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ABSTRACT 

It is a known fact that traditional organ pipes can only be played in a strictly limited 

range of dynamics. Each pipe is designed and tuned to a given nominal windchest pres-

sure. Modifying the pressure of the wind supply also affects the pitch and the timbre of 

the pipe. Therefore, unlike on the piano, the volume of the sound cannot be controlled 

by the strength or the velocity of pressing the keys. 

In order to overcome these limitations, a German instrument maker proposed a new pipe 

construction that can handle changing wind supply and produce louder or quieter voice, 

depending on the pressure, while keeping the pitch of the pipe stable. On the other hand, 

as it was found from laboratory measurements, the timbre is changing significantly with 

the blowing pressure. In order to improve the design, we first need to establish a physi-

cal model of the voice production of this new construction, and set it against the results 

of the measurements. 

In this thesis the sound generation of the novel pipe construction is simulated using var-

ious physical models. First, a brief review of the parts of the pipe organ is given as well 

as the explanation of the operation of two types of organ pipes: labial and lingual ones. 

Then the model of the sound production of the new organ pipe construction is elaborat-

ed. A coupled system of a free reed connected to a resonator is studied. The simulation 

of the interaction of these elements is carried out by means of two different methods. 

First, the model of truncated impedances is used, and second, the so-called reflection 

function approach is examined. Finally, the comparison of the results of the simulations 

and the measurements is presented and discussed in this paper. 
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KIVONAT 

Ismert tény, hogy a hagyományos orgonasípok hangereje játék közben nem válto-

ztatható, hiszen mindegyik síp egy adott névleges nyomásértékre van tervezve. Ezen 

nyomás megváltoztatása kihat az orgonasíp hangmagasságára valamint hangszínére is. 

Így – a zongorával ellentétben – a hangerősség nem változtatható a billentyűk 

lenyomásának erejével. 

A probléma orvoslására egy német hangszerkészítő mester új konstrukciót hozott létre, 

melynek lényege, hogy a sípok különböző nyomás esetén képesek hangosabban vagy 

halkabban megszólalni, míg a hangmagasságuk állandó marad. Azonban, ahogy azt 

korábbi mérések kimutatták, az új sípok hangszíne továbbra is érzékeny a megfúvás 

nyomására. A konstrukció javításának érdekében először fel kell állítani a sípok 

hangkeltésének fizikai modelljét és össze kell azt hasonlítani a mérések eredményével. 

Jelen dolgozat bemutatja az újfajta sípok hangkeltésének két különböző modell alapján 

történő szimulációját. A dolgozat először ismerteti az orgona különböző részeit és kétfa-

jta orgonasíp (az ajak-, valamint a nyelvsíp) hangkeltési mechanizmusát. Ezután az új 

konstrukció hangkeltésének modellezésébe ad betekintést. A dolgozat tanulmányozza 

továbbá a rezgő nyelvből és rezonátorból létrehozott csatolt rendszer viselkedését, ahol 

a rezgő nyelv egy speciális, úgynevezett „átcsapó nyelv”, mely egy egyik végén be-

fogott rúdként modellezhető. A rendszer működését két különböző elv felhasználásával 

modellezzük: először a modális szuperpozíció elvét felhasználva, a bemenő impedancia 

segítségével, majd a reflexiós függvény módszerével. A dolgozatot a szimulációs ered-

mények egymással, valamint a méréssel való összehasonlítása és értékelése zárja. 
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1. INTRODUCTION 

1.1. Motivation  

It is a known fact that traditional organ pipes can only be played in a strictly limited 

range of dynamics. [Miklós et al, 2003, 2006] Each pipe is designed and tuned to a giv-

en nominal windchest pressure. Modifying the pressure of the wind supply also affects 

the pitch and the timbre of the pipe. Therefore, unlike on the piano, the volume of the 

sound cannot be controlled by the strength or the velocity of pressing the keys. To be 

able to control the volume of the sound to some extent, the organ pipes can be arranged 

in a big wooden box, called the swell. One side of this box consists of palettes that can 

be closed or opened by a pedal. Therefore, when the palettes are closed, less sound is 

released. The disadvantage of this method is that the control over the volume is limited, 

moreover, as the wind supply has to be steady, it cannot be controlled by the musician. 

In grandiose church or concert organs that have a great number of stops the dynamics 

can also be controlled by turning stops on or off. However, in case of smaller pipe or-

gans this is not an option due to the limited number of stops. 

In order to overcome these problems, a German instrument maker has recently produced 

a new pipe construction that can handle changing wind supply and produce louder or 

quieter voice, depending on the pressure, while keeping the pitch of the pipe stable 

[Zacharias 2015]. On the other hand, as it was found from measurements carried out on 

experimental pipes the timbre is changing significantly with the blowing pressure [Rucz 

et al. 2016]. In order to improve the design, we need to establish a physical model of the 

voice production of this new construction, and set it against the results of the measure-

ments. 

1.2. Objectives 

The present thesis aims at the establishment and analysis of the physical model by 

means of computer simulations. As the sound generation mechanism of lingual pipes is 

a very complex process involving coupled fluid flow, mechanical vibration and acousti-
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cal phenomena, it is necessary to introduce simplifications in the computer model. In 

the thesis a “one-dimensional” arrangement is established and examined. The simplified 

model can be regarded as one-dimensional because of the following reasons. 

First, wave propagation in the resonator is limited to the simulation of planar or spheri-

cal waves travelling along the axis of the pipe. This means a limitation to the applicable 

frequency range of the model, as discussed later. Second, the flow model is simplified 

by substituting the real three-dimensional setup by a one-dimensional description mak-

ing use of effective quantities. 

On the other hand, the reduced complexity of the model allows for rapid simulations 

and synthesis of sound samples by means of time domain computations. These comput-

er simulations are helpful for assessing the correctness of the physical model. Moreover, 

results obtained from the computer simulations are expected to be helpful in explaining 

the tendencies observed in the measurements. 
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2. VOICE PRODUCTION OF ORGAN PIPES 

2.1. The pipe organ 

According to the Hornbostel – Sachs system, musical instruments can be categorized by 

the way they produce sound into 5 different groups. 

 Idiophones – any musical instrument, that creates sound by the way of 
the instrument itself vibrating, without the use of membranes,  strings or air col-
umns as resonators 
 Membranophones – the sound is created by a stretched membrane 
 Chordophones – the sound is created by a stretched string  
 Aerophones – the sound is produced by vibrating air 
 Electrophones – the sound is produced with the help of electricity 

According to this grouping, the pipe organ is an aerophone instrument as organ pipes 

produce sound by the vibrating air column enclosed in the resonator of the pipes. 

The pipe organ has three main parts. The main units can be seen in Figure 1. The first 

part, which is used to play the instrument is called console (also known as keydesk). 

This part contains the manuals (keyboards) with the stop controls (registration) and the 

pedalboards. A usual church or concert organ has several (sometimes up to 4–5) manu-

als and at least one pedalboard. The musical range of an average organ is 7–8 octaves or 

sometimes even more. The stops select which pipes are sounded when a key or pedal is 

pressed. Hence the player can modify the timbre and the volume of the instrument by 

using different combination of the stops. 

The second part, often referred to as action ensures the connection between the sound 

producing element and the console. The first system of moving parts admits wind into 

the proper key channel when a key is pressed. This mechanism is called rollerboard. 

The other system (also called “stop”) allows the organist to control which ranks are en-

gaged. According to their operation, the systems of moving parts can be mechanic, 

pneumatic, electric, or some combination of these. 

The sound producing element of the pipe organ consists of the pipes and the wind sys-

tem. The wind system has three parts: the blower, the regulator and the wind duct. There 

are several sets of pipes, with different timbre. One set of pipes having the same form 
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and timbre and arranged in a musical scale is called a pipe rank. The ranks are mounted 

vertically onto a windchest. Organ pipes can be divided into two main groups based on 

their sound production mechanism: labial (also known as flue) pipes and lingual (also 

known as reed) pipes. 

 

 
Figure 1. Parts of a pipe organ (source: [Rucz 2015]) 

  

Pipes 
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2.2. Organ pipe constructions 

The labial pipe can be seen in Figure 2. This type of pipe is winded through the foot 

hole, and the foot. The way of the air is blocked by the languid, therefore the wind pass-

es through the windway as a thin jet. As the jet hits the lip, it becomes unstable and ed-

dies are deflecting in a quasiperiodic manner. This causes an oscillation that excites the 

air column inside the resonator of the pipe. In the steady state of the sound generation 

constant amplitude is maintained by the balance of the energy entrained into the pipe, 

the radiated sound energy and different types of losses. The properties of the sounds of 

flue organ pipes and their physical explanations are reviewed by Miklós & Angster 

[Miklós, Angster  2000]. 

Figure 2. Labial pipe (source: [Rucz 2015]) 
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Figure 3. Structure of a lingual pipe (source: [Rucz 2015]) 

In case of lingual organ pipes (Figure 3) a vibrating reed (tongue) produces the sound. 

The reed is a flexible bar that is clamped at one end and free at the other end. The reed 

is usually a plate made by metal, namely brass in most cases. It usually has a little cur-

vature, made by the instrument maker in a delicate procedure referred to as "curving". 

When the wind enters the pipe, the pressure increases inside the pipe foot and pushes 

the reed towards the shallot. At the same time, air flows through the small gap between 

the shallot and the reed, and the Bernoulli force also pulls the tongue in the same direc-

tion. After the pressure equalization the elasticity of the reed forces it back to its original 

position and the procedure starts over. The acoustic feedback of the resonator can am-

plify the oscillation of the reed, creating a stable and strong sound in the steady state. 

