
Towards Provable Security for Ad Hoc Routing Protocols∗

Levente Buttýan and Istv́an Vajda
Laboratory of Cryptography and System Security (CrySyS)

Department of Telecommunications
Budapest University of Technology and Economics

www.crysys.hu

July 8, 2004

Abstract

We propose a formal framework for the security analysis of on-demand source routing proto-
cols for wireless ad hoc networks. Our approach is based on the well-known simulation paradigm
that has been proposed to prove the security of cryptographic protocols. Our main contribution
is the application of the simulation approach in the context of ad hoc routing. This involves a
precise definition of a real-world model, which describes the real operation of the protocol, and
an ideal-world model, which captures what the protocol wants to achieve in terms of security.
Both models take into account the peculiarities of wireless communications and ad hoc routing.
Then, we give a formal definition of routing security in terms of indistinguishability of the two
models from the point of view of honest parties. We demonstrate the usefulness of our approach
by analyzing two “secure” ad hoc routing protocols, SRP and Ariadne. This analysis leads to the
discovery of as yet unknown attacks against both protocols. Finally, we propose an ad hoc routing
protocol that can be proven secure in our model.

1 Introduction

Several “secure” routing protocols have been proposed in the recent past for wireless ad hoc networks
[21, 13, 14, 25, 27]. However, the security of those protocols have been analyzed either by infor-
mal means only, or with formal methods that have never been intended for the analysis of this kind
of protocols (e.g., SRP was analyzed with BAN logic [7] in [21]). This has at least two annoying
consequences:

1. There is no clear (meaning formal) definition of the term “secure routing”. Therefore, different
authors interpret security in different ways, and design their routing protocols with different
requirements in mind. As a consequence, the properties of different proposals are difficult to
compare.

2. There is no mathematically rigorous way to prove a proposed routing protocol secure. In fact,
many of the proposed protocols (e.g., SRP and Ariadne) are flawed in the sense that they do
not achieve the properties claimed by their authors; a clear consequence of the lack of a sound
proof technique.

∗Technical Report. Available on-line athttp://eprint.iacr.org/ under report number 2004/159.

1

The situation described above is somewhat similar to the situation that one could have witnessed
in the field of session key establishment protocols in the early 1990’s. There, the solution was to
come up with definitions and proof techniques on solid mathematical grounds [4, 5, 6, 26, 2]. In this
paper, we follow a similar approach, and make the first steps towards a formal model in which one can
precisely define what secure routing means and prove (or fail to prove) that a given protocol indeed
satisfies that definition (under some cryptographic assumptions).

The organization of the paper is the following: We overview our approach and main contributions
in Section 2. We present our model and the formal definition of secure routing in Section 3. We
demonstrate the usage and usefulness of our model in Section 4, where we analyze SRP and Ariadne,
we describe previously unknown attacks against both protocols, we propose a novel routing protocol,
and we prove it secure in our model. In Section 5, we report on related work, and finally, in Section 6,
we conclude the paper and give some outlook to the future.

2 Overview of our approach and contributions

Approach. We follow the commonly known simulation approach to prove security of cryptographic
protocols [3, 20, 9, 23]. In this approach, two models are constructed for the protocol under investiga-
tion: areal-world model, which describes the operation of the protocol with all its details in a partic-
ular computational model, and anideal-world model, which describes the protocol in an abstract way
mainly focusing on the services that the protocol should provide. One can think of the ideal-world
model as a description of a specification, and the real-world model as a description of an implemen-
tation. Both models contain adversaries. The real-world adversary is an arbitrary process, while the
abilities of the ideal-world adversary are usually constrained. The ideal-world adversary models the
tolerable imperfections of the system; these are attacks that are unavoidable or very costly to defend
against, and hence, they should be tolerated instead of being completely eliminated. The protocol is
said to be secure if the real-world and the ideal-world models are equivalent, where the equivalence is
defined as indistinguishability from the point of view of the honest protocol participants. Technically,
security of the protocol is proven by showing that the effects of any real-world adversary on the exe-
cution of the real protocol can besimulated by an appropriately chosen ideal-world adversary in the
ideal-world model.

