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Abstract

We present the first cryptographically sound security proof of the well-known Needham-
Schroeder-Lowe public-key protocol. More precisely, we show that the protocol is secure against ar-
bitrary active attacks if it is implemented using provably secure cryptographic primitives. Although
we achieve security under cryptographic definitions, our proof does not have to deal with probabilis-
tic aspects of cryptography and is hence in the scope of current proof tools. The reason is that we
exploit a recently proposed ideal cryptographic library, which has a provably secure cryptographic
implementation. Besides establishing the cryptographic security of the Needham-Schroeder-Lowe
protocol, our result also exemplifies the potential of this cryptographic library and paves the way for
cryptographically sound verification of security protocols by means of formal proof tools.

1 Introduction

In recent times, the analysis of cryptographic protocols has been getting more and more attention, and
the demand for rigorous proofs of cryptographic protocols has been rising.

One way to conduct such proofs is the cryptographic approach, whose security definitions are based
on complexity theory, e.g., [12, 11, 13, 6]. The security of a cryptographic protocol is proved by reduc-
tion, i.e., by showing that breaking the protocol implies breaking one of the underlying cryptographic
primitives with respect to its cryptographic definition. This approach captures a very comprehensive
adversary model and allows for mathematically rigorous and precise proofs. However, because of prob-
abilism and complexity-theoretic restrictions, these proofs have to be done by hand so far, which yields
proofs with faults and imperfections. Moreover, such proofs rapidly become too complex for larger
protocols.

The alternative is the formal-methods approach, which is concerned with the automation of proofs
using model checkers and theorem provers. As these tools currently cannot deal with cryptographic
details like error probabilities and computational restrictions, abstractions of cryptography are used.
They are almost always based on the so-called Dolev-Yao model [10]. This model simplifies proofs
of larger protocols considerably and gave rise to a large body of literature on analyzing the security of
protocols using various techniques for formal verification, e.g., [19, 17, 14, 7, 21, 1].

A prominent example demonstrating the usefulness of the formal-methods approach is the work of
Lowe [15], where he found a man-in-the-middle attack on the well-known Needham-Schroeder public-
key protocol [20]. Lowe later proposed a repaired version of the protocol [16] and used the model
checker FDR to prove that this modified protocol (henceforth known as the Needham-Schroeder-Lowe
protocol) is secure in the Dolev-Yao model. The original and the repaired Needham-Schroeder public-
key protocols are two of the most often investigated security protocols, e.g., [25, 18, 24, 26]. Various
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new approaches and formal proof tools for the analysis of security protocols were validated by showing
that they can discover the known flaw or prove the fixed protocol in the Dolev-Yao model.

It is well-known and easy to show that the security flaw of the original protocol in the formal-
methods approach can as well be used to mount a successful attack against any cryptographic imple-
mentation of the protocol. However, all existing proofs of security of the fixed protocol are restricted to
the Dolev-Yao model, i.e., no theorem exists which allows for carrying over the results of an existing
proof to the cryptographic approach with its much more comprehensive adversary. Although recent
research focused on moving towards such a theorem, i.e., a cryptographically sound foundation of the
formal-methods approach, the results are either specific for passive adversaries [3, 2] or they do not
capture the local evaluation of nested cryptographic terms [8, 22], which is needed to model many usual
cryptographic protocols. A recently proposed cryptographic library [5] allows for such nesting, but has
not been applied to any security protocols yet. Thus, despite of the tremendous amount of research
dedicated to the Needham-Schroeder-Lowe protocol, it is still an open question whether an actual im-
plementation based on provably secure cryptographic primitives is secure under cryptographic security
definitions.

We close this gap by providing the first security proof of the Needham-Schroeder-Lowe protocol in
the cryptographic approach. We show that the protocol is secure against arbitrary active attacks if the
Dolev-Yao-based abstraction of public-key encryption is implemented using a chosen-ciphertext secure
public-key encryption scheme with small additions like ciphertext tagging. Chosen-ciphertext security
was introduced in [23] and formulated as “IND-CCA2” in [6]. Efficient encryption systems secure in
this sense exist under reasonable assumptions [9].

Obviously, establishing a proof in the cryptographic approach presupposes dealing with the men-
tioned cryptographic details, hence one naturally assumes that our proof heavily relies on complexity
theory and is far out of scope of current proof tools. However, our proof is not performed from scratch
in the cryptographic setting, but based on the mentioned cryptographic library [5]. This library provides
cryptographically faithful, deterministic abstractions of cryptographic primitives, i.e., the abstractions
can be securely implemented using actual cryptography. Moreover, the library allows for nesting the ab-
stractions in an arbitrary way, quite similar to the original Dolev-Yao model. In a nutshell, it is sufficient
to prove the security of the Needham-Schroeder-Lowe protocol based on the deterministic abstractions;
then the result automatically carries over to the cryptographic setting. As the proof is deterministic and
rigorous, it should be easily expressible in formal proof tools, in particular theorem provers. Even done
by hand, our proof is much less prone to error than a reduction proof conducted from scratch in the cryp-
tographic approach. We also want to point out that our result not only provides the up-to-now missing
cryptographic security proof of the Needham-Schroeder-Lowe protocol, but also exemplifies the use-
fulness of the cryptographic library of [5] for the cryptographically sound verification of cryptographic
protocols.

2 Preliminaries

In this section, we give an overview of the ideal cryptographic library of [5] and briefly sketch its
provably secure implementation. We start by introducing the notation used in this paper.

2.1 Notation

We write “:=” for deterministic and “←” for probabilistic assignment, and “R←” for uniform random
choice from a set. By x := y++ for integer variables x, y we mean y := y + 1;x := y. The length
of a message m is denoted as |m|, and ↓ is an error element available as an addition to the domains
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and ranges of all functions and algorithms. The list operation is denoted as l := (x1, . . . , xj), and
the arguments are unambiguously retrievable as l[i], with l[i] = ↓ if i > j. A database D is a set of
functions, called entries, each over a finite domain called attributes. For an entry x ∈ D, the value at
an attribute att is written x.att . For a predicate pred involving attributes, D[pred ] means the subset of
entries whose attributes fulfill pred . If D[pred ] contains only one element, we use the same notation for
this element. Adding an entry x to D is abbreviated D :⇐ x.

2.2 Overview of the Ideal and Real Cryptographic Library

The ideal (abstract) cryptographic library of [5] offers its users abstract cryptographic operations, such
as commands to encrypt or decrypt a message, to make or test a signature, and to generate a nonce. All
these commands have a simple, deterministic semantics. To allow a reactive scenario, this semantics
is based on state, e.g., of who already knows which terms; the state is represented as a database. Each
entry has a type (e.g., “ciphertext”), and pointers to its arguments (e.g., a key and a message). Further,
each entry contains handles for those participants who already know it. A send operation makes an entry
known to other participants, i.e., it adds handles to the entry. The ideal cryptographic library does not
allow cheating. For instance, if it receives a command to encrypt a message m with a certain key, it
simply makes an abstract database entry for the ciphertext. Another user can only ask for decryption of
this ciphertext if he has obtained handles to both the ciphertext and the secret key.

