SIMULATION AND OPTIMIZATION METHODS FOR ORGAN PIPE DESIGN
PhD Workshop, Dept. of Telecommunications

Péter RUCZ
3rd year PhD student
Supervisor: Fülöp Augusztinovicz
12/16/2011
Outline

Brief introduction

Optimization of chimney pipe resonators
 Optimization algorithms
 Results and further development

Simulation of the flow in a flue pipe model

Computational aeroacoustics
 Aeroacoustic simulation in Matlab environment

Progress report
 Educational activities
 Publications

Summary
Introduction and background

– Brief introduction
 • 1st & 2nd semesters: Numerical methods in acoustics
 Infinite element method
 Modeling various organ pipe forms
 • 3rd – 5th semesters: Fluid flow modeling
 Theory of fluid mechanics and turbulence
 Computer methods of flow simulation
 • 4th & 5th semesters: Aeroacoustics and coupled techniques
 Analogies and formulations of the problem
 Implementation in a finite element code

– Project background
 • INNOSOUND has finished in January 2011
 Sound design of labial pipes
 • ReedDesign has started in November 2011
 Reed pipes: sound generation mechanism, simulations
 Administration steps started in January 2011
 Preparations from August to November 2011
Problem description and modeling

– Problem description
 • Chimney pipes can produce special sounding
 • How to exploit this capability the most?

– Methodology
 • The resonator can amplify (depress) some partials
 • The transfer function of the resonator must be tuned

– The one-dimensional model

The model has 6 input scaling parameters
Our goal is determining some of these variables
Optimization algorithms

- Optimization goal
 - Tune to a given frequency
 - Amplify given harmonic(s)
- Simple iteration
 - Only the lengths are unknown
 - Based on reflection coefficients
 - Very fast calculation
- Global cost minimization
 - A common optimization approach
 - Applicable to all parameter sets (Only some of them are relevant)
 - Construction of a cost function (Based on frequency deviations)
 - Computationally more expensive
Results and further development

- Pipes have been built based on the optimization method
- Good match of optimization, simulation and measurement results
- Quality factors can be taken into account
- Models for different pipe types can be developed

- Publications in the topic
 - Conference paper at DAGA2012
 - Journal (JASA) paper is currently in preparation
Simulation and model setup

- Resonator
- Foot hole
- Pipe foot
- Lower lip
- Upper lip
- Pipe body
- Air jet
Flow simulation in a flue pipe model

- The pipe foot model (H. Außerlechner)
 - Precision tuning of geometry
 - Reproducable measurements
 - LDA by means of high speed camera
 - Perfect for validating simulations

- Purpose of modeling
 - Accurate computer representation
 - Explanation of interesting phenomena

- Simulation technique
 - Large Eddy Simulation (filtering NSE)
 - Implementation in OpenFOAM
 - Simulations on supercomputer system

- Difficulties
 - Mesh creation is not trivial
 - Boundary conditions of free flow
 - Numerical instabilities
Flow simulation results I.

- The nature of the flow
 - \(Re \approx 2000 \) – 3000 (transient domain)
 - Free jet profile develops
 - 3D turbulent whirls obviously detectable
 - Kármán vortex street appearing

- Comparison of measurements and simulation of the free jet case
 - Velocity and TKE profiles, different distances from lower lip
 - Hot wire anemometry measurements
 - 2D and 3D models have been compared

- Publications in the topic
 - Abstract submitted to CMFF’12 Conference (International, refereed)
Flow simulation results II.

Comparison of simulated and measured velocity profiles

- Meas. (Ausserlechner2009)
- Simulation (2D)
- Simulation (3D)

Velocity magnitude (shifted) [m/s]

X position [mm]

Y positions: y = 0.5 mm, y = 5.0 mm, y = 10.0 mm, y = 15.0 mm, y = 20.0 mm, y = 25.0 mm
Computational Aeroacoustics (CAA)

- Aeroacoustic analogies
 - Compute radiated sound from turbulent flow field
 - One-way effects (no feedback)
 - Time dependent acoustic source distribution
 - 3 types of sound sources

- Numerical formulations
 - Formulation in time domain
 - Incorporation into FEM
 - New source terms can be computed at each time step

- Difficulties of application
 - The whole 3D flow field must be known (and stored)
 - Interpolation between meshes