The instrument usually oscillates close to the natural frequency of the reed. [Miklós et 

al. 2003 és Miklós et al. 2006] 

The reeds of lingual pipes can be grouped based on the construction of the shallot. 

There are so-called beating reeds, and free reeds. A beating reed hits the edges of the 

frame to which it is attached in each period of its oscillation, and it is not allowed to 

bend over the frame. Beside organ pipes, beating reeds are also used in woodwind in-

struments, for example in clarinets and saxophones. On the other hand, in case of a free 

reed, the reed is allowed to go through the frame. It is used e.g. in the harmonica, har-

monium, melodica and bandoneon. 
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The reeds can also be grouped based on the initial position of the reed. The first type is 

the blown closed reed, which means, that the reed is initially open, and the exciting 

pressure forces move it closer to the frame. If the blowing pressure is increased above a 

critical level, the reed closes the way of air completely, hence the term “blown closed”. 

This type of reed is mainly used in woodwind instruments. The other type of reed oper-

ates the opposite way. It is initially closed or nearly closed, and the pressure pushes it 

away from the support. It is called the blown open reed. This type of reed is used in a 

harmonica. Fletcher developed a model of pressure-controlled valves in gas flows 

[Fletcher, 1993]. He treated the valves equivalent to the blown closed and blown open 

reeds. He used the analogue network of the valves to analyse the system, in which the 

current equals the volume velocity, the voltage equals the pressure. Therefore the im-

pedances can be calculated the same way as in case of an electrical circuit. The same 

analogue model will be used in this paper to calculate the input and output impedances 

of the pipes. 

The new construction we are studying is displayed in Figure 4. It is a special type of 

lingual pipe: a pipe with a free reed. As it does not have a shallot, the construction of the 

pipe is much simpler than that of traditional reed pipes. Unlike the previous construc-

tion, these lingual pipes operate with the help of a blown open reed instead of a blown 

closed one. There is a window on the experimental pipes made of plexiglas. The vibra-

tion of the reed can be measured through it using a laser vibrometer. The pipes can be 

built with different resonator shapes, as shown also in Figure 4. 

In this thesis, three experimental pipes with very different resonators are examined. The 

first pipe has a simple, straight resonator that is open at both ends. The second pipe also 

has a straight resonator, open in both ends, but it is turned into half, therefore the two 

ends are located side by side and are in a stronger interaction. The third pipe has a coni-

cal resonator with one open end. This resonator is also turned into half. 



 

13 

 
Figure 4. Construction of the studied experimental pipes. Left: Different resonator shapes. Right: The free 

reed in the new construction. The place of the reeds are marked with red dashed lines. 
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3. MODEL OF THE SOUND PRODUCTION 

3.1. General model 

In case of linear systems modal superposition is the most effective way of modelling the 

instrument. Thus, modal superposition is also often applied in practice for sound syn-

thesis purposes. The eigenfrequencies and eigenmodes of a vibrating system can be eas-

ily calculated if the system is not time dependent. On the other hand, in case of time 

dependent and nonlinear influences, the procedure is much more difficult. As the sound 

production of aerophone musical instruments also contains nonlinear elements, McIn-

tyre et al. have developed a simplified model [McIntyre et al. 1983]. According to this 

model the sound production can be described by the system of a nonlinear and a linear 

element. A submodel of the nonlinear excitation element has to be elaborated, which is 

connected to a submodel of the linear passive element, i.e. the resonator. By coupling 

the two models, the model of the whole system is obtained (Figure 5).  

 

 
Figure 5. The McIntyre–Woodhouse–Schumacher model of sound production in musical instruements 

 

In our case, the nonlinear elements are the oscillation of the exciting reed and the air-

flow under the reed, the linear element is the resonator. In the sequel the physical de-

scription of these subsystems are discussed in detail. 

Energy 
source 
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3.2. Model of the reed vibration  

The oscillating reed in the lingual pipes can be modelled by a free–clamped beam. In 

this case, the bending vibrations can be calculated from the reed motion equation that 

can be defined with the help of the Euler–Bernoulli beam theory, Newton’s second law 

and Hooke’s law. The equation of motion of the Euler–Bernoulli beam reads as 

,ݔ)݃  (ݐ − ൫ܧ ∙ (ݔ)ܫ ∙ ,ݔ)ᇱᇱݑ ൯ᇱᇱ(ݐ
= ߩ ∙ (ݔ)ܣ ∙ ,ݔ)ݑ̈  (1) ,(ݐ

where: 

 ݃(ݔ, ቂ୒ (ݐ
୫

ቃ: external force per unit length 

 ܧ [Pa]: Young’s (or elastic) modulus of the reed 

 ܫ [mସ]: second moment of area of the reed 

 ݔ)ݑ,  transversal displacement of the reed :[m] (ݐ

 ߩ ቂ ୩୥
୫యቃ: density of the reed 

 ܣ [mଶ]: cross section of the reed 

Using the Euler–Bernoulli assumption we assume that 

 There is one section of the beam that does not suffer from compression or 

extension. It is called as neutral section. 

 The cross section of the beam is perpendicular to the neutral section 

along the whole length of the beam during the motion. 

The dot notation refers to the derivative with respect to time ݐ and the apostrophe to the 

derivative with respect to the spatial coordinate ݔ. 

This differential equation can be solved using four boundary conditions. In this case, 

one end (at ݔ = 0) of the beam is clamped and the other end (at ݔ =  is hanging (ܮ

freely. Thus, the boundary conditions are: 

 (0)ݑ = 0 this boundary condition states that the clamped end of the 

beam does not experience any deflection 

 ݑᇱ(0) = 0 as ݑᇱ(ݔ) indicates the slope of the beam along the length, this 

boundary condition says, that the beam cannot bend at the clamped end 

 0=(ܮ)′′ݑ  this boundary condition says, that there is no bending moment 

at the free end of the reed 
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 ݑᇱᇱᇱ(ܮ) = 0 this boundary condition says that no shear forces act at the 

free end of the reed 

Solving the equation of motion using the boundary conditions above, we get the follow-

ing transcendental equation for the wavenumber ݇: 

 cos(݇ܮ) = ିଵ
௖௛(௞௅)

 (2) 

After solving this equation (using a graphical method), the wavenumbers are found as 

 ݇௡ = గ
ଶ௅

[1.194; 2.985; 5;  7;  9; … … ] (3) 

The eigenfrequencies: 

 ߱௡ = ܿ௅ ∙ ܭ ∙ గమ

ସ௅మ [1.194ଶ; 2.985ଶ; 5ଶ, 7ଶ,  9ଶ … … ] (4) 

Where K is the radius of gyration ܭ = ට ூ
஺

  [m] and ܿ௅ is the propagation speed of lon-

gitudinal waves in the material ܿ௅ =  ටா
ఘ

 ቂ୫
ୱ

ቃ. 

The eigenmodes: 

߰௡(ݔ) = ௡ܣ ∙ [sin(݇௡ݔ) − sh(݇௡ݔ)] − 

௡ܣ                                        ∙ ୱ୧୬(௞೙௅)ାୱ୦(௞೙௅)
ୡ୭ୱ(௞೙௅)ାୡ୦(௞೙௅)

∙ [cos(݇௡ݔ) − ch(݇௡ݔ)] (5) 

The modes are linearly independent, as none of the eigenmodes can be defined as a lin-

ear combination of the others. Furthermore, the modes are orthogonal, (which means 

that the scalar product of ߰௡ and ߰௠ equals to zero if ݊ ≠ ݉ and a positive scalar 

if ݊ = ݉) and normalized by choosing the constants ܣ௡ appropriately. 

The vibration of the reed can be written as the superposition of the eigenmodes: 

,ݔ)ݑ  (ݐ = ∑ (ݐ)௡ߙ ∙ ߰௡(ݔ)ஶ
௡ୀଵ  (6) 

where ߙ௡ is the time dependent weight of the ߰௡ eigenmode, also known as the modal 

coordinate. This form is referred to as modal superposition. There is an ߱௡ eigenfre-

quency to every ߰௡ eigenmode. In case of undamped, free vibration, the ߰௡ eigenmode 

is oscillating with this frequency. Thanks to the orthogonality of the eigenmodes the 

model superposition form (6) decouples the equation of motion a system consisting of 

independent harmonic oscillators, as discussed in Section 4.1. 
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3.3. Model of the resonator 

3.3.1. SOUND PROPAGATION IN DUCTS 

In order to elaborate the model of the resonator, the differential equation of sound prop-

agation has to be defined. To attain the 3D wave equation we assume that the propaga-

tion of sound waves is a frictionless, adiabatic process. We also assume that the medium 

(air in our case) is an ideal gas. The governing equations of the sound field have to be 

linearized by writing the variables as a superposition of a location and time independent 

part and a time and location dependent part. For example: the pressure can be divided 

into the constant atmospheric pressure ଴ܲ and the location and time dependent sound 

pressure ࢞)݌,  :(ݐ

,ݔ)ܲ  (ݐ = ଴ܲ + ,࢞)݌  (7) (ݐ

The first equation of the sound field is attained from Newton's second law as [Fiala, 

2015]: 

,ݔ)݌∇  (ݐ + ଴ߩ ∙ ,࢞)̇࢜ (ݐ = 0 (8) 

where  

 ࢜ ቂ୫
ୱ

ቃ is the vector of the particle velocity. 

