen-
dence of the terminating impedances. Since the value of
the terminating impedances are higher for higher fre-
quencies, the frequencies of the longitudinal modes be-
come more and more stretched.

• Decreasing Q-factors of eigenresonances are partly
caused by the increasing values terminating impedances.
The other effect that determines the Q-factor of a certain
resonance is the damping factor of air, which is also fre-
quency dependent.

Analytic solutions can not take into account that the radi-
ation impedance is not only dependent of the frequency, but
also varying spatially over the openings of the pipe. The distri-
bution of the impedance values in case of cylindrical and rect-
angular pipes can be seen in figure 9.

The impedance values near the edges are approximately
half of the values near the center of the cross section. This
means that the analytic approximation, which regards these
impedances independent of the location, can not be success-
fully applied as boundary conditions in simulations. As seen,
the distribution of the terminating impedance values is not, or
just negligibly dependent of the frequency.

Making use of the facts, that the values of terminating
impedances are varying slowly with respect to the frequency,
and that their distribution over the cross section is nearly inde-
pendent of the frequency, interpolation formulae can efficiently
be applied in the coupled FE/BE method.

5.3. Pipe simulations

Pipe simulations were run on a series of wooden flue organ
pipes, which already have been built and measured at the
Fraunhofer Institut für Bauphysik, Stuttgart. These pipes were
designed as a part of an experiment that examined how the di-
mensioning affects the sounding of wooden pipes. Therefore
these pipes had different geometrical parameters, but similar

steady sound characteristics, and were appropriate subjects for
test simulations. The experiment is described in [3] in detail.
The series consisted of five pipes of C tone, three from these
were chosen and made simulation models of. Table 1 shows
the exact dimensions of these pipes (4/16, 4/18 and 4/20 mean
mouth width to circumference ratio).

The meshes were generated using a self developed, paramet-
ric mesh generator script. According to measurement data, cut-
off frequencies of these pipes were in between 1.5 and 2 kHz.
Hence, maximal element size was chosen not to be greater than
17.5 mm, which resulted a maximal validity frequency of ap-
proximately 2.5 kHz, making use of equation (1). At the mouth
part, the model resolution was set higher to be able to follow
the steep changes of acoustical variables near the free edges of
the geometry.

Simulations were run by using both the indirect BEM and
the coupled FE/BE method. Testing frequencies were chosen
to start from 50 Hz and end at 2500 Hz with a 1 Hz resolution.
In case of the coupled method, the Schur complement and in-
terpolation technique were applied. The interpolation was car-
ried out using a spline formula with 30 base points. The surface
meshes consisted of approximately 1500 nodes, while the vol-
ume meshes had 2500 nodes.

Computational times were around 6 and 6 1
2

hours using the
indirect BEM, and between 6 and 8 hours using the coupled
method on the same computer. It is worth mentioning, that the
coupled method under a self developed program performed
nearly as fast as the indirect method under the commercial soft-
ware package. This means that a more optimized implementa-
tion of the coupled method would perform very well in simu-
lations.

In the following tables and figures simulation results are
compared to each other and measurement data. Frequencies of
the first five harmonics and stretching factors were examined.

A chimney pipe experiment

Beside the simulations of wooden pipes a
chimney pipe experiment was performed
by using the indirect BEM. The chimney
pipe is named after the small ’chimney’
tube that is attached to the resonator body.
The geometry is shown in figure 5.c). As
seen, the resonator geometry is more com-
plicated than in case of wooden pipes.
Only the fundamental frequency was given

beside the geometry parameters. This had
the value of 130.8 Hz according to mea-
surement results. The indirect BEM simu-
lation gave 131 Hz for the fundamental fre-
quency, which is accurate, as the simula-
tion was run with the resolution of 1 Hz.
As this experiment was not in the main
line of the research, the results are pre-
sented as an example of application of

the indirect BEM for a special mesh. It is
worth mentioning that the same C tone is
achieved by a completely different pipe ge-
ometry and dimensioning. This experiment
was demonstrated here only as an outlook
on further simulations that can be carried
out by using the presented numerical tech-
niques.

Parameter Value
Resonator length 586.0
Resonator diameter 81.1
Chimney length 162.2
Chimney diameter 20.3
Mouth height 22.0
Mouth width 59.9

The table shows the exact dimensions of
the pipe in mm. The simulated spectrum
at the pipe mouth can be seen in the fig-
ure on the right hand side.
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1. Table: Pipe dimensions given in mm

Pipe Length Width Depth Mouth height Mouth width
4/16 1180 69.80 86.87 19.87 68.64
4/18 1181 61.20 98.32 21.53 60.76
4/20 1179 55.34 108.40 25.34 53.93

2. Table: Simulation results compared to measurement data

Pipe: 4/16 Measurement Indirect BEM Coupled FE/BE
Harmonic F [Hz] Stretch F [Hz] Stretch F [Hz] Stretch
1. (Fund.) 129.87 1.000 131 1.000 128 1.000
2. (Octave) 261.76 2.016 263 2.008 253 1.977
3. 396.45 3.053 397 3.031 388 3.031
4. 536.98 4.135 531 4.053 522 4.078
5. 677.62 5.218 667 5.092 660 5.156

Cut-off [Hz] 1987 1987 2008

Pipe: 4/18 Measurement Indirect BEM Coupled FE/BE
Harmonic F [Hz] Stretch F [Hz] Stretch F [Hz] Stretch
1. (Fund.) 131.22 1.000 130 1.000 128 1.000
2. (Octave) 262.44 2.000 262 2.008 252 1.969
3. 400.38 3.051 394 3.025 387 3.023
4. 547.08 4.169 529 4.056 521 4.070
5. 680.99 5.190 664 5.095 660 5.156