Contributions. Our main contribution is the application of the approach described above to ad hoc
routing protocols. We formally define the real-world and the ideal-world models that capture the basic
features of wireless ad hoc networking in general, and ad hoc routing protocols in particular. Most of
the models in the literature of provable security for protocols assume the Internet as the underlying
networking infrastructure. However, the characteristics of a wireless ad hoc network are very much
different from those of the Internet. Hence, the models that have been proposed so far are not directly
applicable to wireless ad hoc networks and ad hoc routing protocols. Below, we summarize the
peculiarities that we had to deal with when constructing the model; these are the origin of the main
differences between our model and the models proposed so far.

Another contribution of this paper is the analysis of two “secure” routing protocols proposed for ad
hoc networks: SRP [21] and Ariadne [13]. First, this analysis demonstrates the usage of our approach,
and second, it leads to the discovery of as yet unknown attacks against both protocols. This clearly
shows the usefulness of our proposal.

Finally, we propose a novel on-demand source routing protocol for wireless ad hoc networks,
which can be proven to be secure in our model. This protocol should be viewed as a side effect of

2

our analysis of SRP and Ariadne, and it serves purely illustrative purposes in this paper. However, it
has some remarkable features, and we hope that it will inspire protocol designers when building their
future protocols.

2.1 Deviations from the standard simulation approach

Now, we overview the main differences between our model and the models proposed so far for the
analysis of cryptographic protocols in the context of the simulation approach.

Communication model. One main difference lies in the underlying network model. As we men-
tioned above, most of the models proposed so far assume that the protocol participants communicate
via the Internet (or some similar asynchronous network). Such a network is easily modelled as a single
buffer, in which participants place messages, and from which these messages are eventually delivered
to their intended recipients. This may be a good model for ad hoc networks if we want to abstract
away the multi-hop nature of communications. However, routing protocols are inherently related to
the multi-hop operation of the network, and hence, we cannot abstract this away. As a consequence, a
single buffer is not an appropriate network model for wireless ad hoc networks.

The peculiarities of wireless networks that we have to deal with include the broadcast nature of
radio communications, which allows a party to overhear the transmission of a message that was not
destined to him. On the other hand, a radio transmission can be received only in a certain range around
the sender. The size of this range mainly depends on the power at which the sender sent the message.
For practical reasons, the nodes in an ad hoc network should usually limit their transmission power,
which means that messages are received only in a limited neighborhood of their senders. In fact, this
is why the communication must be multi-hop in wireless ad hoc networks.

Adversary model. In the models that are based on the Internet assumption, the adversary has the
power to control the network buffer. In particular, the adversary can read all messages, it can mod-
ify messages before delivering them, and it can delete messages from or place fake messages in the
buffer. This is an appropriate model, because in Internet-like networks, having access to some special
network elements, such as routers, allows the adversary to have this level of control. On the other
hand, in wireless ad hoc networks, an adversary can have a similar level of control over the commu-
nications only if it is physically present everywhere. In many applications, this is considered to be
very costly, and hence, unrealistic. Therefore, in line with other related papers (e.g., [13]), we assume
that the adversary has communication capabilities comparable to those of an average node in the ad
hoc network. In our model, the network is represented by a graph, where the vertices are the network
nodes (including those controlled by the adversary) and there is an edge between two vertices if the
corresponding nodes can hear each other’s transmission. Just like any other node, an adversarial node
can hear only those messages that were transmitted by a neighboring node in the graph. Similarly, the
transmission of an adversarial node is heard only by its neighbors in the graph.

Model of computation. In the models that are based on the Internet assumption, usually the adver-
sary schedules the activities of the honest parties. This is a good model, because many protocols are
message driven, meaning that a party becomes active only if it receives some messages. Then, the
messages are processed, some output messages are generated, and the party goes back to sleep and
starts waiting for new input messages. Hence, by controlling the network and deciding which mes-
sages are delivered and when, essentially, the adversary schedules the activities of the honest parties.