 ߩ଴  ቂ ୩୥
୫యቃ is the average equilibrium density of the fluid 

 ࢞)݌,  is the sound pressure [Pa] (ݐ

The second equation of the sound field is derived from the equation of state of an ideal 

gas undergoing an adiabatic process: 

,࢞)݌  (ݐ = ߢ− ଴ܲ∇ ∙ ,࢞)࢛  (9) (ݐ

where ߢ is the specific heat capacity and ࢛ is the particle displacement. 

The 3D wave equation can be deduced as the combination of the divergence of the first 

equation and the second time derivative of the second equation of the sound field. 

 ∇ ∙ ,࢞)݌∇ (ݐ = ଵ
௖మ ,࢞)̈݌  (10) (ݐ

where c = ට఑௉బ
ఘబ

 ቂ୫
ୱ

ቃ is the speed of sound in the given fluid. 

In case of time harmonic vibration, the wave equation can be written as the Helmholtz 

equation in the following form: 
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 ∇ଶ݌ + kଶ݌ = 0 (11) 

Where ݇ = ఠ
௖

 ቂ ଵ
୫

ቃ is the wavenumber. 

In case of a cylindrical duct, this equation can be written in a cylindrical coordinate sys-

tem (ݎ, ,ߠ  :(ݔ

 பమ୮
ப୰మ + ଵ

௥
డ௣
డ௥

+ ଵ
௥మ

பమ୮
ப஘మ + பమ୮

ப୶మ + kଶ݌ = 0 (12) 

The solution of this equation shows, that the function that describes the waves in a cy-

lindrical duct consists of the multiplication of radial, tangential and longitudinal waves 

[Fletcher & Rossing 1998, chapter 8]. The radial components can be described by the 

Bessel functions, the tangential components are harmonic functions and the longitudinal 

ones are plain waves. There is a certain frequency, called cut-off frequency, for every 

radial and tangential mode, above which the waves are propagating waves. Under this 

frequency, the waves are evanescent and they are decaying exponentially near the exci-

tation along the ݔ axis. In case of the radially and tangentially constant modes, this fre-

quency is zero, which means, that propagating plane waves can evolve at any frequency. 

The first non-planar mode with the lowest cut-off frequency is the first tangential (also 

called as transverse) mode. The limit frequency of this eigenmode is called the cut-off 

frequency of the duct.  

The musically relevant frequency range of organ pipes is below the cut-off frequency of 

their resonators, therefore the plain wave model is used in the further deductions, and 

the radial and tangential eigenmodes are neglected.  

The one-dimensional form of the wave equation: 

,ݔ)ᇱᇱ݌  (ݐ = ଵ
௖మ ,ݔ)̈݌  (13) (ݐ

The one-dimensional form of the Helmholtz equation: 

,ݔ)ᇱᇱ݌  (ݐ + ݇ଶݔ)݌, (ݐ = 0 (14) 

The general solution of this equation in a complex form reads as 

ାeି௝௞௫݌  + eା௝௞௫ି݌  (15) 

where ݌ା and ି݌ are the complex amplitudes of the ingoing and outgoing plain waves. 

According to equation (8), the connection between the sound pressure and the particle 

velocity: 

(ݔ)ݒ  = − ଵ
௝ఠఘబ

(ݔ)ᇱ݌ = ௝௞௣(௫)
௝ఠఘబ

= ௣(௫)
௖ఘబ

= ௣(௫)
௭బ

 (16) 
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Where ݖ଴ =  .଴ is the specific impedance of the plane waveߩܿ

The specific impedance expresses the connection between the pressure and the velocity: 

ݖ  = ௣(௫)
௩(௫)

 (17) 

3.3.2. INPUT IMPEDANCE 

Substituting formula (15) into equation (8) the ratio of the pressure and the velocity can 

be expressed as 

(ݔ)ݖ  = ଴ܿߩ  ௣శ௘షೕೖೣା௣ష௘శೕೖೣ

௣శ௘షೕೖೣି௣ష௘శೕೖೣ (18) 

It can be also expressed in the following form: 

(ݔ)ݖ  = ଴ܿߩ  ଵାோୣమೕೖೣ

ଵିோୣమೕೖೣ (19) 

Where ܴ is the reflection coefficient: 

 ܴ =  ା (20)݌/ି݌

An other form of the reflection coefficient reads as 

 ܴ = ௭మି௭బ
௭మି௭బ

݁ି௝௞௅  (21) 

Where ݖଶ = ݔ is the termination impedance of the pipe at (ܮ)ݖ =  The latter formula .ܮ

is of great use in our applications for calculating the input impedance of resonators. 

The input impedance of a duct shows the relationship between the sound pressure and 

the particle velocity at ݔ = 0. The natural resonance frequencies and the damping of the 

system can be evaluated by examining this connection, as discussed in the following. 

The impedance at ݔ = 0 can be expressed if the reflection coefficient (or the termina-

tion impedance) is known: 

௜௡ݖ  = (0)ݖ = ଴ݖ
ଵା௥
ଵି௥

= ଴ݖ
௭మ∙ୡ୭ୱ (௞௅)ା௝௭బ∙ୱ୧୬ (௞௅)
௝௭మ∙ୱ୧୬ (௞௅)ା௭బ∙ୡ୭ୱ (௞௅)

= ଴ݖ
௭మା௝௭బ∙୲ୟ୬ (௞௅)
௭బା௝௭మ∙୲ୟ୬ (௞௅)

 (22) 

If the pipe is ideally closed at the input side, the velocity at ݔ = 0 also equals zero. In 

this case the pressure at ݔ = 0 can be finite when we reach the eigenfrequency of the 

pipe, therefore the input impedance of the resonator is infinite. That means that the ei-

genfrequencies of the pipe are assigned by the impedance function’s singular points. If 

the resonator is excited by a reed at ݔ = 0, the velocity is not zero, but the eigenfre-

quencies are still assigned by the local maxima of the input impedance function. This 
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statement can be explained by the fact that the pressure response (acoustic feedback) to 

an excitation is maximal in case of a natural resonance. The quality factors (ܳ factors) 

of the eigenmodes (and therefore the damping of the duct) can be calculated using the 

half power bandwidth method shown in Figure 6.  

 
Figure 6. Half power bandwidth method for calculating the Q factors. 

 ܳ = ௙బ
௙య೏ಳ

= ଵ
ଶ∙క

 (23) 

Where ߦ is the damping factor. The quality factor also indicates the energy losses of the 

system: for example the radiation losses (this is the produced sound, but interpreted as a 

loss from the resonator’s point of view). This loss is indicated by the real part of the 

radiation impedance (or output impedance) of the resonator.  

Another relevant source of energy loss is called “wall loss” or “viscothermal loss”. In 

case of wave propagation, there is friction and heat transfer between the walls and the 

particles of the medium, and therefore energy loss occurs. These effects will be taken 

into consideration in the further calculations, and will have a great influence on the 

quality factor of the examined resonators. [Kinsler et al, 2000, chapter 8]. 

3.3.3. TRANSFER MATRIX 

The parameters of a simple duct can be calculated using the formulas of the previous 

section; however, in case of composite resonators the description of a complex system is 
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needed. The calculation of the parameters of a resonator that consists of more elements 

(even of conical parts) is addressed in the following section. 

The connection between the input and output pressure (݌௜௡ and ݌௢௨௧) and volume veloc-

ity ( ௜ܷ௡ and ௢ܷ௨௧) can be expressed in the following form [Rucz, 2015]: 

 ቂ
௜௡݌

௜ܷ௡
ቃ = ൤ ଵܶଵ ଵܶଶ

ଶܶଵ ଶܶଶ
൨ ∙ ቂ

௢௨௧݌

௢ܷ௨௧
ቃ (24) 

Where the frequency dependent matrix ܂ is the transmission matrix of the resonator.  

Using the transmission matrix, equations of complex systems can also be defined if we 

equate input parameters of the given system and the output parameters of the other sys-

tem. 

 ቂ
௜௡݌

௜ܷ௡
ቃ = [∏ ௜܂

ே
௜ୀଵ ] ∙ ቂ

௢௨௧݌

௢ܷ௨௧
ቃ (25) 

where the resultant transmission matrix: ܂௘ = ∏ ௜܂
ே
௜ୀଵ  

If the impedance at ݔ = /௢௨௧݌) is known, the transfer impedance ܮ ௜ܷ௡) or the input im-

pedance of the system can be calculated.  