Cut-off [Hz] 1740 1741 1768

Pipe: 4/20 Measurement Indirect BEM Coupled FE/BE
Harmonic F [Hz] Stretch F [Hz] Stretch F [Hz] Stretch
1. (Fund.) 131.22 1.000 130 1.000 126 1.000
2. (Octave) 265.12 2.020 262 2.007 255 2.024
3. 401.73 3.061 395 3.024 388 3.079
4. 543.71 4.143 529 4.053 524 4.159
5. 679.64 5.190 665 5.095 662 5.254

Cut-off [Hz] 1582 1579 1599

(a) Pipe 4/16

(b) Pipe 4/18

(c) Pipe 4/20

10. Figure: Comparison of simulated spectra of wooden
pipes at the pipe mouth – Indirect BEM – Coupled FEM/BEM

The stretching effect is represented by the stretching factor

Stretch =
fn

f1
. (5)

Q-factors of these modes were also given among measure-
ment data, but to be able to determine real Q-factors a damping
model of air should be applied, which was not implemented
herein. Thus, Q-factors determined by simulations can only be
examined qualitatively, as without a damping model, simu-
lated Q-factors are much higher than the real ones.

Table 2 shows comparison of acoustical parameters of the
pipes, while in figure 10 diagrams of simulated spectra at the
pipe mouth are displayed.

The fundamental frequencies are approximated within 1%
range by the indirect boundary method, this means an absolute
deviation that is less than 1.5 Hz. The coupled method predicts
the fundamental frequencies with the average error 2-3% be-
low the measured value. The maximal deviation is experienced
in case of the 4/20 pipe, where the error is 5 Hz. This error is
acceptable considering the simplicity of the model. The 1% de-
viance in case of the indirect BEM method is satisfactory and
would alse be acceptable for an industrial application.

In case of the 4/16 and the 4/18 pipe the coupled method
showed some irregularities for the octave and determined the
stretching factor with significant error. The deviation of the
measured and simulated frequencies is around 4-5% for these
two pipes. For the further harmonics the coupled method es-
timates the stretching factors more accurately than the indirect
method. However, the frequencies of these partials are gener-

ally determined more accurately by the indirect method, with
a maximal error of 4%.

The cut-off frequencies are determined accurately by the in-
direct BEM and within a 1.5% error range by the coupled tech-
nique. This is a very accurate result taking into consideration
that the resonater model implies remarkable simplification and
neglects. The resulting cut-off frequencies are lower for the
deeper pipes, as it is expected. Above the cut-off frequencies,
the spectra become irregular as expected. As the irregularities
are very sensitive to the model parameters, the simulated spec-
tra are not expected to match up above the cut-off. In this fre-
quency range the spectrum is not examined in details, only the
cut-off effect is important.

Comparing the diagrams to figure 3, it can be seen, that the
simulated transfer functions qualitatively correspond to a typi-
cal pipe transfer function. The amplification peaks are wider for
the successive harmonics, as expected. The detailed analysis of
Q-factors is not done herein, because of the reasons mentioned
above.

As it can be seen on the comparison diagrams, minor irregu-
larities are experienced in simulation results involving the cou-
pled FE/BE method around 1.5 kHz. Except for these irregu-
larities, as it can be seen, the simulated spectra approximately
match up for the two methods. Therefore, both methods can ef-
ficiently be applied for pipe simulations. The accuracy analysis
of the two methods is summarized in table 3.
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3. Table: Comparison of realtive errors

Parameter Indirect BEM Coupled FEM/BEM
Fundamental frequency <1% 2-4%
Octave frequency <1% 3-5%
Further partials 2-4% 2-5%
Stretching factors 2-3% <2%
Cut-off frequency <1% <1.5%

6. Conclusions

It was shown in this paper, that the indirect boundary element
method and the coupled FE/BE method can be applied for
the calculation of the steady sound field of an organ pipe res-
onator. These methods are unable to model the sound gener-
ation process in its whole complexity. Despite of the fact, that
the acoustic model contains significant neglects and simplifica-
tions, some key parameters on the sounding can be determined
using these methods.

Frequencies of the fundamental and other harmonics,
stretching factors and cut-off frequencies were compared to
each other and measurement data. Generally, the indirect BEM
method gave a more accurate result for the frequencies of the
partials, while stretching factors were approximated more ac-
curately by the coupled method. The cut-off frequencies were
predicted with sufficient accuracy by both methods.

It was also shown, that for a more detailed examination of
the sounding characteristics, e.g. the analysis of Q-factors the
acoustical model should be extended.

7. Future research

The author’s plans concerning future research are the follow-
ing. The PML method should be implemented for a three di-
mensional case, to be able to set up pipe simulations using this
method. It would also be useful to implement other numerical
techniques such as infinite elements or other types of artificial
boundaries. In order to be able to increase the resolution of the
model, optimization and further speed up techniques should
be applied. The coupled method should also be further opti-
mized and tested for different pipe geometries with various
resolutions.

To enhance the accuracy of the simulations, the pure acous-
tical model should be extended with physical parts, by which
resonances of the mechanical structure of the pipe could be ex-
amined by means of a coupled vibroacoustic model. A long
term plan is to examine the sound generation mechanism by
taking into consideration the fluid flow effects. To be able to
do this the analysis of a non-linear coupled model needs to be
done. By the simulation of these effects attack transients could
be calculated, for example.
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