3

On the other hand, in ad hoc networks, the adversary has no full control over the system. This means
that some events are beyond his control, and parties can be activated not only by him. Therefore, in
our model, the protocol participants (and the adversary) will be activated by a hypothetic scheduler.
In addition, this activation is done inrounds: in each round, each participant is activated once. This
leads to a sort of synchronous model, where each participant is aware of a global time represented by
the current round number. One might immediately object that ad hoc networks are not synchronous
systems. This is certainly true, and we hasten to note thatknowledge of the current round number is
never exploited in our model. The advantage is that we can retain the simplicity of the presentation,
without arriving to conclusions that are valid only in synchronous systems.

The ideal-world model. The simulation approach requires the definition of an ideal-world model,
which focuses onwhat the system should do, and it is less concerned abouthow it is done. This is
fully compliant to our expectations with respect to a specification. As a consequence, the ideal-world
model usually contains a trusted entity that provides the services of the system in a “magical” way.
For instance, the ideal-world model for a session key exchange protocol would contain a trusted host
that would generate a random key and return it to the requesting parties only; this model would not
deal with the details of the communication between the parties and the details of the cryptographic
algorithms used in the real-world system.

Hence, when trying to apply the simulation approach to ad hoc routing protocols, one faces the
problem of describing what such protocols should do in an abstract way. However, this seems to be a
particularly difficult problem. There are many reasons for this. First of all, ad hoc routing protocols
are very complex systems involving many optimizations, which make a precise description of their ex-
pected output nearly impossible. Requirements such as the one that the protocol should always return
the shortest route between two nodes are simplistic, and in fact, no real protocol satisfies them. As an
example, let us consider DSR [16], where a cached route can be returned by an intermediate node as
a reply to a route request. Since cashed routes are not based on the most recent topology information,
it cannot be guaranteed that DSR returns the current shortest route between the initiator and the target
even in the absence of adversaries. Another example is SRP [21], where a rate limiting mechanism
is used to regulate the propagation process of the requests. The result is that the propagation of the
requests does not solely depend on the topology of the network, but also on the frequency at which the
nodes send request messages. In addition, there is always a variation in the processing delays of the
nodes, which may lead to returning a suboptimal route just because the propagation of the request was
delayed by some node on the optimal route. Since the relationships between the topology changes
caused by mobility, the varying processing delays, the amount of traffic generated, and the effects
of the optimizations are very complex, the probability distribution of the ideal output of the routing
protocol seems to be impossible to determine. Therefore, we adopt the approach of [21] and [13], and
we simply require from the ideal routing service that it never returns a non-existent route. While this
requirement was stated in [21] and [13] only informally, here, we formalize it.

Another difficulty in the definition of the ideal-world model arises when trying to identify the
tolerable imperfections and the capabilities of the ideal-world adversary. It is clear that an adversarial
node can always prevent the discovery of some routes, for instance, by deleting route request or
route reply messages that it receives. This may be calledexplicit deletion of routes. However, an
adversary can delete routes in animplicit way too. Many routing protocols use request identifiers that
are checked by intermediate nodes to determine if a request of the same route discovery process has
already been processed by the node. In order to control the flooding of the network, intermediate
nodes usually process a request only if they have not received any request with the same request

4

identifier earlier. This means that if the adversary can send syntactically correct dummy requests with
a given request identifier, then he can implicitly delete routes that correspond to those requests that
are dropped by intermediate nodes due to the earlier processing of the dummy request. Note that
depending on the protocol, the dummy request may be identified only at the target, and thus, it may
have a considerable effect on the probability distribution of the set of discovered routes.

Both explicit and implicit deletions must be part of the tolerable imperfections. In other words,
the ideal-world adversary must be able to delete those routes that a real-world adversary can delete
explicitly or implicitly. However, determining which routes are removable in this way is very diffi-
cult, and it is certainly not independent of the details of the routing protocol and the topology of the
network.