The transfer matrix of a cylindrical duct is obtained as: 

 ൤݌(ݔଵ)
൨(ଵݔ)ܷ = ቈ

ܮ݇ݏ݋ܿ ݆ܼ଴ܮ݇݊݅ݏ
݆ ଵ

௓బ
ܮ݇݊݅ݏ ܮ݇ݏ݋ܿ ቉ ∙ ൤݌(ݔଶ)

 ൨ (26)(ଶݔ)ܷ

Where: 

 ݔଶ = ଵݔ +  ܮ
 ܼ଴ = ௖ఘబ

ௌ
 is the acoustic plane wave impedance of the duct with ܵ denot-

ing the cross section area of the duct 

If a termination impedance ܼ௅(߱) is assumed at ݔ = -the input impedance can be ex ,ܮ

pressed in the following form: 

 ܼ௜௡(߱) = ௣(௫భ)
௎(௫భ)

= ௓ಽ(ఠ)∙ భ்భା భ்మ
௓ಽ(ఠ)∙ మ்భା మ்మ

 (27) 

The transfer matrix of conical ducts can be determined in the same way [Olson, 1960] 

 ௖ܶ௢௡௘(݇ܮ) = ቎
−݉ ୱ୧୬(௞௅ିఏ೚ೠ೟)

௦௜௡ఏ೚ೠ೟
݆݉ ଵ

௓బ,೚ೠ೟
sin (݇ܮ)

݆ܼ݉଴,௜௡
ୱ୧୬ (௞௅ାఏ೔೙ିఏ೚ೠ೟)
௦௜௡(ఏ೔೙)∙ୱ୧୬ (ఏ೚ೠ೟)

ଵ
௠

∙ ୱ୧୬(௞௅ିఏ೔೙)
௦௜௡ఏ೔೙

቏ (28) 

where: 

 ݉ = ௥ಽ
௥బ

 : the ratio of input and output radii 

 ܼ଴,௜௡ = ఘబ௖
௥బమగ

 the plane wave impedance at ݔ = 0 
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 ܼ଴,௢௨௧ = ఘబ௖
௥ಽమగ

 the plane wave impedance at ݔ =  ܮ

 ߠ௜௡ = tanିଵ(݇ ∙  ௜௡) the angle at the inputݔ
 ߠ௢௨௧ = tanିଵ(݇ ∙  ௢௨௧) the angle at the outputݔ
 ݔ௜௡ the distance of the cone’s input plane from the apex 
 ݔ௢௨௧ the distance of the cone’s output plane from the apex 

If ݎ௅ =  ଴ the transfer matrix equals the transfer matrix of the cylindrical duct. In case ofݎ

an axisymmetric composite duct the resulting transfer matrix can be calculated as the 

product of the sections’ transfer matrices, see equation (25). 

In the following chapters the transfer matrix method is utilized for calculating the input 

impedance function of different resonators in order to attain their eigenfrequencies and 

reflection properties. 

3.3.4. SELF AND MUTUAL IMPEDANCE OF THE RESONATORS 

If the resonator has two open ends the parameters of the system cannot be calculated 

using just the simple input impedance of the resonator, as the two resonator parts are 

coupled through their open end. P. Rucz developed a method of calculating these sys-

tems with the help of a coupling impedance matrix. [Rucz, 2016] He used the finite el-

ement method (FEM) for constructing the coupling impedance matrix of the resonators 

and applied it in the one dimensional waveguide model. The analogue network of a reed 

driven resonator with two coupled ends can be seen in Figure 7. The reed is modelled as 

a volume velocity source, providing the input velocity ௜ܷ௡. 
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Figure 7. Analogue network of a resonator with coupled ends 

The acoustical impedance matrix relates the pressure and volume velocities: 

࢖ = ܈ ∙  ࢛

In this case:  

 ቂ
ଵ݌
ଶ݌

ቃ = ൤ܼଵଵ ܼଵଶ
ܼଶଵ ܼଶଶ

൨ ∙ ൤ ଵܷ

ଶܷ
൨ (29) 

Where ܼଵଵ and ܼଶଶ are the self-impedances, and ܼଶଵ, and ܼଵଶ are the mutual impedanc-

es. 

ܶ(ଵ) and ܶ(ଶ) are the transfer matrices of the resonators. As the input pressures of the 

two resonators are the same, the relationship between the input quantities and output 

quantities can be written in the form of equation (24): 

 ൤
௜௡݌

௜ܷ௡
(௜)൨ = ቈ ଵܶଵ

(௜)
ଵܶଶ

(௜)

ଶܶଵ
(௜)

ଶܶଶ
(௜)቉ ∙ ቂ

௜݌

௜ܷ
ቃ              (݅ = 1, 2) (30) 

The continuity of the volume velocity can also be seen in Figure 7. 

 ௜ܷ௡
(ଵ) + ௜ܷ௡

(ଶ) = ௜ܷ௡ (31) 

Equation (29), (30) and (31) can be separated into 7 scalar equations, and as there are 7 

unknowns (݌ଵ, ଵܷ ݌ଶ, ଶܷ,, ௜௡݌ ,  ௜ܷ௡
(ଵ), ௜ܷ௡

(ଶ)) As ௜ܷ௡ can be determined form the reed 

vibration, the impedance matrix is defined using the FEM and the transfer matrix of the 

resonators can be expressed according to section 3.3.3. 
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After solving the system of equations, the input impedance can be calculated: 

 ܼ௜௡ = ௣೔೙
௎೔೙

 (32) 

The radiated pressure: 

௥௔ௗ݌  = ܼ௦ ∙ ( ଵܷ + ଶܷ) (33) 

Thus, the transfer function (that relates the output pressure and the input volume veloci-

ty): 

 H = ௣ೝೌ೏
௎೔೙

 (34) 

Simulations show, that in the low frequency range, the coupling impedance does not 

have a huge impact on the input impedance of the resonator. The frequencies of the 

peaks are slightly shifted down and the amplitudes of the peaks are decreasing due to 

the coupling. At higher frequencies, the effects are more significant. 

On the other hand, the transfer function is affected highly by the coupling, as the vol-

ume velocities of the two resonator parts have opposite signs. The even peaks are disap-

pearing from the transfer function, and the odd peaks are increasing.  

In case of an uncoupled system, the acoustical network can be seen Figure 8. 

 
Figure 8. Network of a resonator with uncoupled open ends 

In this case, the radiated pressure equals to ݌ଵ and ݌ଶ can be calculated according to 

equation (30). 



 

25 

 ൤
௜௡݌

௜ܷ௡
(ଵ)൨ = ቈ ଵܶଵ

(ଵ)
ଵܶଶ

(ଵ)

ଶܶଵ
(ଵ)

ଶܶଶ
(ଵ)቉ ∙ ቂ

ଵ݌

ଵܷ
ቃ (35) 

௜௡݌  = ଵܶଵ ∙ ଵ݌ + ଵܶଶ ∙ ௣భ
௓ೞ

= ଵ݌ ∙ ቀ ଵܶଵ + భ்మ
௓ೞ

ቁ (36) 

The transfer function for the pressure ( ௥ܶ௣) is the ratio of ݌ଵ and ݌௜௡ 

 ௥ܶ௣(߱) = ௓ೞ

భ்భ∙௓ೞା భ்మ
 (37) 

The output pressure can be calculated in time domain by a convolution 

(ݐ)ଵ݌  = (ݐ)௢௨௧݌ = (ݐ)௜௡݌ ∗ ௥௣ݐ = ∫ (߬)݌ ∙ ݐ)௥௣ݐ − ߬)݀߬௧
଴  (38) 

Where ݐ௥௣ is the inverse Fourier transform of the transfer function ௥ܶ௣(߱) 

(ݐ)௥௣ݐ  = ଵ
ଶగ ∫ ௥ܶ௣ ∙ ݁௝ఠ௧݀߱ஶ

ିஶ  (39) 

If the pipe is closed at one end, the self-impedance at that end is considered infinite: 

 
Figure 9. Resonator with a closed and an open end 

In this case ଶܷ is zero, therefore, according to equation (30): 

ଵ݌  = ଵܶଵ ∙  ଶ (40)݌

 ଵܷ = ଶܶଵ ∙  ଶ (41)݌

Therefore, the input impedance of the resonators: 

 ܼ௜௡ = భ்భ

మ்భ
 (42) 
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3.4. Flow model 

3.4.1. JET VELOCITY 

For the calculations of the air flow a simplified, one-dimensional flow model is used, 

because the real, three-dimensional model cannot be described by simple equations, and 

very expensive numerical simulations would be needed to arrive at approximate solu-

tions. The one-dimensional description is also used by other authors, see for example 

[Adachi and Sato, 1995; Millot and Baumann, 2007] 

In this model, Bernoulli’s principle is used for describing the airflow. This principle 

states, that if the velocity of the fluid increases, the pressure or the potential energy of 

the fluid decreases.  

If the flow is steady, the fluid is incompressible, and the viscous forces due to friction 

are negligible, Bernoulli’s equation can be written in the following form: 

 ௩మ

ଶ
+ ݖ݃ + ௣

ఘబ
= constant (43) 

where  

 ݒ is the fluid flow speed at a point on a streamline 
 ݃ is the acceleration due to gravity 
 ݖ is the elevation of the point above a reference plane (with the positive z 
direction pointing opposite the gravitational acceleration) 

In the studied case, the Reynolds number is around the order of magnitude of a few 

thousands, which means that the viscous forces are much smaller than the inertial forc-

es. Moreover, the air jet evolves in much less time than the period of the reed vibration. 

Therefore, the flow is considered steady, formula (43) can be used. As the velocity of 

the jet is significantly smaller than the speed of sound, the air is considered incompress-

ible. 

Bernoulli’s equation can be written between the points ‘0’ and ‘1’ marked in Figure 10. 



 

27 

 
Figure 10. Illustration of the application of Bernoulli's law in the studied geometry 

଴ߩ  ∙ ௩బ
మ

ଶ
+ ଴ݖ݃ߩ + ଴݌ = ଴ߩ ∙ ௩(௧)మ

ଶ
+ ݖ݃ߩ +  (44) (ݐ)݌

In this case there is no significant elevation between the examined points (ℎ଴ ≈ ℎଵ), and 

the velocity of the jet is zero at point ‘0’therefore, the equation can be simplified:  

଴݌  = ଴ߩ ∙ ௩(௧)మ

ଶ
+  (45) (ݐ)݌

The velocity of the jet can be expressed in the following form: 

(ݐ)ݒ  = ට ଶ
ఘబ

ඥ݌଴ − (ݐ)݌ ∙ sign(݌଴ −  (46) ((ݐ)݌

The volume flow passing under the reed can be calculated if the velocity is known. 