To allow for the proof of cryptographic faithfulness, the library is based on a detailed model of asyn-
chronous reactive systems introduced in [22] and represented as a deterministic machine THH, called
trusted host. The parameter H ⊆ {1 . . . , n} denotes the honest participants, where n is a parameter of
the library denoting the overall number of participants. Depending on the considered set H, the trusted
host offers slightly extended capabilities for the adversary. However, for current purposes, the trusted
host can be seen as a slightly modified Dolev-Yao model together with a network and intruder model,
similar to “the CSP Dolev-Yao model” or “the inductive-approach Dolev-Yao model”.

The real cryptographic library offers its users the same commands as the ideal one, i.e., honest users
operate on cryptographic objects via handles. The objects are now real cryptographic keys, ciphertexts,
etc., handled by real distributed machines. Sending a term on an insecure channel releases the actual
bitstring to the adversary, who can do with it what he likes. The adversary can also insert arbitrary
bitstrings on non-authentic channels. The implementation of the commands is based on arbitrary secure
encryption and signature systems according to standard cryptographic definitions, with certain additions
like type tagging and additional randomizations.

The security proof of [5] states that the real library is at least as secure as the ideal library. This is
captured using the notion of simulatability, which states that whatever an adversary can achieve in the
real implementation, another adversary can achieve given the ideal library, or otherwise the underlying
cryptography can be broken [22]. This is the strongest possible cryptographic relationship between a
real and an ideal system. In particular it covers active attacks. Moreover, a composition theorem exists in
the underlying model [22], which states that one can securely replace the ideal library in larger systems
with the real library, i.e., without destroying the already established simulatability relation.

3 The Needham-Schroeder-Lowe Public-Key Protocol

The original Needham-Schroeder protocol and Lowe’s variant consist of seven steps, where four steps
deal with key generation and public-key distribution. These steps are usually omitted in a security analy-
sis, and it is simply assumed that keys have already been generated and distributed. We do this as well to
keep the proof short. However, the underlying cryptographic library offers commands for modeling the
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remaining steps as well. The main part of the Needham-Schroeder-Lowe public-key protocol consists
of the following three steps, expressed in the typical protocol notation, as in, e.g., [15].

1. u→ v : Epkv(Nu, u)
2. v → u : Epku(Nu, Nv , v)
3. u→ v : Epkv(Nv).

Here, user u seeks to establish a session with user v. He generates a nonce Nu and sends it to v together
with its identity, encrypted with v’s public key (first message). Upon receiving this message, v decrypts
it to obtain the nonce Nu. Then v generates a new nonce Nv and sends both nonces and its identity back
to u, encrypted with u’s public key (second message). Upon receiving this message, u decrypts it and
tests whether the contained identity v equals the sender of the message and whether u earlier sent the
first contained nonce to user v. If yes, u sends the second nonce back to v, encrypted with v’s public
key (third message). Finally, v decrypts this message; and if v had earlier sent the contained nonce to u,
then v believes to speak with u.

3.1 The Needham-Schroeder-Lowe Protocol Using the Abstract Library

We now show how to model the Needham-Schroeder-Lowe protocol in the framework of [22] and using
the ideal cryptographic library. For each user u ∈ {1, . . . , n}, we define a machine MNS

u , called a
protocol machine, which executes the protocol sketched above for participant identity u. It is connected
to its user via ports EA outu !, EA inu? (“EA” for “Entity Authentication”, because the behavior at these
ports is the same for all entity authentication protocols) and to the cryptographic library via ports inu !,
outu?. The notation follows the CSP convention, e.g., the cryptographic library has a port inu? where
it obtains messages output at inu !. The combination of the protocol machines MNS

u and the trusted host
THH is the ideal Needham-Schroeder-Lowe system SysNS,id. It is shown in Figure 1; H and A model
the arbitrary joint honest users and the adversary, respectively.

Using the notation of [5], the system SysNS,id consists of several structures (M̂H,SH), one for
each value of the parameter H. Each structure consists of a set M̂H := {THH} ∪ {MNS

u | u ∈ H}
of machines, i.e., for a given set H of honest users, only the machines MNS

u with u ∈ H are actually
present in a protocol run. The others are subsumed in the adversary. SH denotes those ports of M̂H
that the honest users connect to, i.e., SH := {EA inu?,EA outu ! | u ∈ H}. Formally, we obtain
SysNS,id := {(M̂H,SH) | H ⊆ {1, . . . , n}}.

In order to capture that keys have been generated and distributed, we assume that suitable entries for
the keys already exist in the database. We denote the handle of u1 to the public key as pkehnd

u,u1
and the

handle of u to its secret key as skehnd
u . We show in Section 6.2 how to deal with this formally, after we

have given a detailed description of the ideal cryptographic library.
The state of the machine MNS

u consists of the bitstring u and a family (Nonceu,v)v∈{1,...,n} of sets of
handles. Each set Nonceu,v is initially empty. We now define how the machine MNS

u evaluates inputs.
They either come from user u at port EA inu? or from THH at port outu?. The behavior of MNS

u in both
cases is described in Algorithm 1 and 2 respectively, which we will describe below. We refer to Step i of
Algorithm j as Step j.i. Both algorithms should immediately abort if a command to the cryptographic
library does not yield the desired result, e.g., if a decryption requests fails. For readability we omit
these abort checks in the algorithm descriptions; instead we impose the following convention on both
algorithms.

Convention 1 If MNS
u enters a command at port inu ! and receives ↓ at port outu? as the immediate

answer of the cryptographic library, then MNS
u aborts the execution of the current algorithm, except if

the command was of the form list proj or send i.
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Figure 1: Overview of the Needham-Schroeder-Lowe Ideal System.

The user of the machine MNS
u can start a new protocol with user v ∈ {1, . . . , n} \ {u} by inputting

(new prot, v) at port EA inu?. Our security proof holds for all adversaries and all honest users, i.e.,
especially those that start protocols with the adversary (respectively a malicious user) in parallel with
protocols with honest users. Upon such an input, MNS

u builds up the term corresponding to the first
protocol message using the ideal cryptographic library THH according to Algorithm 1. The command
gen nonce generates the ideal nonce. MNS

u stores the resulting handle nhnd
u in Nonceu,v for future

comparison. The command store inputs arbitrary application data into the cryptographic library, here
the user identity u. The command list forms a list and encrypt is encryption. Since only lists are allowed
to be transferred in THH (because the list-operation is a convenient place to concentrate all verifications
that no secret items are put into messages), the encryption is packed as a list again. The final command
send i means that MNS

u sends the resulting term to v over an insecure channel. The effect is that the
adversary obtains a handle to the term and can decide what to do with it (such as forwarding it to MNS

v ).
The behavior of MNS

u upon receiving an input from the cryptographic library at port outu? (corre-
sponding to a message that arrives over the network) is defined similarly in Algorithm 2. By construction
of THH, such an input is always of the form (v, u, i,mhnd) where mhnd is a handle to a list. MNS

u first
decrypts the list content using the secret key of user u, which yields a handle lhnd to an inner list. This
list is parsed into at most three components using the command list proj. If the list has two elements, i.e.,
it could correspond to the first message of the protocol, MNS

u generates a new nonce and stores its handle
in Nonceu,v. After that, MNS

u builds up a new list according to the protocol description, encrypts the list
and sends it to user v. If the list has three elements, i.e., it could correspond to the second message of
the protocol, then MNS

u tests whether the third list element equals v and whether the first list element s
already contained in the set Nonceu,v. If one of these tests does not succeed, MNS

u aborts. Otherwise,
it again builds up a term according to the protocol description and sends it to user v. Finally, if the list
has only one element, i.e., it could correspond to the third message of the protocol, then MNS

u tests if the
handle of this element is already contained in the set Nonceu,v. If so, MNS

u outputs (ok, v) at EA outu !.
This signals that the protocol with user v has terminated successfully, i.e., u believes to speak with v.