The problem is further complicated by the observation that the set of route requests (belonging to
the same route discovery process) received by the adversary, and thus removable explicitly, depends
on which requests the adversary has deleted so far. As an example let us consider part of a topology
depicted in Figure 1. A request arrives from nodeX to the adversarial nodeA and another nodeY .
If A does not re-broadcast the request, then eventually it will receive another request belonging to the
same discovery process from nodeZ (i.e., the request that passed through nodeY). However, ifA
does re-broadcast the request received fromX, then with high probability,Z will receive this earlier
than the request fromY . In this case,Z will not process the request received fromY , and therefore,
A will never receive the request that passed through nodeY .

Z

X A

Y

Figure 1: Part of a configuration where the set of route requests received by the adversarial nodeA
depends on which route requestsA has deleted so far

In summary, neither the definition of the ideal routing service, nor the definition of the tolerable
imperfections seem to be easy to describe in an abstract way, which is independent of the particular
protocol under investigation and the configuration (topology and adversarial nodes) of the network.
Therefore, we do not define the ideal-world model in terms of an abstract service provider. Instead, the
trusted party in our ideal-world model simulates the behavior of the real network, with the difference
that it never returns non-existent routes to honest parties (it has a “magical” capability of filtering
them out). In addition, we do not limit the capabilities of the ideal-world adversary, but those are the
same as the capabilities of a real-world adversary. These are important deviations from the standard
simulation approach, but we hope that we have provided sufficient explanations above for the rationale
behind them.

3 Model

We consider an ad hoc network of wireless devices. We assume that the radio links between the
devices are symmetric, by which we mean that if devicev can receive the radio transmission of device

5

v′, thenv′ can receive the radio transmission ofv too. We further assume that each device has a single
and unique identifier, which is used, notably, in the neighbor discovery protocol and in the routing
protocol. We denote the set of all identifiers byL.

It is convenient to represent an ad hoc network with an undirected labelled graphG = (V, E,L),
whereV is the set of vertices,E is the set of edges, andL : V → L is a labelling function. Each
vertex represents a device, and there is an edge between two verticesv andv′, if the corresponding
devices can receive each other’s radio transmission. FunctionL assigns to each vertex the identifier
of the corresponding device. Since identifiers are unique,L must be a bijection.

If W ⊆ V , then we will use the shorthandL(W) to denote the set{L(v) : v ∈ W} of identifiers
assigned to the vertices inW . We introduce a functionNG : V → 2V that returns the neighboring
vertices of a given vertex inG. Formally,NG(v) = {v′ : (v, v′) ∈ E}.

Essentially, the routing protocol is a distributed algorithm that operates onG. The algorithm is
run by the devices with the aim of finding routes (i.e., sequence of identifiers assigned to the vertices)
in G, while of course, each device has only a partial knowledge ofG. In some routing protocols,
the routes found by the protocol are not returned explicitly, but they are represented implicitly in the
state of the devices in form of routing tables. In this paper, we will not be concerned with this kind
of protocols. We rather focus on source routing protocols, where the routes are returned explicitly.
More specifically, we will be concerned with the route discovery part of on-demand source routing
protocols for wireless ad hoc networks. We leave the study of other kinds of ad hoc routing protocols
for future work.

We assume an adversaryA that wants to subvert the routing service. We assume thatA interacts
with the system through a single corrupted device. We further assume thatA is static, meaning that
no further corruption happens during the operation of the system. According to the classification
introduced in [13], our adversary is an Active-1-1 attacker. Our adversarial model is deliberately
limited, because, as we will see, the analysis is sufficiently instructive and involved even in this case.
The more general Active-x-y case and adaptive adversaries are left for future work.

We denote byn the cardinality ofV minus 1 (i.e.,|V | = n + 1). We denote the vertex that
represents the corrupted device byṽ, and the vertices that represent the non-corrupted devices by
v1, v2, . . . , vn. The pair(G, ṽ) is called aconfiguration.