(ݐ)ܷ  = ߙ ∙ ܵ௨(ݐ) ∙  (47) (ݐ)ݒ

Where  

 ܵ௨ is the useful section—the section where the flow can pass through the 
gap formed by the moving reed and the tongue holder plate. 
  ߙ is the vena contracta coefficient   

The vena contracta coefficient expresses the reduction of the area of a fluid jet emerging 
from a small aperture in a pressurized reservoir. The reduction of the area is explained 
by the flow separating from the sharp edges of the boundary, as the streamlines are una-
ble to closely follow these edges. The point of the fluid stream, where the diameter of 
the stream is the smallest is called vena contracta. 
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Figure 11. Theoretical jet Figure 12. Vena contracta 

The vena contracta coefficient takes this contraction of the jet into account, as illustrated 

in Figures 11 and 12. 

ߙ =
ଷܣ

ଶܣ
 

Where ܣଷ is the area at vena contracta, ܣଶis the area of orifice. Experiments and theo-

retical analysis confirms [Hirschberg et al., 1990] that the vena contracta coefficient is 

in the range 0.5 < ߙ < 0.65. It is worth noting that the vena contracta effect also ap-

pears in the windway of labial pipes. Vaik and Paál found by simulations that the con-

traction coefficient is around ߙ ≈ 0.77 in this case [Vaik and Paál, 2013]. 

3.4.2. USEFUL SECTION 

A model of a blown open reed can be seen in Figure 13. 

 
Figure 13. Model of a blown open reed following Millot & Baumann, 2007. 

The ‘upstream section’ expression is used for the face that is in front of the pressure 

tank of the instrument, the ‘downstream section ’expression is used for the section that 

faces the resonator. To a first approximation the useful section can be calculated with 

the following formula: 

 ܵ௨(ݐ) = |ℎ(ݐ)| ∙ ܾ (48) 

Where  

 ܾ is the width of the reed  

ଵܲ 

ଵܲ 

 ଵܣ
ଵݒ

ଶܲ 

 ଶܣ
ଶݒ ଶܲ 

 ଶܣ

ଶݒ

ଵܲ 

ଷܲ 

 ଷܣ
 ଷݒ

ଵܲ 

 ଵܣ

 ଵݒ
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 ℎ(ݐ) is the reed opening at the upstream section, that can be calculated 
from the reed vibration 

That means, that the air issues from the pressure tank only by the front section of the 

reed. This simplification is suitable for describing beating reeds of woowdind instru-

ments (for example the reed of the clarinet or the saxophone). It is used in many papers 

and publications, see for example [Schumacher, 1981, Hirschberg, 1990, Gazengel, 

1995]. In the first simulations, this approximation will be used. 

However, to get more accurate results, the side areas need to be included in the calcula-

tions. The useful section can be calculated using the model of Millot and Baumann 

[Millot, Baumann, 2007] 

 
Figure 14. Useful section of airflow under a blown open free reed. 

This model also includes the side areas and the two remaining triangles (Figure 13.). 

Moreover, the clearance gap between the reed and its support, the rotation of the cross 

section at the end of the beam and the thickness of the beam are also taken into consid-

eration. 

The vertical displacement of the neutral section of the reed ݕ௡(ݔ,  can be calculated (ݐ

using the mode shape defined by equation (5) according to Figure 15: 

,ݔ)௡ݕ  (ݐ = ,ݔ)ݑ (ݐ + ௛ೝ೐೐೏
ଶ

= (ݐ)௡ߙ ∙ ߰ଵ(ݔ) + ௛ೝ೐೐೏
ଶ

 (49) 
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Figure 15. Geometrical parameters for calculating the useful section 

After getting the displacement of the neutral section, the coordinates of the upstream 

and downstream sections can be calculated as we know that the cross sections are al-

ways perpendicular to the neutral section (Figure 15.) 

 

,ݔ)ݕ∆  (ݐ = ௛ೝ೐೐೏
ଶ

∙ ௅ೝ೐೐೏

ට௅ೝ೐೐೏
మା(௨ᇲ(௫,௧)∙௅ೝ೐೐೏)మ

 (50) 

,ݔ)ݔ∆  (ݐ = ௛ೝ೐೐೏
ଶ

∙ ௨ᇲ(௫,௧)∗௅ೝ೐೐೏

ට௅ೝ೐೐೏
మା(௨ᇲ(௫,௧)∙௅ೝ೐೐೏)మ

 (51) 

The upstream and downstream displacements can also be calculated 

The transverse displacement of the upstream section:  ℎ௨௣(ݔ, (ݐ = ,ݔ)௡ݕ (ݐ − ,ݔ)ݕ∆  (ݐ

The transverse displacement of the downstream section:  ℎௗ௡(ݔ) = ,ݔ)௡ݕ (ݐ + ,ݔ)ݕ∆  (ݐ

The ݔ displacement of the upstream section:  ݔ௨௣(ݔ, (ݐ = ,ݔ)௡ݔ (ݐ + ,ݔ)ݔ∆  (ݐ

The ݔ displacement of the downstream section:  ݔௗ௡(ݔ) = ,ݔ)௡ݔ (ݐ − ,ݔ)ݔ∆  (ݐ

where ݔ௡(ݔ,  .is the axial coordinate of the neutral section (ݐ

In case of a blown open reed, ℎ௘௙௙ equals to the transverse displacement of the up-

stream section and ݔ௘௙௙ can be calculated from the clearance gap (ℎ௠௜௡) and the x dis-

placement of the upstream section at the end of the reed (∆ݔ(ܮ௥௘௘ௗ)) 

Therefore, ℎ௘௡ௗ can be calculated: 

 ℎ௘௡ௗ(ݐ) = ඥℎ௘௙௙(ܮ௥௘௘ௗ, ଶ+(ℎ௠௜௡(ݐ − ,௥௘௘ௗܮ)ݔ∆  ଶ (52)((ݐ

ܵ௘௡ௗ can be calculated as an area of a trapezoid: 

 ܵ௘௡ௗ(ݐ) = ℎ௘௡ௗ(ݐ) ∙ (ܾ + ℎ௠௜௡) (53) 

The side areas can be calculated with the following formula: 
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 ܵ௦௜ௗ௘௦(ݐ) = 2 ∙ ∫ ටℎ௘௙௙(ݔ, ଶ(ݐ + ℎ௠௜௡
ଶ௅ೝ೐೐೏

଴  (54) 

The area of the remaining triangle: 

 ௧ܵ௥௜(ݐ) = ℎ௘௙௙ ∙ (ℎ௠௜௡ − ,௥௘௘ௗܮ)ݔ∆  (55) ((ݐ

The area of the useful section depending on the ݕ coordinate of the end of the reed, ac-

cording to Millot and Baumann can be seen in Figure 16, drawn with blue line. 

 
Figure 16. Useful section of an example reed. 

It can be seen, that the minimum of the function is shifted from the ݕ = 0 location, be-

cause of the offset of the neutral section. 

On the other hand, the original model does not take the width of the support into ac-

count. The value of the useful section is almost constant from the position it becomes 

flat (position 1 in Figure 17) until it reaches the inner surface of the support (position 2 

in Figure 17).  

 

 
Figure 17. The effect of the tongue holder plate on the useful section. 

Therefore the useful section depending on the ݕ coordinate of the tip of the reed can be 

seen in Figure 16, marked with red dashed line. 

1 

2 
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4. COMPUTER MODEL 

4.1. Reed vibration by modal superposition 

The vibration of the reed can be calculated using modal superposition based on the theo-

ry that can be read in Section 3.2.  

,ݔ)ݑ  (ݐ = ∑ ߰௡(ݔ) ∙ ஶ(ݐ)௡ݍ
௡ୀଵ  (56) 

Where ݍ௡(ݐ) are the modal coordinates. Substituting equation (56) into the beam mo-

tion equation (1) we get the following equation: 

,ݔ)݃  (ݐ − ܫܧ ∑ ߰௡
ସ(ݔ) ∙ ஶ(ݐ)௡ݍ

௡ୀଵ = ߩ ∙ ܣ ∙ ∑ ߰௡(ݔ) ∙ ஶ(ݐ)௡ݍ̈
௡ୀଵ  (57) 

Where the fourth derivative of the eigenmodes with respect to ݔ can be expressed as: 

 ߰௡
(ସ)(ݔ) =  ఘ஺

ூா
߱௡

ଶ ∙ ߰௡(ݔ) (58) 

Therefore the motion equation can be written in the following form: 

,ݔ)݃  (ݐ − ܣߩ ∑ ߱௡
ଶ ∙ ߰௡(ݔ) ∙ ஶ(ݐ)௡ݍ

௡ୀଵ = ߩ ∙ ܣ ∙ ∑ ߰௡(ݔ) ∙ ஶ(ݐ)௡ݍ̈
௡ୀଵ  (59) 

The motion equation can be projected onto the ߰௠(ݔ) eigenmode by taking the scalar 

product of ߰௠(ݔ) and the equation: 

〈߰௠(ݔ), ,ݔ)݃ 〈(ݐ − 〈߰௠(ݔ), ܣߩ ∑ ߱௡
ଶ ∙ ߰௡(ݔ) ∙ ஶ(ݐ)௡ݍ

௡ୀଵ 〉 =  

                          〈߰௠(ݔ), ܣߩ ∑ ߰௡(ݔ) ∙ ஶ(ݐ)௡ݍ̈
௡ୀଵ 〉 (60) 

where 〈 ଵ݂(ݔ), ଶ݂(ݔ)〉 = ∫ ଵ݂(ݔ) ∙ ଶ݂(ݔ)݀ݔ௅
଴  is the scalar product of two functions. (That 

is the Lebesgue integral of the product of the two functions.) 