3.2 On Polynomial Runtime

In order to use existing composition results of the underlying model, the machines MNS
u have to be

polynomial-time. Similar to the cryptographic library, we hence define that each machine MNS
u main-
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Algorithm 1 Evaluation of Inputs from the User (Protocol Start)
Input: (new prot, v) at EA inu? with v ∈ {1, . . . , n} \ {u}.

1: nhnd
u ← gen nonce().

2: Nonceu,v := Nonceu,v ∪ {nhnd
u }.

3: uhnd ← store(u).
4: lhnd

1 ← list(nhnd
u , uhnd).

5: chnd
1 ← encrypt(pkehnd

v,u , lhnd
1 ).

6: mhnd
1 ← list(chnd

1 ).
7: send i(v,mhnd

1 ).

tains explicit polynomial bounds on the message lengths and the number of inputs accepted at each
port.

4 The Security Property

Our security property states that an honest participant v only successfully terminates a protocol with an
honest participant u if u has indeed started a protocol with v, i.e., an output (ok, u) at EA outv ! can only
happen if there was a prior input (new prot, v) at EA inu?. This property and also the actual protocol
does not consider replay attacks, i.e., a user v could successfully terminate a protocol with u multiple
times but u only once started a protocol with v. However, this can easily be avoided as follows: If MNS

u

receives a message from v containing a nonce and MNS
u created this nonce, then it additionally removes

this nonce from the set Nonceu,v.Formally, this means that after Steps 2.20 and 2.25, the handle xhnd
1 is

removed from Nonceu,v.
Integrity properties in the underlying model are formally sets of traces at the in- and output ports

connecting the system to the honest users, i.e., here traces at the port set SH = {EA outu !,EA inu? | u ∈
H}. Intuitively, such an integrity property Req states which are the “good” traces at these ports. A trace
is a sequence of sets of events. We write an event p?m or p!m, meaning that message m occurs at input
or output port p. The t-th step of a trace r is written rt; we also speak of the step at time t. Thus the
integrity requirement ReqEA for the Needham-Schroeder-Lowe protocol is formally defined as follows:

Definition 4.1 (Entity Authentication Requirement) A trace r is contained in ReqEA if for all u, v ∈ H:

∃t1 ∈ N : EA outv !(ok, u) ∈ rt1 # If v believes to speak with u at time t1

⇒ ∃t0 < t1 : # then there exists a past time t0

EA inu?(new prot, v) ∈ rt0 # in which u started a protocol with v
�

The notion of a system Sys fulfilling an integrity property Req essentially comes in two flavors [4].
Perfect fulfillment, Sys |=perf Req , means that the integrity property holds for all traces arising in runs of
Sys (a well-defined notion from the underlying model [22]). Computational fulfillment, Sys |=poly Req ,
means that the property only holds for polynomially bounded users and adversaries, and only with
negligible error probability. Perfect fulfillment implies computational fulfillment.

The following theorem captures the security of the ideal Needham-Schroeder-Lowe protocol.

Theorem 4.1 (Security of the Needham-Schroeder-Lowe Protocol based on the Ideal Cryptographic
Library) Let SysNS,id be the ideal Needham-Schroeder-Lowe system defined in Section 3, and ReqEA

the integrity property of Definition 4.1. Then SysNS,id |=perf ReqEA. �
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Algorithm 2 Evaluation of Inputs from THH (Network Inputs)

Input: (v, u, i,mhnd) at outu? with v ∈ {1, . . . , n} \ {u}.
1: chnd ← list proj(mhnd, 1)
2: lhnd ← decrypt(skehnd

u , chnd)
3: xhnd

i ← list proj(lhnd, i) for i = 1, 2, 3.
4: if xhnd

1 �= ↓ ∧ xhnd
2 �= ↓ ∧ xhnd

3 = ↓ then {First Message is input}
5: x2 ← retrieve(xhnd

2 ).
6: if x2 �= v then
7: Abort
8: end if
9: nhnd

u ← gen nonce().
10: Nonceu,v := Nonceu,v ∪ {nhnd

u }.
11: uhnd ← store(u).
12: lhnd

2 ← list(xhnd
1 , nhnd

u , uhnd).
13: chnd

2 ← encrypt(pkehnd
v,u , lhnd

2 ).
14: mhnd

2 ← list(chnd
2 ).

15: send i(v,mhnd
2 ).

16: else if xhnd
1 �= ↓ ∧ xhnd

2 �= ↓ ∧ xhnd
3 �= ↓ then {Second Message is input}

17: x3 ← retrieve(xhnd
3 ).

18: if x3 �= v ∨ xhnd
1 �∈ Nonceu,v then

19: Abort
20: end if
21: lhnd

3 ← list(xhnd
2 ).

22: chnd
3 ← encrypt(pkehnd

v,u , lhnd
3 ).

23: mhnd
3 ← list(chnd

3 ).
24: send i(v,mhnd

3 ).
25: else if xhnd

1 ∈ Nonceu,v ∧ xhnd
2 = xhnd

3 = ↓ then {Third Message is input}
26: Output (ok, v) at EA outu !.
27: end if

5 Proof of the Cryptographic Realization

If Theorem 4.1 has been proven, it follows easily that the Needham-Schroeder-Lowe protocol based on
the real cryptographic library computationally fulfills the integrity requirement ReqEA. The main tool is
the following preservation theorem from [4].

Theorem 5.1 (Preservation of Integrity Properties (Sketch)) Let two systems Sys1, Sys2 be given such
that Sys1 is at least as secure as Sys2 (written Sys1 ≥poly

sec Sys2). Let Req be an integrity requirement
for both Sys1 and Sys2, and let Sys2 |=poly Req . Then also Sys1 |=poly Req . �

Let Syscry,id and Syscry,real denote the ideal and the real cryptographic library from [5], and SysNS,real

the Needham-Schroeder-Lowe protocol based on the real cryptographic library. This is well-defined
given the formalization with the ideal library because the real library has the same ports and offers the
same commands.

Theorem 5.2 (Security of the Real Needham-Schroeder-Lowe Protocol) Let ReqEA denote the integrity
property of Definition 4.1. Then SysNS,real |=poly ReqEA. �
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Proof. In [5] it has already been shown that Syscry,real ≥poly
sec Syscry,id holds for suitable parameters in the

ideal system. Since SysNS,real is derived from SysNS,id by replacing the ideal with the real cryptographic
library, SysNS,real ≥poly

sec SysNS,id follows from the composition theorem of [22]. We only have to show
that the theorem’s preconditions are in fact fulfilled. This is straightforward, since the machines MNS

u are
polynomial-time (cf. Section 3.2). Now Theorem 4.1 implies SysNS,id |=poly ReqEA, hence Theorem 5.1
yields SysNS,real |=poly ReqEA.