3.1 Real-world model

The real-world model that corresponds to a configurationconf = (G, ṽ) and adversaryA is denoted
by sys real

conf ,A, and it is illustrated in Figure 2.sys real
conf ,A consists of a set{M1, M2, . . . , Mn, H, A, C}

of Turing machines interacting viabuffers (or tapes). EachMi represents the non-corrupted device
that corresponds to vertexvi in G, H is an abstraction of higher-layer protocols run by the honest
parties, andA is the adversary, which encompasses the corrupted device corresponding toṽ. Machine
C models the radio links represented by the edges ofG; it moves messages between the buffers that
are connected to it. All machines apart fromH are probabilistic.

Each machine is initialized with some input data, which determines its initial state. In addition, the
probabilistic machines also receive some random input (the coin flips to be used during the operation).
Once the machines have been initialized, the computation begins. The machines operate in a reactive
manner, which means that they need to be activated in order to perform some computation. When a
machine is activated, it reads the content of its input buffers, processes the received data, updates its
internal state, writes some output in its output buffers, and goes back to sleep (i.e., starts to wait for
the next activation). Reading a message from an input buffer removes the message from the buffer,
while writing a message in an output buffer means that the message is appended to the current content

6

M1

. .
 .

CMn

H

A

req1

res1

reqn

resn

ext

out1

in1

outn

inn

outA

inA

Figure 2: Interconnection of the machines insys real
conf ,A

of the buffer. Note that each buffer is considered as an output buffer for one machine and an input
buffer for another machine. The machines are activated inrounds by a hypotheticscheduler (not
illustrated in Figure 2). In each round, the scheduler activates the machines in the following order:
H, M1, . . . , Mn, A, C. This means thatH is activated first, and then, each machine is activated when
the previous machine in the sequence went back to sleep. The round ends whenC goes back to sleep.

Now, we describe the operation of the machines in more detail:

• Machine C: This machine is intended to model the broadcast nature of radio communications.
When activated, it first determines a random order of its input buffers, and then, it processes
the content of them in this order1. Processing the content of an input bufferout i (1 ≤ i ≤ n)
consists in reading the content ofout i and copying it ininj for all j such thatvj ∈ NG(vi).
Similarly, processing the content ofoutA means reading the content ofoutA and writing it in
inj for all j such thatvj ∈ NG(ṽ). Clearly, in order forC to be able to work, it needs to be
initialized with some random input, denoted byrC , and graphG.

• Machine H: This machine models higher-layer protocols (i.e., protocols above the routing
protocol) and ultimately the end-users of the non-corrupted devices.H can initiate a route
discovery process at any machineMi by placing a request(ci, �tar) in buffer req i, whereci is
a sequence number used to distinguish between different requests sent toMi, and�tar ∈ L is
the identifier of the target of the discovery.ci is an internal variable ofH (i.e., part of its state),
which is initialized to 0, and incremented at each time a request is placed inreq i. A response to
this request may be returned via bufferres i. The response has the form(ci, routes), whereci

is the sequence number of the corresponding request, androutes is the set of routes returned.

1This introduces some non-determinism in the system despite our synchronous model of computation. This non-
determinism models the varying processing time of different devices.

7

In some protocols,routes is always a singleton, in others it is not. If no route found, then
routes = ∅.

In addition toreq i and res i, H can access bufferext . This models an out-of-band channel
through which the adversary can instruct an honest party to initiate a route discovery process
towards a given target. The messages read fromext have the form(�ini , �tar), where�ini , �tar ∈
L are the identifiers of the initiator and the target, respectively, of the route discovery requested
by the adversary. WhenH reads(�ini , �tar) from ext , it first checks if�ini ∈ L({v1, . . . , vn}).
If the verification fails, thenH ignores the message, otherwise, it places a request(ci, �tar) in
req i wherei is the index of the machineMi which has identifier�ini assigned to it (see also the
description of how the machinesMi are initialized). In order for this to work,H needs to know
which identifier is assigned to which machineMi (1 ≤ i ≤ n); it receives this information as
an input in the initialization phase.

• Machine Mi: The operation ofMi is essentially defined by the routing algorithm.Mi com-
municates withH via its input bufferreq i and its output bufferres i. Through these buffers, it
receives requests fromH for initiating route discoveries and sends the results of the discoveries
to H, as described above.