Pipe foot
Languid
Pipe feedback
1-pole
Upper lip
Radiated sound
Edge tone
2-pole
Shear layer: 4-pole
Lower lip
Organ pipe simulation and optimization
CAA implementation and test

– Implementation
 • Time domain FEM implementation
 • Newmark time stepping scheme
 • Infinite elements on boundaries
 Zero mass formulation needed

– Test problem
 • Academic example of 2D corotating vortex pair (Powell, 1965)
 • Sound propagation speed significantly reduced \(c \approx 1 \text{ m/s} \)
 • Flow field analytically, everything else is numerically computed

– Discussion
 • Computation of derivatives is noisy
 • Very fine mesh is required
 • Computational effort limitations
PhD course and requirements

- Subjects
 - 3 obligatory and 3 facultative subjects accomplished
 - Lectures on fluid dynamics

- Languages
 - English advanced, complex (C1)
 - Spanish intermediate, complex (B2) (summer, 2011)
 - Latin intermediate, complex (B2)
 - Currently learning German and Spanish
 - Language criteria are fulfilled

- Participation in projects
 - Key tasks in the ReedDesign project
 - Some smaller tasks in the COSMA project

- Recent travelings
 - Two weeks at Fraunhofer IBP, October 2011
Educational activities

– 2010/11 2nd semester
 Laboratory 2. measurements \hspace{1cm} 12 \times 4 \text{ hrs.}
 Audio technology laboratory \hspace{1cm} 4 \times 3 \text{ hrs.}
 Audio engineering laboratory \hspace{1cm} 6 \times 3 \text{ hrs.}
 Project laboratory consultations \hspace{1cm} 14 \times 1.5 \text{ hrs.}
 Laboratory demonstrations \hspace{1cm} 4 \times 4 \text{ hrs.}
 Preparation time \hspace{1cm} \approx 30 \text{ hrs.}
 \textbf{Total} \hspace{1cm} 10 \text{ hrs. / week}

– 2011/12 1st semester
 Software laboratory 1. \hspace{1cm} 14 \times 2 \text{ hrs.}
 Measurement laboratory \hspace{1cm} 4 \times 4 \text{ hrs.}
 Project laboratory consultations \hspace{1cm} 14 \times 1 \text{ hrs.}
 Thesis consultations \hspace{1cm} 14 \times 3 \text{ hrs.}
 Preparation time \hspace{1cm} \approx 20 \text{ hrs.}
 \textbf{Total} \hspace{1cm} 8.6 \text{ hrs. / week}

• My student, Bence Olteán has won 3rd prize at the TDK
Publications

– Summary of publication points

<table>
<thead>
<tr>
<th>Type</th>
<th>Accept</th>
<th>Submit</th>
<th>Pending</th>
<th>Planned</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Journal papers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ref. int.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.0 (7.0)</td>
</tr>
<tr>
<td>Ref. Hun.</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>4.0 (4.0)</td>
</tr>
<tr>
<td>Conference papers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ref. intern.</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0.0 (1.5)</td>
</tr>
<tr>
<td>Intern.</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3.7 (7.2)</td>
</tr>
<tr>
<td>Hun.</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>0.1 (0.1)</td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>7.8 (19.6)</td>
</tr>
</tbody>
</table>

– Achievements

- Huszty Dénes award, 2011
- BMe research grant publicity award, 2011
- Our last project, **INNOSOUND** was selected by the European Comission as a success story
Summary

1. I have shown how simulation and optimization techniques can be applied to sound design of organ pipes
 - Development of an optimization algorithm for chimney pipes
 - Numerical modeling and optimization of pipes with tuning slot

(2.) I have developed a coupled numerical model that is capable of reproducing the edge tone of a flue organ pipe
 - Proper numerical fluid flow and acoustic model with coupling
 - Validation by comparison to precise measurements

- Obligatory, facultative and some other subjects accomplished
- Language criteria fulfilled
- Various educational activities
- Active participation in the ReedDesign project
Thank you for your attention!

Acknowledgments:

Péter Fiala, PhD.
Fülöp Augusztinovicz, PhD.
Judit Angster, Dr. (Fraunhofer IBP)
András Miklós, Dr. (Steinbeis Transfer Center)
Máté Lohász, PhD. (Dept. of Fluid Mechanics)

Support: TÁMOP-4.2.2/B-10/1-2010-2009 project