6 Proof in the Ideal Setting

This section contains the proof of Theorem 4.1, i.e., the proof of the Needham-Schroeder-Lowe protocol
using the ideal, deterministic cryptographic library. The proof idea is to go backwards in the protocol
step by step, and to show that a specific output always requires a specific prior input. For instance, when
user v successfully terminates a protocol with user u, then u has sent the third protocol message to v;
thus v has sent the second protocol message to u; and so on. The main challenge in this proof was to
find suitable invariants on the state of the ideal Needham-Schroeder-Lowe system.

We start with the rigorous definition of the state and the commands of the ideal cryptographic library
used for modeling the Needham-Schroeder-Lowe protocol. We also describe the local adversary com-
mands that model the slightly extended capabilities of the adversary. After that, we state the invariants
of the system SysNS,id.

6.1 Detailed Description of the Cryptographic Library

6.1.1 States of the Library

The machine THH has ports inu? and outu ! for inputs from and outputs to each user u ∈ H and for
u = a, denoting the adversary. Besides the number n of users, the ideal cryptographic library is param-
eterized by a tuple L of length functions which are used to calculate the “length” of an abstract entry,
corresponding to the length of the corresponding bitstring in the real implementation. Moreover, L con-
tains bounds on the message lengths and the number of accepted inputs at each port. These bounds can
be arbitrarily large, but have to be polynomially bounded in the security parameter. Using the notation
of [5], the ideal cryptographic library is a system Syscry,id

n,L := {({THH},SH) | H ⊆ {1, . . . , n}}, cf. the
definition of the ideal Needham-Schroeder-Lowe system in Section 3.1. In the following, we omit the
parameters n and L for simplicity.1

As the machines MNS
u of the Needham-Schroeder-Lowe protocol only make bounded-length inputs

to THH given n (this follows from the fixed term structure and coding conventions in [5]), the bounds
in L can easily be chosen large enough so that all these inputs are legal. Further, as we only prove
an integrity property, it is not a problem in the proof that the number of accepted inputs might be
exceeded. Hence we omit the details of the length functions from [5]. We present the full definitions of
the commands, but the reader need not worry about functions with names x len.

The main data structure of THH is a database D. The entries of D are abstract representations of
the data produced during a system run, together with the information on who knows these data. Each
entry in D is of the form (recall the notation in Section 2.1)

(ind , type , arg , hndu1 , . . . , hndum , hnd a, len)

where H = {u1, . . . , um}. For each entry x ∈ D:

1Formally, these parameters are thus also parameters of the ideal Needham-Schroeder-Lowe system SysNS,id.
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• x.ind ∈ INDS, called index, consecutively numbers all entries in D. The set INDS is isomor-
phic to N and is used to distinguish index arguments from others. The index is used as a primary
key attribute of the database, i.e., we write D[i] for the selection D[ind = i].

• x.type ∈ typeset identifies the type of x.

• x.arg = (a1, a2, . . . , aj) is a possibly empty list of arguments. Many values ai are indices of
other entries in D and thus in INDS. We sometimes distinguish them by a superscript “ind”.

• x.hndu ∈ HNDS ∪ {↓} for u ∈ H ∪ {a} are handles by which a user or adversary u knows
this entry. x.hndu = ↓ means that u does not know this entry. The set HNDS is yet another set
isomorphic to N. We always use a superscript “hnd” for handles.

• x.len ∈ N0 denotes the “length” of the entry; it is computed by applying the functions from L.

Initially, D is empty. THH has a counter size ∈ INDS for the current size of D. For the handle
attributes, it has counters curhndu (current handle) initialized with 0.

6.1.2 Evaluation of Commands

Each input c at a port inu? with u ∈ H ∪ {a} should be a list (cmd , x1, . . . , xj) and cmd from a fixed
list of commands. We usually write it y ← cmd(x1, . . . , xj) with a variable y designating the result
that THH returns at outu !. The algorithm ihnd := ind2hndu(i) (with side effect) denotes that THH
determines a handle ihnd for user u to an entry D[i]: If ihnd := D[i].hndu �= ↓, it returns that, else it sets
and returns ihnd := D[i].hndu := curhndu++. On non-handles, it is the identity function. The function
ind2hnd∗u applies ind2hndu to each element of a list.

Basic Commands. In the following definitions, we assume that a basic commands is input at the port
inu? with u ∈ H ∪ {a}. First, we describe the commands for storing and retrieving data via handles.

• Storing: mhnd ← store(m), for m ∈ {0, 1}max len(k).

If i := D[type = data ∧ arg = (m)].ind �= ↓ then return mhnd := ind2hndu(i).2 Otherwise if
data len∗(|m|) > max len(k) return ↓. Else set mhnd := curhndu++ and

D :⇐ (ind := size++, type := data, arg := (m), hndu := mhnd, len := data len∗(|m|)).

• Retrieval: m← retrieve(mhnd).

m := D[hndu = mhnd ∧ type = data].arg [1].3

Next we describe list creation and list projection. Lists cannot include secret keys of the public-key
systems (entries of type ske, sks) because no information about those must be given away.

• Generate a list: lhnd ← list(x1
hnd, . . . , xj

hnd), for 0 ≤ j ≤ max len(k).

Let xi := D[hndu = xi
hnd].ind for i = 1, . . . , j. If any D[xi].type ∈ {sks, ske}, set lhnd := ↓.

If l := D[type = list∧arg = (x1, . . . , xj)].ind �= ↓, then return lhnd := ind2hndu(l). Otherwise,
set length := list len∗(D[x1].len , . . . ,D[xj ].len) and return ↓ if length > max len(k). Else set
lhnd := curhndu++ and

D :⇐ (ind := size++, type := list, arg := (x1, . . . , xj), hndu := lhnd, len := length).
2Hence if the same string m is stored twice, THH reuses the first result.
3This implies that mhnd was created by a store command, as no other command creates entries with type = data. Thus

only explicitly stored data can be retrieved and not, e.g., keys or ciphertexts.
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• i-th projection: xhnd ← list proj(lhnd, i), for 1 ≤ i ≤ max len(k).

If D[hndu = lhnd ∧ type = list].arg = (x1, . . . , xj) with j ≥ i, then xhnd := ind2hndu(xi),
otherwise xhnd := ↓.

The abstract command to create a fresh nonce simply creates a new entry in THH.

• Generate a nonce: nhnd ← gen nonce().

Set nhnd := curhndu++ and

D :⇐ (ind := size++, type := nonce, arg := (), hnd u := nhnd, len := nonce len∗(k)).

Finally, we used commands to encrypt and decrypt a list. Since we assume that keys have already been
generated, we omit a detailed description of the key generation command gen enc keypair.

• Encryption: chnd ← encrypt(pkhnd, lhnd).

Let pk := D[hndu = pkhnd ∧ type = pke].ind and l := D[hndu = lhnd ∧ type = list].ind and
length := enc len∗(k,D[l].len). If length > max len(k) or pk = ↓ or l = ↓, then return ↓. Else
set chnd := curhndu++ and

D :⇐ (ind := size++, type := enc, arg := (pk , l), hndu := chnd, len := length).