As the mode shapes are orthogonal and normalized, equation (60) can be simplified: 

 ݃௠(ݐ) − ௠߱ܣߩ
ଶݍ௠(ݐ) =  (61) (ݐ)௠ݍ̈ܣߩ 

where: ݃௠(ݐ) = 〈߰௠(ݔ), ,ݔ)݃  .is the modal force density 〈(ݐ

Equation (61) can be written in the following form: 

 ௠݂(ݐ) − ߱௠
ଶݍ௠(ݐ) =  (62) (ݐ)௠ݍ̈ 

Where ௠݂(ݐ) = ௚೘(௧)
ఓ

 is the modal force density over unit mass and ߤ =  is the mass ܣߩ

over unit length. 
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If the damping of the reed is also taken into consideration, we get the following equa-

tion: 

 ௠݂(ݐ) − ߱௠
ଶݍ௠(ݐ) − ௠ݍ௠߱௠̇ߦ2 =  (63) (ݐ)௠ݍ̈ 

Expressing the damping by the quality factor (equation (23)): 

 ௠݂(ݐ) − ߱௠
ଶݍ௠(ݐ) − ఠ೘

ொ೘
௠ݍ̇ =  (64) (ݐ)௠ݍ̈ 

Equation (64) can be written in the following form: 

 ൤ݍ௠̈
௠̇ݍ

൨ = ቈ− ఠ೘
ொ೘

−߱௠
ଶ

1 0
቉ ∙ ൤ݍ௠̇

௠ݍ
൨ + ቂ ௠݂(ݐ)

0
ቃ (65) 

Introducing the state space vector ࢞௠(ݐ) = -the calculation can be con ்[(ݐ)௠ݍ  (ݐ)௠̇ݍ]

verted into the following form: 

(ݐ)௠̇࢞  = ቈ− ఠ೘
ொ೘

−߱௠
ଶ

1 0
቉ ∙ (ݐ)௠ݔ + ቂ ௠݂(ݐ)

0
ቃ (66) 

Therefore, the equation is written in the form of a general Cauchy–Euler equation: 

(ݐ)̇࢞  = (ܜ)ܠۯ + ,࢞)ࢋࢌ  (67) (࢚

These types of equations can be solved using the “ODE45” differential equation solver 

of Matlab. [MathWorks ODE45, 2016] 

The jet velocity can also be defined according to section 3.4.1 for the first calculations, 

the simplified useful section is used (according to formula (48)). 

The opening at the tip of the reed can be calculated if the vibration is known: 

 ℎ(ݐ) = ∑ ߰௜(ܮ) ∙ ஶ(ݐ)௜ݍ
௜ୀଵ  (68) 

The flow volume of the jet: 

(ݐ)ܷ  = (ݐ)ܵ ∙  (69) (ݐ)ݒ

The derivative of the volume flow with respect to time will be needed for the calcula-

tions of the coupling with the resonator: 

 ௗ௎(௧)
ௗ௧

= ௗௌ(௧)
ௗ௧

∙ (ݐ)ݒ + (ݐ)ܵ ∙ ௗ(௩)
ௗ(௧)

 (70) 

The velocity of the jet and its time derivative still needs to be calculated. The velocity 

can be calculated using Bernoulli’s law (46). The derivative of the velocity with respect 

to time: 

 ௗ௩(௧)
ௗ௧

= ට ଶ
ఘబ

∙ ଵ
ଶඥ௣బି௣(௧)

∙ ቀ− డ௣
డ௧

ቁ (71) 

For the second simulation, the useful section is calculated according to Section 3.4.2.  
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4.2. Resonator representation 

4.2.1. MODAL SUPERPOSITION 

In the first simulation approach, the modal superposition is used to describe the resona-

tor. The sound pressure can be calculated from the input impedance as follows. The 

input impedance can be written in the following form using modal superposition: 

 ܼ௜௡(߱) ≅ ∑ ௝ఠிೕ

ఠೕ
మିఠమା

ഘೕ
ೂೕ

ఠ
= ௉(ఠ)

௎(ఠ)
 (72) 

Where 

 ܳ௝ is the quality factor of the ݆-th eigenmode 

 ܨ௝ is the modal weight of the ݆-th eigenmode 

 ௝߱ is the eigenfrequency of the ݆-th eigenmode 

In this model the calculation is simplified by truncating the series at ݊-th order, and the 

remaining part is neglected. According to this simplification, this method is called “im-

pedance truncation method”. 

The equation is true to the summands as well for example: 

 
௝ఠிೕ

ఠೕ
మିఠమା

ഘೕ
ೂೕ

ఠ
= ௉ೕ(ఠ)

௎(ఠ)
 (73) 

The form of equation (73) in the time domain: 

௝ܨ  ∙ ௗ௎
ௗ௧

= ௝߱
ଶ݌௝(ݐ) + ௗమ௣ೕ(௧)

ௗ௧మ + ௗ௣ೕ(௧)

ௗ(௧)
∙ ఠೕ

ொೕ
 (74) 

Equation (74) can be written as a system of two ordinal differential equations: 

 ൤
ఫ̈݌
ఫ̇݌

൨ = ቈ− ఠೕ

ொೕ
− ௝߱

ଶ

1 0
቉ ∙ ൤

ఫ̇݌
௝݌

൨ + ቈܨ௝ ∙ ௗ௎
ௗ௧

0
቉ (75) 

Where the Quality factor ܳ௝ be calculated using the 3 dB method (see in section: 3.3.2). 

Equation (75) can also be converted into the Cauchy–Euler form, and solved using 

“ODE45” solver of Matlab. ݌ and ̇݌ (the pressure and its derivative with respect to time) 

are attained using modal superposition as 

(ݐ)݌  = ∑ ௡(ݐ)௝݌
௝ୀଵ  (76) 

(ݐ)̇݌  = ∑ ௡(ݐ)ఫ̇݌
ఫୀଵ

̇  (77) 
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4.2.2.  REFLECTION FUNCTION  

In the second simulation approach, the so-called reflection function is used for calculat-

ing the pressure inside the resonator. The reflection coefficient ܴ(݂) with frequency ݂ 

can be calculated from the input impedance ܼ௜௡(݂) and characteristic impedance ܼ଴ of 

the resonator. [Schumacher, 1983; Hikichi et al, 2003] 

 ܴ(݂) = ௓೔೙(௙)ି௓బ
௓೔೙(௙)ା௓బ

 (78) 

The reflection function (ݐ)ݎ is defined by the inverse Fourier transform of ܴ(݂). It rep-

resents the pressure waveform which is reflected back from the remote end of the reso-

nator in case of a pressure impulse excitation at ݐ = 0. 

The pressure can be calculated using the reflection function as 

(ݐ)݌  = ܼ଴ ∙ (ݐ)ܷ + (ݐ)ݎ ∗ (ݐ)݌) + ܼ଴ܷ(ݐ)) (79) 

The second part of this expression is a convolution, which means that its value at a cer-

tain time instant is dependent from the past quantities: 

(ݐ)ݎ  ∗ ൫(ݐ)݌ + ܼ଴ܷ(ݐ)൯ = ∫ (߬)ݎ ∙௧
଴ ൫ݐ)݌ − ߬) + ܼ଴ܷ(ݐ − ߬)൯݀߬ (80) 

The volume flow can be expressed using Bernoulli’s law (Section 3.4.1) according to 

Equations (46) and (47). 

Using time discretisation, equation (80) can be written in the following form: 

[݊]݌  = ܼ଴ ∙ ܷ[݊] + ∑ [݇]ݎ ∙ ݊]݌) − ݇] + ܼ଴ܷ[݊ − ݇])௡
௞ୀ଴  (81) 

where ݐ = ݊ ∙  (is the time step ݐ∆) ݐ∆

The convolution sum can be expressed as an aggregate of a sum that only contains the 

past and a product that contains the present: 

[݊]݌  = ܼ଴ܷ[݊] + ∑ ݊]݌)[݇]ݎ − ݇] + ܼ଴ܷ[݊ − ݇])௡
௞ୀଵ + [݊]݌)[0]ݎ + ܼ଴ܷ[݊]) (82) 

The discrete form of the volume velocity: 

 ܷ[݊] = ܵ௨[݊] ∙ ට ଶ
ఘబ

ඥ|݌଴ − |[݊]݌ ∙ sign(݌଴ −  (83) ([݊]݌

Substituting this expression into equation (82): 

[݊]݌ ∙ (1 − ([0]ݎ − ܼ଴ ∙ ܵ[݊] ∙ ටଶ
ఘ

∙ ඥ|݌଴ − |[݊]݌ ∙ ଴݌)݊݃݅ݏ − ([݊]݌ ∙ (1 +  ([0]ݎ

 − ∑ [݇]ݎ ∙ ݊]݌) − ݇] + ܼ଴ܷ[݊ − ݇])௡
௞ୀଵ = 0 (84) 

Equation (90) can be solved for ݌[݊] using the “fsolve” function of Matlab for each ݊. 
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4.3. Iterative solution 

 
Figure 18. Iteration (a):reflection function method, (b): truncated impedance method 

The equations of Section 4 were implemented in Matlab. The simulations are performed 

using iterations as depicted in Figure 18 to calculate the solution of the system in each 

time step. Using the reflection function method, the equation of the reed vibration and 

the velocity is calculated in different steps, while the truncated impedance method 

solves the equation of the coupled system consisting of equations (66) and (75). 
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5. RESULTS 

In this section the results of the computer simulations are presented. First, in Section 5.1 

a test geometry is used in order to demonstrate the behaviour of the implemented mod-

eling approaches. The two different resonator representations (impedance truncation and 

reflection function) are compared for this test pipe with different feedback strengths. 