Mi communicates with the other protocol machines via its output bufferout i and its input buffer
ini. Both buffers can contain messages of the form(sndr , rcvr ,msg), wheresndr ∈ L is the
identifier of the sender,rcvr ∈ L ∪ {∗} is the identifier of the intended receiver (∗ meaning a
broadcast message), andmsg ∈ M is the actual protocol message. Here,M denotes the set of
all possible protocol messages, which is determined by the routing protocol under investigation.

In any routing protocol, it must be possible to determine if a protocol message is a route request
or a route reply. Hence, there exists a functiontype : M → {rreq, rrep} that returns the type
of any protocol message. In addition, for any protocol message (be it a route request or a route
reply), it must also be possible to determine the initiator and the target of the route discovery
process to which the message belongs. Therefore, there exist functionsini : M → L and
tar : M → L such thatini returns the identifier of the initiator andtar returns the identifier of
the target.

WhenMi is activated, it first reads the content ofreq i. For each request(ci, �tar) received
from H, it generates a route requestmsg and updates its internal state according to the routing
protocol, and then, it places the message(L(vi), ∗,msg) in out i.

Once all the requests found inreq i have been processed,Mi reads the content ofini. The
messages found inini are processed in the order as they are found inini. For each message
(sndr , rcvr ,msg), Mi checks ifsndr ∈ L(NG(vi)) andrcvr ∈ {L(vi), ∗}. If these verifica-
tions fail, thenMi ignoresmsg . Otherwise,Mi processesmsg and updates its internal state
according to the routing protocol. We distinguish the following two cases:

type(msg) = rreq : If tar(msg) �= L(vi) (i.e.,Mi is not the target of the route discovery), then
depending on the content ofmsg and the current state ofMi, msg may be dropped and no
output is generated byMi. Alternatively,Mi may re-broadcastmsg . In this case,Mi gen-
erates the appropriate messagemsg ′ (e.g., appends its identifier to the route accumulated
so far in the request) and places(L(vi), ∗,msg ′) in out i.

If tar(msg) = L(vi) (i.e.,Mi is the target of the route discovery), thenMi may generate a
route replymsg ′ according to the routing protocol, and place the message(L(vi), �,msg ′)
in out i, where,� ∈ L(NG(vi)) is the identifier of the first device on the route that the route

8

reply should follow. In many protocols, each route reply message contains a single route,
and the route reply should follow the reverse of that. In this case,� can be unambiguously
determined from the route carried by the route reply. Alternatively, if the route reply
contains multiple routes or it should not follow the reverse route, then the routing protocol
specifies how the target should determine� unambiguously from all the corresponding
route requests it received.

type(msg) = rrep : If ini(msg) �= L(vi) (i.e.,Mi is not the initiator of the route discovery to
which msg belongs), then depending on the content ofmsg and the current state ofMi,
msg may be dropped and no output is generated byMi. Alternatively,Mi may forward
msg , in which case,Mi generates the appropriate protocol message2 msg ′, and places the
message(L(vi), �,msg ′) in out i, where� ∈ L(NG(vi)) is the identifier of the next device
on the route that the route reply should follow. As described above, the routing protocol
should specify forMi how to determine�. If ini(msg) = L(vi) (i.e., Mi is the initiator
of the route discovery), thenMi may generate a response toH3 and send it viares i.

We describe the initialization ofMi after describing the adversary’s machineA.

• Machine A: This machine represents the adversary. Regarding its communication capabilities,
A is identical to any machineMi, which means that it can read frominA and write inoutA

much in the same way asMi can read from and write inini andout i, respectively. However,
A may not operate according to the routing protocol. In fact, we place no restrictions on the
operation ofA apart from being polynomial-time in the security parameterk and in the size of
the networkn. This allows us to consider arbitrary attacks during the analysis. In particular,
A may delay or delete messages that it would send if it followed the protocol faithfully. In
addition, it can arbitrarily modify messages and generate fake ones.