• Decryption: lhnd ← decrypt(skhnd, chnd).

Let sk := D[hndu = skhnd ∧ type = ske].ind and c := D[hndu = chnd ∧ type = enc].ind .
Return ↓ if c = ↓ or sk = ↓ or pk := D[c].arg [1] �= sk + 1 or l := D[c].arg [2] = ↓. Else return
lhnd := ind2hndu(l).

Local Adversary Commands. From the set of local adversary commands, which capture additional
commands for the adversary at port ina?, we only describe the command adv parse. It allows the
adversary to retrieve all information that we do not explicitly require to be hidden. This command
returns the type and usually all the abstract arguments of a value (with indices replaced by handles),
except in the case of ciphertexts.

• Parameter retrieval: (type , arg)← adv parse(mhnd).

Let m := D[hnda = mhnd].ind and type := D[m].type . In most cases, set arg :=
ind2hnd∗a(D[m].arg). (Recall that this only transforms arguments in INDS.) The only exception
is for type = enc and D[m].arg of the form (pk , l) (a valid ciphertext) and D[pk − 1].hnda = ↓
(the adversary does not know the secret key); then arg := (ind2hnda(pk),D[l].len).

About the remaining local adversary commands we only need to know that they do not output handles
to already existing entries of type list or nonce.

Send Commands. We finally describe the send commands for sending messages on insecure channels.

• send i(v, lhnd), for v ∈ {1, . . . , n} at port inu? for u ∈ H.

Let l ind := D[hndu = lhnd ∧ type = list].ind . If l ind �= ↓, then output (u, v, i, ind2hnda(l ind)) at
outa!.
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• adv send i(u, v, lhnd), for u ∈ {1, . . . , n} and v ∈ H at port ina?.

Intuitively, the adversary wants to send list l to v, pretending to be u. Let lind := D[hnda =
lhnd ∧ type = list].ind . If l ind �= ↓, output (u, v, i, ind2hndv(l ind)) at outv !.

For the proof of Theorem 4.1, the following property of THH proven in [5] will be useful.

Lemma 6.1 The ideal cryptographic library Syscry,id has the following property: The only modifica-
tions to existing entries x in D are assignments to previously undefined attributes x.hndu (except for
counter updates in entries for signature keys, which we do not have to consider here). �

6.2 Capturing Distributed Keys

For the ideal cryptographic library, the assumption that keys have already been generated and distributed
(Section 3.1) means that we start with an initially empty database D, and for each user u ∈ H two entries
of the following form are added:

(skeu , type := ske, arg := (), hnd u := skehnd
u , len := 0); 4

(pkeu , type := pke, arg := (), hndu1 := pkehnd
u,u1

, . . . , hndum := pkehnd
u,um

,

hnd a := pkehnd
u,a , len := pke len∗(k)).

Here skeu and pkeu are two consecutive natural numbers. We omit the details of how the entries for
user u are added by a command gen enc keypair, followed by send commands for the public keys over
authenticated channels.

6.3 Invariants

This section contains invariants of the system SysNS,id, which are needed for the proof of Theorem 4.1.
The first invariants, correct nonce owner and unique nonce use, are easily proved and essentially state
that handles contained in a set Nonceu,v indeed point to entries of type nonce, and that no nonce is in
two such sets. The next two invariants, nonce secrecy and nonce-list secrecy, deal with the secrecy of
certain terms. They are mainly needed to prove the last invariant, correct list owner, which establishes
who created certain terms.

• Correct Nonce Owner. For all u ∈ H, v ∈ {1, . . . , n} and for all xhnd ∈ Nonceu,v, it holds
D[hndu = xhnd] �= ↓ and D[hndu = xhnd].type = nonce.

• Unique Nonce Use. For all u, v ∈ H, all w,w′ ∈ {1, . . . , n}, and all j ≤ size: If D[j].hndu ∈
Nonceu,w and D[j].hndv ∈ Noncev,w′ , then (u,w) = (v,w′).

Nonce secrecy states that the nonces exchanged between honest users u and v remain secret from all
other users and from the adversary. For the formalization, note that the handles to these nonces form the
sets Nonceu,v. The claim is that the other users and the adversary have no handles to such a nonce in
the database D of THH:

• Nonce Secrecy. For all u, v ∈ H and for all j ≤ size: If D[j].hndu ∈ Nonceu,v then
D[j].hndw = ↓ for all w ∈ (H ∪ {a}) \ {u, v}.

4Treating secret keys as being of length 0 is a technicality in the proof of [5] and will not matter in the sequel.
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Similarly, the invariant nonce-list secrecy states that a list containing such a handle can only be known
to u and v. Further, it states that the identity fields in such lists are correct. Moreover, if such a list is an
argument of another entry, then this entry is an encryption with the public key of u or v.

• Nonce-List Secrecy. For all u, v ∈ H and for all j ≤ size with D[j].type = list: Let xind
i :=

D[j].arg [i] for i = 1, 2, 3. If D[x ind
i ].hndu ∈ Nonceu,v then

a) D[j].hndw = ↓ for all w ∈ (H ∪ {a}) \ {u, v}.
b) if D[x ind

i+1].type = data, then D[x ind
i+1].arg = (u).

c) for all k ≤ size it holds j ∈ D[k].arg only if D[k].type = enc and D[k].arg [1] ∈
{pkeu, pkev}.

The invariant correct list owner states that certain protocol messages can only be constructed by the
“intended” users. For example, if a database entry is structured like the cleartext of a first protocol
message, i.e., it is of type list, its first argument belongs to the set Nonceu,v, and its second argument is
a non-cryptographic construct (formally of type data) then it must have been created by user u. Similar
statements exist for the second and third protocol message.

• Correct List Owner. For all u, v ∈ H and for all j ≤ size with D[j].type = list: Let xind
i :=

D[j].arg [i] and xhnd
i,u := D[x ind

i ].hndu for i = 1, 2.

a) If xhnd
1,u ∈ Nonceu,v and D[x ind

2 ].type = data, then D[j] was created by MNS
u in Step 1.4.

b) If D[x ind
1 ].type = nonce and xhnd

2,u ∈ Nonceu,v, then D[j] was created by MNS
u in Step 2.12.

c) If xhnd
1,u ∈ Nonceu,v and x ind

2 = ↓, then D[j] was created by MNS
v in Step 2.21.

This invariant is key for proceeding backwards in the protocol. For instance, if v terminates a protocol
with user u, then v must have received a third protocol message. Correct list owner implies that this
message has been generated by u. Now u only constructs such a message if it received a second protocol
message. Applying the invariant two more times shows that u indeed started a protocol with v. The
proof described below will take care of the details. Formally, the invariance of the above statements is
captured in the following lemma.

Lemma 6.2 The statements correct nonce owner, unique nonce use, nonce secrecy, nonce-list secrecy,
and correct list owner are invariants of SysNS,id, i.e., they hold at all times in all runs of {MNS

u | u ∈
H} ∪ {THH} for all H ⊆ {1, . . . , n}. �

The proof is postponed to Appendix A.