Typical features of the results are explained by references to the underlying physical 

mechanisms of the sound generation process. Second, in Section 5.2 the results for the 

experimental pipes are presented and compared to the measurement results regarding 

various aspects. 

5.1. Validation of the modeling methodology 

For testing the simulations and to examine the behaviour and consistency of the imple-

mented computer models a virtual pipe was used that consists of a blown open reed 

connected to a simple conical resonator. The parameters are the following: 

 density of the reed: 8860 ୩୥
୫య 

 elasticity modulus of the reed:  97.63 GPa 

 length of the reed: 28 mm 

 width of the reed: 3.7 mm 

 thickness of the reed: 0.05 mm 

 radius of the resonator: 20 mm 

 length of the resonator: 400– 600 mm 

 overpressure in pressure tank: 500 Pa 

5.1.1. REED VIBRATION 

The mode shapes of the reed can be seen in Figure 19. The derivatives of the mode 

shapes with respect to ݔ are shown in Figure 20. From the figures, it can be seen, that 

(1) both the displacement and its derivative are zero at the clamped end of the reed and 
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(2) the second derivative of the mode shapes at the free end of the reed is zero, there-

fore, all boundary conditions elaborated in Section 3.2 are satisfied by the mode shapes. 

 
Figure 19. Mode shapes and eigenfrequencies of the example reed 

 

 
Figure 20. The ݔ-derivatives of the example mode shapes 

5.1.2. RESONATOR 

The input impedance of the resonator (normalised by the acoustical impedance of the 

plain wave) can be seen in Figure 21. The resonance frequencies are denoted by the 

local maxima of the function.  
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Figure 21. Input impedance of the example resonator with length ܮ =  550 mm 

It can also be seen in Figure 21 that the peaks are getting wider with the mode number, 

therefore the quality factors are decreasing. That means that the damping is getting 

greater as the frequency is increasing. 

According to the solution of the equations of the sound field, the eigenfrequencies 

should be the odd multiples of the first eigenfrequency. On the other hand, the peaks are 

not exactly at these frequencies. For example the ratio of the third and the first eigenfre-

quency is 5.003 instead of 5, the ratio of the fourth and the first eigenfrequency is 

7.008 instead of 7, and so on. The difference between the theoretical frequencies and 

the calculated frequencies are growing with increasing the frequency. This inharmonici-

ty can be explained by the fact, that the radiation impedance and the associated length 

correction are frequency dependent. The same phenomenon is observed in case of open 

labial organ pipes, see e.g. [Miklós and Angster, 2000]. 

5.1.3. IMPEDANCE TRUNCATION 

The reduced input impedance function is displayed in Figure 22. In this example the 

input impedance is truncated to 5 modes. 
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Figure 22. Truncated input impedance of the example resonator with ܮ =  550 mm 

It can be seen, that the reduced impedance function is a good approximation of the cal-

culated impedance function in the low frequency range. As the function is fitted to the 

peaks of the calculated input impedance, it gives s good approximation around them. On 

the other hand, local minima of the function are shifted from the original function. 

5.1.4. REFLECTION FUNCTION 

The sound pressure can be calculated with the help of the impulse response function 

-the pressure response of the system in case of a Dirac-delta volume velocity exci ,(ݐ)ܩ

tation, using convolution: 

(ݐ)݌  = ܩ ∗ ܷ (85) 

As convolution is an integral, equation (85) can be written in the following form: 

(ݐ)݌  = ∫ ஶ(߬)ܩ
଴ ∙ ݐ)ܷ − ߬)݀߬ (86) 

This numerical integration is computationally quite intensive, as the impulse response 

function is a slowly decaying function of time, as illustrated in Figure 24 for the case of 

the example pipe. 



 

41 

 
Figure 23. Impulse response function of the example pipe. 

The sound pressure can also be calculated with the help of the reflection function (see 

Section 4.2.2): 

(ݐ)݌  = ܼ଴ܷ + ݎ ∗ ݌) + ܼ଴ܷ) (87) 

As the reflection function decays to zero much faster than the impulse response function 

(Figure 25), the calculation of this convolution is much faster. 

 
Figure 24. Reflection function of the example resonator 

On the other hand, in case of using the reflection function in the convolution integral, 

the main difficulty is to find the way to eliminate the error caused by using Fast Fourier 

Transformation. The problems stem from not choosing the maximal frequency of the 
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calculated input impedance ௠݂௔௫  correctly [Gazengel, 1995]. Gazengel, Gilbert and 

Amir noticed that the shape of the reflection function is highly affected by ௠݂௔௫ . If it is 

chosen to be the on a zero point of the input impedance, the resulting reflection function 

is rippled, as shown in Figure 25. On the other hand, if it is chosen to be one of the natu-

ral resonance frequencies of the resonator, the ripple nearly disappears (Figure 24). 

It can also be seen in Figures 24 and 25 that the position of the peak of the reflection 

function is equal to the period of the first eigenfrequency of the resonator, as this is ex-

actly the amount of time that the pressure wave has to travel to get back to the point of 

the excitation after being reflected from the open end. Because of the open end, the re-

flected pressure pulse suffers a 180° phase shift. That is why the reflection function has 

a negative peak. 

 
Figure 25. Rippled reflection function due  

5.1.5. EXTREMAL CASES 

As the sound pressure is reflected back from the open end of the resonator in the oppo-

site phase, if the length (ܮ) of the resonator is close to ܮ = ఒ
ଶ∙

݊ where ߣ is the wave-

length of the wave having the same frequency as the reed vibration, and ݊ is a positive 

integer number, the reflected sound pressure wave works as a negative feedback, and 

prevents the reed from vibrating. If the length of the resonator is close to ܮ = ఒ
ସ

(2݊ +

1) the reflected wave works as a positive feedback and boosts the vibration of the reed. 
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The sound pressure and the displacement of the reed can be seen in Figures 26 and 27 in 

case of ܮ =  400 mm. The reed has a stabile displacement from the time when the ex-

citing pressure is applied but oscillation does not occur. After the opening of the reed, 

the static pressures equalize and the acoustic pressure remains zero until the end of the 

simulation. 

 
Figure 26. Acoustic pressure and reed displacement in case of negative feedback  

(reflection function method) 

 
Figure 27. Acoustic pressure and reed displacement in case of negative feedback  

(impedance truncation method) 
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It can be seen in Figures 26 and 27 that there is a difference between the transient vibra-

tions, but the final reed displacement and the pressure will be the same in case of both 

methods. 

In case of choosing the resonator length ܮ =  600 mm, positive feedback is attained 

and the reed and the acoustic pressure are starting to oscillate with an increasing ampli-

tude. The results are shown in Figures 28 and 29. It can be seen, that the steady state 

results are quite similar in this case as well. The central value of the oscillation is the 

same with both methods. The amplitudes are also the same. However, there is a little 

difference between the transient vibrations. It can be seen, that it takes the impedance 

truncation method to come to a steady state vibration. 

 

 
Figure 28 Reed displacement and acoustic pressure in case of positive feedback  

(reflection function method) 
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Figure 29 Reed displacement and acoustic pressure in case of positive feedback  

(impedance truncation method) 

 
Figure 30. Spectrum of the reed displacement and the Pressure amplitude 

(the results of the reflection function method are marked with red line, while the results of the truncated 

impedance is marked with blue line) 

The spectrum of the reed vibration and the acoustic pressure are displayed in Figure 30 

As it can be seen the spectra are similar in case of the different simulation methods. 

This shows that the eigenfrequencies (therefore the timbre of the pipe) are independent 

from the resonator representation, therefore, both methods represent the sound propaga-

tion properly. It can also be seen in the spectrum of the reed vibration, that the first ei-
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genfrequency is the dominant one in the vibration as the first peak is more than 40 dB 

higher than the other ones. That is why the movement of the reed is sufficiently repre-

sented by its first eigenmode and its further eigenfrequencies can be neglected.  

5.2. Simulation of the experimental pipes 

The construction of the experimental pipes were shown in Figure 4 earlier. The parame-

ters of the tongues and resonators of experimental pipes #1, #2 and #3 are listed in Ta-

bles 1 and 2. These parameters were also used in the simulations presented in this sec-

tion. 

 
length  
[mm] 

width  
[mm] 

height 
[mm] 

density  
[kg/m] 

elasticity 
modulus  

[GPa] 

clearance gap 
[mm] 

frequency 
[Hz] 

Quality 
factor [-] 

1 21.19 2 0.2 

8860 105 

0.05 247.8 151.8 

2 25.62 2 0.15 0.05 127.1 218.5 

3 47.53 5 0.4 0.1 98.5 108.0 

Table 1. Parameters of the tongues of the experimental pipes 

 
Physical 
length 
[mm]  

Inner  
circumference  

[mm] 

Effective 
radius 
[mm] 

Effective 
length  
[mm] 

Frequency 
[Hz] 

quality 
factor 

[-] 

1 597 56 7.9 610 284.4 44.2 

2 1181 113.3 16 1207 143.7 62.1 

3 1188 63.9–172-9 9–24.4 1170 110.5 50.8 

Table 2. Parameters of the resonators of the experimental pipes 

5.2.1. COMPARISON OF STATIC PARAMETERS 

First, two important parameters of the pipes are compared to the measured results. 

