
Risk analysis lab 2014. 11. 17. (Optimizing mean-reverting portfolios)

1. Load the supplied data from the binary (s.mat), the variable s will be a TxN matrix 
containing daily closing prices for N asset and T days ( s t={s1

 t  , s2
 t ,... , sN

t }, t=1, ... ,T ). 
For the given time series, calculate the covariance matrix G.

2. Optimizing mean-reverting portfolios

a) Assume that s t  is subject to a first order vector autoregressive process – VAR(1) –, 
defined as follows: s t=Ast−1W t , where A is a matrix of size NxN and 
W t~N 0, I   are i.i.d.r.v.-s for some 0 . 

Estimate A using least squares estimation techniques, as A :min
A
∑
t=2

T

∥st−Ast−1∥
2 , 

where ∥.∥2  denotes the Euclidian norm. Solving the minimization problem above, by 
equating the partial derivatives to zero with respect to each element of the matrix A, we 
obtain a system of linear equations. Solving that for A and switching back to vector 
notation for s, we obtain

 A=∑
t=2

T

s t−1T st−1
+ st−1T s t  ,

where M +  denotes the Moore-Penrose pseudoinverse of a matrix M.  (Note that the 
Moore-Penrose pseudoinverse is preferred to regular matrix inversion, in order to avoid 
problems which may arise because of the potential singularity.)

function A = est_A(s)

b) The traditional way to identify the optimal sparse mean-reverting portfolio is to find a 
portfolio vector subject to maximizing its predictability. One may note that 

wopt :max=max
x

wT AG AT w
wTG w

 is equivalent to finding the eigenvector 

corresponding to the maximum eigenvalue in the following generalized eigenvalue 
problem: AG ATw=G w . This can be transformed into a traditional eigenvalue 
problem by introducing the variable u :=G1 /2w ,w=G+ 1 /2u   so that we have

G+ 1/2 T AG AT G +1/2u=u .

function w = mr_opt_w(A, G)



c) Estimating the long term mean (μ) of the process of portfolio valuations ( p t=w
T s t ) 

is instrumental for mean reverting trading. Rewriting the Ornstein-Uhlenbeck stochastic 
differential equation - dp t =−p t dt dW t   - to the following way:
st−s t−1=−st−1 tW t−W t−1= t− s t−1 t W t−W t−1  results in 

a linear regression in the form of y=abxt , from which the estimation of the 
long term mean can be formulated as:

= a
1−b .

(Hint: calculate the p  vector then run a linear regression (robustfit) on the 
{pt , p t−1}  pairs.)

% pT := wT sT
function [mu, pT] = est_mu(s, w)