6.4 Authenticity Proof

To increase readability, we partition the proof into several steps with explanations in between. Assume
that u, v ∈ H and that MNS

v outputs (ok, u) to its user, i.e., a protocol between u and v has terminated
successfully. We first show that this implies that MNS

v has received a message corresponding to the third
protocol step, i.e., of the form that allows us to apply correct list owner to show that it was created by
MNS

v .

Proof. (Theorem 4.1) Assume that MNS
v outputs (ok, u) at EA outv ! for u, v ∈ H at time t4. By

definition of Algorithms 1 and 2, this can only happen if there was an input (u, v, i,m3 hnd

v ) at outv? at a
time t3 < t4. Here and in the sequel we use the notation of Algorithm 2, but we distinguish the variables
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from its different executions by a superscript indicating the number of the (claimed) received protocol
message, here 3, and give handles an additional subscript for their owner, here v.

The execution of Algorithm 2 for this input must have given l3
hnd

v �= ↓ in Step 2.2, since it would

otherwise abort by Convention 1 without creating an output. Let l3
ind := D[hndv = l3

hnd

v ].ind . The
algorithm further implies D[l3ind].type = list. Let x3

i
ind := D[l3ind].arg [i] for i = 1, 2 at the time of

Step 2.3. By definition of list proj and since the condition of Step 2.25 is true immediately after Step
2.3, we have

x3 hnd

1,v = D[x3
1
ind].hndv at time t4 (1)

and
x3 hnd

1,v ∈ Noncev,u ∧ x3
2
ind = ↓ at time t4, (2)

since x3 hnd

2,v = ↓ after Step 2.3 implies x3
2
ind = ↓.

This first part of the proof shows that MNS
v has received a list corresponding to a third protocol message.

Now we apply correct list owner to the list entry D[l3ind] to show that this entry was created by MNS
u .

Then we show that MNS
u only generates such an entry if it has received a second protocol message. To

show that this message contains a nonce from v, as needed for the next application of correct list owner,
we exploit the fact that v accepts the same value as its nonce in the third message, which we know from
the first part of the proof.

Proof. (cont’d with 3rd message) Equations (1) and (2) are the preconditions for Part c) of correct list
owner. Hence the entry D[l3ind] was created by MNS

u in Step 2.21.
This algorithm execution must have started with an input (w, u, i,m2 hnd

u ) at outu? at a time t2 < t3
with w �= u. As above, we conclude l2

hnd

u �= ↓ in Step 2.2, set l2
ind := D[hndu = l2

hnd

u ].ind , and obtain
D[l2ind].type = list. Let x2

i
ind := D[l2ind].arg [i] for i = 1, 2, 3 at the time of Step 2.3. As the condition

of Step 2.16 is true immediately afterwards, we obtain x2 hnd

i,u �= ↓ for i ∈ {1, 2, 3}. The definition of
list proj and Lemma 6.1 imply

x2 hnd

i,u = D[x2
i
ind].hndu for i ∈ {1, 2, 3} at time t4. (3)

Step 2.18 ensures x2
3 = w and x2 hnd

1,u ∈ Nonceu,w. Thus correct nonce owner implies

D[x2
1
ind].type = nonce. (4)

Now we exploit that MNS
u creates the entry D[l3ind] in Step 2.21 with the input list(x2 hnd

2,u ). With the

definitions of list and list proj this implies x2
2
ind = x3

1
ind. Thus Equations (1) and (2) imply

D[x2
2
ind].hndv ∈ Noncev,u at time t4. (5)

We have now shown that MNS
u has received a list corresponding to the second protocol message. We

apply correct list owner to show that MNS
v created this list, and again we can show that this can only

happen if MNS
v received a suitable first protocol message. Further, the next part of the proof shows that

w = v and thus MNS
u got the second protocol message from MNS

v , which remained open in the previous
proof part.

Proof. (cont’d with 2nd message) Equations (3) to (5) are the preconditions for Part b) of correct list
owner. Thus the entry D[l2ind] was created by MNS

v in Step 2.12. The construction of this entry in Steps
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2.11 and 2.12 implies x2
3 = v and hence w = v (using the definitions of store and retrieve, and list and

list proj). With the results from before Equation (4) and Lemma 6.1 we therefore obtain

x2
3 = v ∧ x2 hnd

1,u ∈ Nonceu,v at time t4. (6)

The algorithm execution where MNS
v creates the entry D[l2ind] must have started with an input

(w′, v, i,m1 hnd

v ) at outv? at a time t1 < t2 with w′ �= v. As above, we conclude l1
hnd

v �= ↓ in Step
2.2, set l1

ind := D[hndv = l1
hnd

v ].ind , and obtain D[l1ind].type = list. Let x1
i
ind := D[l1ind].arg [i]

for i = 1, 2, 3 at the time of Step 2.3. As the condition of Step 2.4 is true, we obtain x1 hnd

i,v �= ↓ for
i ∈ {1, 2}. Then the definition of list proj and Lemma 6.1 yield

x1 hnd

i,v = D[x1
i
ind].hndv for i ∈ {1, 2} at time t4. (7)

When MNS
v creates the entry D[l2ind] in Step 2.12, its input is list(x1 hnd

1,v , nhnd
v , vhnd). This implies

x1
1
ind = x2

1
ind (as above). Thus Equations (3) and (6) imply

D[x1
1
ind].hndu ∈ Nonceu,v at time t4. (8)

The test in Step 2.6 ensures that x1
2 = w′ �= ↓. This implies D[x1

2
ind].type = data by the definition of

retrieve, and therefore with Lemma 6.1,

D[x1
2
ind].type = data at time t4. (9)

We finally apply correct list owner again to show that MNS
u has generated this list corresponding to a

first protocol message. We then show that this message must have been intended for user v, and thus
user u has indeed started a protocol with user v.

Proof. (cont’d with 1st message) Equations (7) to (9) are the preconditions for Part a) of correct list
owner. Thus the entry D[l1ind] was created by MNS

u in Step 1.4. The construction of this entry in Steps
1.3 and 1.4 implies x1

2 = u and hence w′ = u.
The execution of Algorithm 1 must have started with an input (new prot, w′′) at EA inu? at a time

t0 < t1. We have to show w′′ = v. When MNS
u creates the entry D[l1ind] in Step 1.4, its input is

list(nhnd
u , uhnd) with nhnd

u �= ↓. Hence the definition of list proj implies D[x1
1
ind].hndu = nhnd

u ∈
Nonceu,w′′ . With Equation (8) and unique nonce use we conclude w′′ = v.

In a nutshell, we have shown that for all times t4 where MNS
v outputs (ok, u) at EA outv !, there

exists a time t0 < t4 such that MNS
u receives an input (new prot, v) at EA inu? at time t0. This proves

Theorem 4.1.

7 Conclusion

We have proven the Needham-Schroeder-Lowe public-key protocol in the real cryptographic setting via
a deterministic, provably secure abstraction of a real cryptographic library. Together with composition
and integrity preservation theorems from the underlying model, this library allowed us to perform the
actual proof effort in a deterministic setting corresponding to a slightly extended Dolev-Yao model. This
was the first example of such a proof. We hope that it paves the way for the actual use of automatic proof
tools for this and many similar cryptographically faithful proofs of security protocols.
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A Proof of the Invariants

A.1 Correct Nonce Owner and Unique Nonce Use

We start with the proof of correct nonce owner.