These are (1) the minimal blowing pressure required to obtain a stable oscillation and 

(2) the fundamental frequency of the pipe sound. 

The minimal overpressures are shown in Table 3. Both simulation methods gave the 

same results in case of all pipes, which are only slightly different from the measured 

ones. 
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Minimal overpressure [Pa] 

 Measurement 
 

Simulation 
(both methods) 

Pipe 1 265 260 

Pipe 2 220 220 

Pipe 3 195 200 

Table 3. Minimal blowing pressures required for stable sound 

 

Frequency of the sound [Hz] 

 Measurement Simulation  
(impedance truncation) 

Simulation 
(reflection function) 

Pipe 1 278.4 283.5 (+31 cents) 281.9 (+22 cents) 

Pipe 2 139.8 145.5 (+70 cents) 145.3 (+66 cents) 

Pipe 3 108.9 111.6 (+41 cents) 111.3 (+36 cents) 

Table 4. Steady state frequencies compared to the measured values. 

(The numbers in the brackets indicate the deviations from the measured frequencies.) 

 

The fundamental frequencies of the simulated reed vibrations and sounds displayed in 

Table 4 were calculated from the steady state part of the simulated reed displacement 

signal. To achieve accurate detection of the frequency, the signals were filtered and a 

sinus-fit algorithm was used. This method gives a greatly enhanced accuracy of the fre-

quency detection compared to the standard FFT-based method. 

It can be seen in Table 4, that the frequencies of the simulations are a little higher than 

the measured values. The difference can be caused by the fact, that the excitation pres-

sure is assumed to be constant in the simulations, while in reality, the excitation pres-

sure is also wavering. Moreover, the air in the pressure thank is also coupled to the res-

onator, therefore it is tuning the resonators for a slightly different frequency. 

5.2.2. TRANSIENT VIBRATION 

The sound pressure of pipe 1 (at the position of the reed) can be seen in Figure 31. It 

shows, that in the transient section not only the amplitude of the oscillation changes, but 

the waveform is modified as well. Similar results were found in case of the other pipes 

as well. 
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Figure 31 Transient oscillation of sound pressure (pipe 1) 

5.2.3. IMPEDANCE TRUNCATION VERSUS REFLECTION FUNCTION 

The input impedances of the experimental pipes calculated by the model introduced in 

Section 3.3.4 can be seen in Figures 32–34. It can be seen, that the input impedances are 

much different from the simple conical resonator’s impedance. It can be seen in Figure 

33 that in certain frequencies (for example around 1050 Hz and 3050 Hz) the reflection 

from the open end and the reflection of the closed end work as a negative feedback 

therefore there is a drastic change in the impedance function that occurs periodically. 

This effect was also experienced during the measurements. In case of pipes #1 and #2 

there are smaller sharp peaks in the input impedance between the highest peaks. These 

are due to the asymmetric position of the reed along the length of the resonator. 

 
Figure 32. Input impedance of Pipe 1 
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Figure 33. Input impedance of Pipe 2 

 
Figure 34.. Input impedance of Pipe 3 

The reflection functions of the experimental pipes can be seen in Figure 35. They are 

much complex than the reflection function of a simple conical resonator, because the 

reeds are not located at the end of the resonator. Therefore, there are reflections from 

both ends and the functions have more peaks than the one in shown in Figure 24. 

 

 
Figure 35 Reflection functions of the experimental pipes 
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5.2.4. THE EFFECT OF THE TRUNCATION 

In order to examine the effect of the truncation parameter on the resulting steady state 

characteristics of the oscillations, the impedance truncation simulations were run taking 

different amount of resonator modes into account. Simulations were performed for 

pipe 1 with a blowing pressure of ଴ܲ  =  400 Pa.The results show, that this parameter 

does not change drastically the resulting frequency. According to Figure 36, taking 5 

modes into account gives a really good approximation of the resonator, taking further 

modes only affects the frequency to a very small extent. 

 
Figure 36. The effect of number of the resonator on the fundamental frequency 

5.2.5. CHANGING THE BLOWING PRESSURE 

The measurements show that changing the overpressure does not affect the pitch of the 

pipe, only to a very small extent. Therefore the simulations were run for different over-

pressures. To be able to compare the change of the pitch of the sounds the resulting fre-

quencies were normalised with the pitch of the 400 Pa overpressure. 

 

 
Figure 37. The effect of the overpressure on the pitch 
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Figure 37 contains the relative pitches of the two simulations and the measurement for 

pipe 1 and 2. It can be seen, that the change of the pitch is few cents, what is a very 

small (almost non-audible) difference. It should also be noted that half degree change of 

the ambient temperature also detunes the pipes about 2 cents. 

The simulations for pipe 3 gave unexpected results. When the blowing pressure reaches 

500 Pa, the frequency of the sound undergoes a significant change. Moreover, the 

change of the overpressure modifies the waveform of the sound pressure as well, as 

shown in Figure 38. Such effects were not experienced in the measurements and thus, 

they can be thought of as unphysical. At this stage this strange phenomenon occurring 

only in case of pipe 3 is unexplained. 

 
Figure 38. The effect of the overpressure on the waveform of the sound pressure 

The effects of changing the blowing pressure on the spectrum of the pressure wave-

forms at the reed position were also investigated. The spectra were evaluated in the 

steady state of the sound production. Then, the envelopes (i.e. the curves containing 

solely the amplitude of the harmonic partials) were evaluated. The resulting envelopes 

are displayed in Figures 39 (impedance truncation method) and Figure 40 (reflection 

function method). It can be seen in the figures that the amplitudes are increasing with 

the blowing pressure, as expected. Furthermore, higher harmonics become more and 

more enhanced compared to the fundamental with increasing the overpressure. This 

means that the timbre of the sound is changing significantly. Although these envelopes 

are evaluated at the point of the reed, similar results can be expected at the open end of 

the resonator as the transfer from the reed position to the open end is characterized by a 

simple (linear, amplitude independent) transfer function, see equation (37). These re-

sults are also in good agreement with the measurements. 
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Figure 39. The effect of the overpressure on the harmonics (impeadance truncation method) 

 
Figure 40. The effect of the overpressure on the harmonics  

(reflection function method) 
By comparing the two simulation approaches, it is seen that in case of the truncated im-

pedance method, the higher harmonics have smaller pressure amplitudes. This is caused 

by the truncation of the resonator modes. On the other hand, the reflection function im-

plicitly contains all modes under the half of the sampling frequency, therefore the higher 

frequency contents of the resulting sounds are also enhanced. Beside these small dissim-

ilarities, the two methods give sounds and spectral envelopes that are very much alike. 
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6. CONCLUSION 

During our work, a simplified model of the sound production of a novel organ pipe con-

struction with a blown-open free reed was elaborated by connecting the reed vibration 

to a resonator model through a simplified flow model. The model was improved by 

making the calculation of the escape area more and more accurate. The useful section 

model of Millot and Baumann was improved by taking the width of the support into 

account. Furthermore, it was shown that the free reed model with the useful section can 

be coupled to a resonator. 

The resonator was represented using two different theories: the reflection function and 

the truncated impedance theory. A simulation of a pipe with simple conical resonator 

was presented using both methods. The results met the expectation, as both the ampli-

tudes and the central values of the reed displacement and the pressure oscillation were 

very similar for both methods. Moreover, the spectrum of the oscillations (therefore the 

pitch of the sound) were almost the same for the two simulations. Small dissimilarities 

were only observed in the transient signals. 

These simulations were also used to describe three experimental pipes with very differ-

ent resonator shapes. They represented the sound production of the pipes properly. The 

values of the required pressure of the sound production were really close to the meas-

ured ones. The difference between the measured and simulated frequencies can be ex-

plained by the fact, that during the simulations the exciting pressure was approximated 

with a constant while it is not time independent in the reality. Moreover, the effect of 

the air in the pressure tank was also neglected.  

During the measurements it was experienced, that the overpressure does not affect the 

pitch of the sound; however, it has a significant impact on the timbre of the pipes. This 

tendency can also be seen from the results of the simulations. It has also been proved, 

that the motion of the reed is sufficiently represented by its first eigenmode and in case 

of the truncated impedance method the truncation does not cause a big error. Truncating 

at the fifth–seventh eigenfrequency gives a really good approximation. 

It can be stated that the implemented computer models are correct representations of the 

experimental pipes. The simulation techniques discussed in the thesis allow rapid com-
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putations and the synthesis of sound samples of the pipes too. Despite the simplicity of 

the applied one-dimensional models, the comparison with the measurements show quite 

good match. 

Further improvements of the models can be done in two main aspects. First, by taking 

the effects of the pressure tank’s air and the time dependent overpressure into account. 

Second, the simple one-dimensional flow model has the most assumptions that may not 

be fulfilled under real circumstances. A more precise flow model is expected to enhance 

the accuracy of the simulations. 
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