In addition,A may send an out-of-band request toH by writing in ext as described above. This
gives the power toA to specify who starts a route discovery process and towards which target.
However, in order to simplify the analysis, we restrictA to send only a single request viaext .
This essentially means that a single route discovery process will take place in our model, or in
other words, we do not consider parallel runs of the protocol. It is important to emphasize that
this restriction is made only to simplify the analysis in this paper; the model itself is sufficiently
rich to capture parallel protocol runs by allowingA to send multiple requests viaext . This
feature will be exploited in future papers.

As it can be seen from the description above, eachMi should know its own assigned identifier,
and those of its neighbors inG. Hence,Mi receivesL(vi) andL(NG(vi)) in the initialization phase.
Similarly, A receivesL(ṽ) andL(NG(ṽ)).

In addition, the machines may need some cryptographic material (e.g., public and private keys)
depending on the routing protocol under investigation. We model the distribution of this material
as follows. We assume a functionI, which takes only random inputrI , and it produces a vector
I(rI) = (κpub , κ1, . . . , κn, κ̃). The componentκpub is some public information that becomes known
to A and allMi’s. For 1 ≤ i ≤ n, κi becomes known only toMi, andκ̃ becomes known only to
A. Note that the initialization function can model the out-of-band exchange of initial cryptographic
material of both asymmetric and symmetric cryptosystems. In the former case,κpub contains the
public keys of all devices, whileκi (1 ≤ i ≤ n) contains the private key of the non-corrupted device

2Oftenmsg ′ = msg , but in general, it may not be the case.
3Mi may wait for a number of route replies before returning a response.

9

corresponding tovi, andκ̃ contains the private key of the corrupted device corresponding toṽ. In the
latter case,κpub is empty, andκi andκ̃ contain the symmetric keys known to the non-corrupted device
corresponding tovi and the corrupted device corresponding toṽ, respectively.

Finally, all Mi andA receive some random input in the initialization phase. The random input of
Mi is denoted byri, and that ofA is denoted byrA.

The computation ends whenH reaches one of its final states. In our simplified case (i.e., when
A is restricted to send a single out-of-band request toH), this happens whenH reads a response
from one of its input buffersres i that corresponds to the single request it placed inreq i. The output
of sys real

conf ,A is the set of routes found in this response. We will denote the output byview real
conf ,A(r),

wherer = (rI , r1, . . . , rn, rA, rC). In addition,view real
conf ,A will denote the random variable describing

view real
conf ,A(r) whenr is uniformly chosen.

3.2 Ideal-world model

The ideal-world model that corresponds to a configurationconf = (G, ṽ) and adversaryA is denoted
by sys ideal

conf ,A, and it is illustrated in Figure 3.sys ideal
conf ,A consists of a set{H, T, A} of interacting

Turing machines too, whereH is the same as in the real-world model,T is intended to model the
ideal operation of the routing protocol, andA is the ideal-world adversary.T andA are probabilistic.

As we mentioned earlier in Section 2, the ideal routing service should never return non-existent
routes. Hence the role ofT will be to emulate the behavior of the real network, and to ensure that
route reply messages that contain non-existent routes are identified and filtered out. This is achieved
in the following way: The internal structure ofT (indicated in gray in Figure 3) is identical to the
structure of the real-world model (i.e.,T runs machinesM ′

i andC ′, which work essentially in the
same way asMi andC do in the real-world model). This ensures thatT can emulate the operation of
the real network. On the other hand, sinceC ′ is initialized withG, it can easily identify and mark as
corrupted those route reply messages that contain routes that do not exist inG. A corrupted route reply
is processed by each machineM ′

i in the same way as a non-corrupted one (i.e., the machines ignore
the corruption flag) except for the machine that initiated the route discovery process to which the
corrupted route reply belongs. The initiator first performs all the verifications on the route reply that
the routing protocol requires, and if the message passes all these verifications, then it also checks if
the message is marked as corrupted. If so, then it drops the message, otherwise it continues processing
(e.g., returns the received route toH). This means that in the ideal-world model, every route reply
that contains a non-existent route is catched and filtered out by the initiator of the route discovery4.