Proof. (Correct nonce owner) Let xhnd ∈ Nonceu,v for u ∈ H and v ∈ {1, . . . , n}. By construction,
xhnd has been added to Nonceu,v by MNS

u in Step 1.2 or Step 2.10. In both cases, xhnd has been generated
by the command gen nonce() at some time t, input at port inu? of THH. Convention 1 implies xhnd �= ↓,
as MNS

u would abort otherwise and not add xhnd to the set Nonceu,v. The definition of gen nonce then
implies D[hndu = xhnd] �= ↓ and D[hndu = xhnd].type = nonce at time t. Because of Lemma 6.1 this
also holds at all later times t′ > t, which finishes the proof.
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The following proof of unique nonce use is quite similar.

Proof. (Unique Nonce Use) Assume for contradiction that both D[j].hndu ∈ Nonceu,w and
D[j].hndv ∈ Noncev,w′ at some time t. Without loss of generality, let t be the first such time and let
D[j].hndv �∈ Noncev,w′ at time t− 1. By construction, D[j].hndv is thus added to Noncev,w′ at time t
by Step 1.2 or Step 2.10. In both cases, D[j].hndv has been generated by the command gen nonce() at
time t− 1. The definition of gen nonce implies that D[j] is a new entry and D[j].hndv its only handle
at time t− 1, and thus also at time t. With correct nonce owner this implies u = v. Further, Noncev,w′

is the only set into which the new handle D[j].hndv is put at times t− 1 and t. Thus also w = w′. This
is a contradiction.

A.2 Correct List Owner

In the following subsections, we prove correct list owner, nonce secrecy, and nonce-list secrecy by
induction. Hence assume that all three invariants hold at a particular time t in a run of the system, and
we have to show that they still hold at time t + 1.

Proof. (Correct list owner) Let u, v ∈ H, j ≤ size with D[j].type = list. Let xind
i := D[j].arg [i] and

xhnd
i,u := D[x ind

i ].hndu for i = 1, 2 and assume that xhnd
i,u ∈ Nonceu,v for i = 1 or i = 2 at time t + 1.

The only possibilities to violate the invariant correct list owner are that (1) the entry D[j] is created
at time t+1 or that (2) the handle D[j].hndu is created at time t+1 for an entry D[j] that already exists
at time t or that (3) the handle xhnd

i,u is added to Nonceu,v at time t + 1. In all other cases the invariant
holds by the induction hypothesis and Lemma 6.1.

We start with the third case. Assume that xhnd
i,u is added to Nonceu,v at time t + 1. By construction,

this only happens in a transition of MNS
u in Step 1.2 and Step 2.10. However, here the entry D[xind

i ] has
been generated by the command gen nonce input at inu? at time t, hence x ind

i cannot be contained as an
argument of an entry D[j] at time t. Formally, this corresponds to the fact that D is well-formed, i.e.,
index arguments of an entry are always smaller than the index of the entry itself; this has been shown
in [5]. Since a transition of MNS

u does not modify entries in THH, this also holds at time t + 1.
For proving the remaining two cases, assume that D[j].hndu is created at time t + 1 for an already

existing entry D[j] or that D[j] is generated at time t + 1. Because both can only happen in a transition
of THH, this implies xhnd

i,u ∈ Nonceu,v already at time t, since transitions of THH cannot modify the
set Nonceu,v. Because of u, v ∈ H, nonce secrecy implies D[xind

i ].hndw �= ↓ only if w ∈ {u, v}. Lists
can only be constructed by the basic command list, which requires handles to all its elements. More
precisely, if w ∈ H ∪ {a} creates an entry D[j′] with D[j′].type = list and (x′

1, . . . , x
′
k) := D[j].arg

at time t + 1 then D[x′
i].hndw �= ↓ for i = 1, . . . , k already at time t. Applied to the entry D[j], this

implies that either u or v have created the entry D[j].
We now only have to show that the entry D[j] has been created by u in the claimed steps. This can

easily be seen by inspection of Algorithms 1 and 2. We only show it in detail for the first part of the
invariant; it can be proven similarly for the remaining two parts.

Let xhnd
1,u ∈ Nonceu,v and D[x ind

2 ].type = data. By inspection of Algorithms 1 and 2 and because
D[j].type = list, we see that the entry D[j] must have been created by either MNS

u or MNS
v in Step 1.4.

(The remaining list generation commands either only have one element, which implies xind
2 = ↓ and

hence D[x ind
2 ].type �= data, or we have D[x ind

2 ].type = nonce by construction.) Now assume for
contradiction that the entry D[j] has been generated by MNS

v . This implies that also the entry D[xind
1 ]

has been newly generated by the command gen nonce input at inv?. However, only MNS
u can add a

handle to the set Nonceu,v (it is the local state of MNS
u ), but every nonce that MNS

u adds to the set
Nonceu,v is newly generated by the command gen nonce input by MNS

u by construction. This implies
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xhnd
1,u �∈ Nonceu,v at all times, which yields a contradiction to xhnd

1,u ∈ Nonceu,v at time t + 1. Hence
D[j] has been created by user u.

A.3 Nonce Secrecy

Proof. (Nonce secrecy) Let u, v ∈ H, j ≤ size with D[j].hndu ∈ Nonceu,v, and w ∈ (H∪{a})\{u, v}
be given. Because of correct nonce owner, we know that D[j].type = nonce. The invariant could only
be affected if (1) the handle D[j].hndu is put into the set Nonceu,v at time t + 1 or (2) if a handle for w
is added to the entry D[j] at time t + 1.

For proving the first case, note that the set Nonceu,v is only extended by a handle nhnd
u by MNS

u

in Steps 1.2 and 2.10. In both cases, nhnd
u has been generated by THH at time t since the com-

mand gen nonce was input at inu? at time t. The definition of gen nonce immediately implies that
D[j].hndw = ↓ at time t if w �= u. Moreover, this also holds at time t + 1 since a transition of MNS

u

does not modify handles in THH, which finishes the claim for this case.
For proving the second case, we only have to consider those commands that add handles for w

to entries of type nonce. These are only the commands list proj or adv parse input at inw?, where
adv parse has to be applied to an entry of type list, since only entries of type list can have arguments
which are indices to nonce entries. More precisely, if one of the commands violated the invariant there
would exist an entry D[i] at time t such that D[i].type = list, D[i].hndw �= ↓ and j ∈ (x ind

1 , . . . , x ind
m ) :=

D[i].arg . However, both commands do not modify the set Nonceu,v, hence we have D[j].hndu ∈
Nonceu,v already at time t. Now nonce secrecy yields D[j].hndw = ↓ at time t and hence also at all
times < t because of Lemma 6.1. This implies that the entry D[i] must have been created by either
u or v, since generating a list presupposes handles for all elements (cf. the previous proof). Assume
without loss of generality that D[i] has been generated by u. By inspection of Algorithms 1 and 2, this
immediately implies j ∈ (x ind

1 , x ind
2 ), since handles to nonces only occur as first or second element in

a list generation by u. Because of j ∈ D[i].arg [1, 2] and D[j].hndu ∈ Nonceu,v at time t, nonce-list
secrecy for the entry D[i] implies that D[i].hndw = ↓ at time t. This yields a contradiction.

A.4 Nonce-List Secrecy

Proof. (Nonce-list secrecy) Let u, v ∈ H, j ≤ size with D[j].type = list. Let xind
i := D[j].arg [i] and

xhnd
i,u := D[x ind

i ].hndu for i = 1, 2, and w ∈ (H ∪ {a}) \ {u, v}. Let xhnd
i,u ∈ Nonceu,v for i = 1 or

i = 2.
We first show that the invariant cannot be violated by adding the handle xhnd

i,u to Nonceu,v at time
t + 1. This can only happen in a transition of MNS

u in Step 1.2 or 2.10. As shown in the proof of correct
list owner, the entry D[x ind

i ] has been generated by THH at time t. Since D is well-formed, this implies
that x ind

i �∈ D[j].arg for all entries D[j] that already exist at time t. This also holds for all entries at
time t + 1, since the transition of MNS

u does not modify entries of THH. This yields a contradiction to
x ind
i = D[j].arg [i]. Hence we now know that xhnd

i,u ∈ Nonceu,v already holds at time t.
Part a) of the invariant can only be affected if a handle for w is added to an entry D[j] that already

exists at time t. (Creation of D[j] at time t with a handle for w is impossible as above because that
presupposes handles to all arguments, in contradiction to nonce secrecy.) The only commands that add
new handles for w to existing entries of type list are list proj, decrypt, adv parse, send i, and adv send i
applied to an entry D[k] with j ∈ D[k].arg . Nonce-list secrecy for the entry D[j] at time t then yields
D[k].type = enc. Thus the commands list proj, send i, and adv send i do not have to be considered
any further. Moreover, nonce-list secrecy also yields D[k].arg [1] ∈ {pkeu, pkev}. The secret keys
of u and v are not known to w �∈ {u, v}, formally D[hndw = skehnd

u ] = D[hndw = skehnd
v ] = ↓;
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this corresponds to the invariant key secrecy of [5]. Hence the command decrypt does not violate the
invariant. Finally, the command adv parse applied to an entry of type enc with unknown secret key also
does not give a handle to the cleartext list, i.e., to D[k].arg [2], but only outputs its length.

Part b) of the invariant can only be affected if the list entry D[j] is created at time t + 1. (By
well-formedness, the argument entry D[xind

i+1] cannot be created after D[j].) As in Part a), it can only be
created by a party w ∈ {u, v} because other parties have no handle to the nonce argument. Inspection of
Algorithms 1 and 2 shows that this can only happen in Steps 1.4 and 2.12, because all other commands
list have only one argument, while our preconditions imply xind

2 �= ↓.
• If the creation is in Step 1.4, the preceding Step 1.2 implies D[xind

1 ].hndw ∈ Noncew,w′ for some
w′ and Step 1.3 implies D[x ind

2 ].type = data. Thus the preconditions of Part b) of the invariant
can only hold for i = 1, and thus D[xind

1 ].hndu ∈ Nonceu,v. Now unique nonce use implies
u = w. Thus Steps 1.3 and 1.4 yield D[xind

2 ].arg = (u).

• If the creation is in Step 2.12, the proof is analogous: The preceding steps 2.10 and 2.11 imply that
the preconditions of Part b) of the invariant can only hold for i = 2. Then the precondition, Step
2.10, and unique nonce use imply u = w. Finally, Steps 2.11 and 2.12 yield D[xind

3 ].arg = (u).

Part c) of the invariant can only be violated if a new entry D[k] is created at time t + 1 with j ∈
D[k].arg (by Lemma 6.1 and well-formedness). As D[j] already exists at time t, nonce-list secrecy
for D[j] implies D[j].hndw = ↓ for w �∈ {u, v} at time t. We can easily see by inspection of the
commands that the new entry D[k] must have been created by one of the commands list and encrypt
(or by sign, which creates a signature), since entries newly created by other commands cannot have
arguments that are indices of entries of type list. Since all these commands entered at a port inz?
presuppose D[j].hndz �= ↓, the entry D[k] is created by w ∈ {u, v} at time t + 1. However, the only
steps that can create an entry D[k] with j ∈ D[k].arg (with the properties demanded for the entry
D[j]) are Steps 1.5, 2.13, and 2.22. In all these cases, we have D[k].type = enc. Further, we have
D[k].arg [1] = pkew′ where w′ denotes w’s current believed partner. We have to show that w′ ∈ {u, v}.
• Case 1: D[k] is created in Step 1.5. By inspection of Algorithm 1, we see that the precondition

of this proof can only be fulfilled for i = 1. Then D[xind
1 ].hndu ∈ Nonceu,v and D[x ind

1 ].hndw ∈
Noncew,w′ and unique nonce use imply w′ = v.

• Case 2: D[k] is created in Step 2.13, and i = 2. Then D[xind
2 ].hndu ∈ Nonceu,v and

D[x ind
2 ].hndw ∈ Noncew,w′ and unique nonce use imply w′ = v.

• Case 3: D[k] is created in Step 2.13, and i = 1. This execution of Algorithm 2 must give lhnd �= ↓
in Step 2.2, since it would otherwise abort by Convention 1. Let lind := D[hndw = lhnd].ind .

The algorithm further implies D[lind].type = list. Let x0
i
ind := D[lind].arg [i] for i = 1, 2, 3 at

the time of Step 2.3, and let x0 hnd

i,w be the handles obtained in Step 2.3. As the algorithm does not

abort in Steps 2.5 and 2.7, we have D[x0
2
ind].type = data and D[x0

2
ind].arg = (w′).

Further, the reuse of x0 hnd

1,w in Step 2.12 implies x0
1
ind = x ind

1 . Together with the precondition
D[x ind

1 ].hndu ∈ Nonceu,v, the entry D[lind] therefore fulfills the conditions of Part b) of nonce-

list secrecy with i = 1. This implies D[x0
2
ind].arg = (u), and thus w′ = u.

• Case 4: D[k] is created in Step 2.22. With Step 2.21, this implies xind
2 = ↓ and thus i = 1. As in

Case 3, this execution of Algorithm 2 must give lhnd �= ↓ in Step 2.2, we set lind := D[hndw =
lhnd].ind , and we have D[lind].type = list. Let x0

i
ind := D[lind].arg [i] for i = 1, 2, 3 at the time
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of Step 2.3, and let x0 hnd

i,w be the handles obtained in Step 2.3. As the algorithm does not abort in

Steps 2.17 and 2.19, we have D[x0
3
ind].type = data and D[x0

3
ind].arg = (w′).

Further, the reuse of x0 hnd

2,w in Step 2.21 implies x0
2
ind = x ind

1 . Together with the precondition
D[x ind

1 ].hndu ∈ Nonceu,v, the entry D[lind] therefore fulfills the condition of Part b) of nonce-list

secrecy with i = 2. This implies D[x0
3
ind].arg = (u), and thus w′ = u.

Hence in all cases we obtained w′ = u, i.e., the list containing the nonce was indeed encrypted with the
key of an honest participant.
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