SinceT emulates the operation of the real-world model, the attacks that we allow againstT should
also be the same as those in the real-world model. Therefore, in our approach, the capabilities of an
ideal-world adversary will be identical to that of a real-world adversary. This is why we denote both
adversaries byA.

Just like in the real-world model, here as well, the machines operate in a reactive manner. They
are activated by a hypothetic scheduler in rounds, and in the following order in each round:H, T , A,
T . Note thatT is activated twice in each round. The buffers work in the same way as they do in the
real-world model.

The operation ofH andA is the same as in the real-world model. Now, we describe the operation
of T in more details:

4Of course, corrupted route reply messages can also be dropped earlier during the execution of the protocol for other
reasons. What we mean is that if they are not caught earlier, then they are surely removed at latest by the initiator of the
route discovery to which they belong.

10

M1'

. .
 .

C'Mn'

H

A

req1

res1

reqn

resn

ext

out1

in1'

outn

inn'

outA

inA

T

Figure 3: Interconnection of the machines insys ideal
conf ,A

• Machine T : T runs a set{M ′
1, M

′
2, . . . , M

′
n, C ′} of machines, whereM ′

i andC ′ are essentially
the same asMi andC, respectively, in the real-world model. The difference betweenMi and
M ′

i is thatM ′
i is prepared to process messages that contain a corruption flag. The difference

betweenC andC ′ is thatC ′ attaches a corruption flag to messages that it outputs.

In each round, when activated the first time,T activates machinesM ′
1, M

′
2, . . . , M

′
n in this

order. Then it goes back to sleep and waits to be activated the second time. When activated the
second time,T activates machineC ′. WhenC ′ finishes its task,T goes back to sleep (and the
round ends).

The messages that are placed in bufferin ′
i (1 ≤ i ≤ n) by C ′ have the form(sndr , rcvr ,

(msg , cf)), wheresndr , rcvr , andmsg are defined in the same way as in the real-world model,
andcf ∈ {	,⊥} is acorruption flag, which indicates whethermsg is corrupted () or not (⊥).
The messages that are placed in buffersout i (1 ≤ i ≤ n), outA, andinA have the same form
as in the real-world model (i.e., they have no corruption flag attached). Note that the input and
the output buffers ofA contain messages of the same format as in the real-world model, and
therefore, a real-world adversary can easily be “plugged in” the ideal-world model.

When machineM ′
i reads(sndr , rcvr , (msg , cf)) from in ′

i, it verifies if sndr ∈ L(NG(vi))
andrcvr ∈ {L(vi), ∗}. If these verifications are successful, then it performs the verifications
required by the routing protocol onmsg (e.g., it checks digital signatures, MACs, the route or
route segment inmsg , etc.). In addition, iftype(msg) = rrep and ini(msg) = L(vi), then
M ′

i checks ifcf = 	. If so, thenM ′
i dropsmsg , otherwise it continues processing it. If

type(msg) �= rrep or ini(msg) �= L(vi), thencf is not checked. The messages generated by
M ′

i have no corruption flags attached to them, and they are placed inout i.

Just likeC, C ′ copies the content of the output buffer of eachM ′
i (andA) into the input buffers

11

of the neighbors ofM ′
i (andA). However, before copying a message(sndr , rcvr ,msg) in any

buffer in ′
i, C ′ must attach a corruption flagcf to msg . This is done in the following way:

– if type(msg) = rreq, thenC ′ setscf to⊥;

– if type(msg) = rrep and all routes carried bymsg are existing routes inG, thenC ′ sets
cf to⊥;

– otherwiseC ′ setscf to	.

C ′ does not attach corruption flags to messages that are placed ininA.

Before the computation begins, each machine is initialized with some input data.H andA receives
the same initial input as in the real-world model. The initialization ofT consists in the initialization
of all M ′

i andC ′. EveryM ′
i andC ′ receive the same initial input asMi andC, respectively, in the

real-world model.
The computation ends whenH reaches one of its final states. SinceA is restricted to send a single

out-of-band request toH, this happens whenH reads a response from one of its input buffersres i that
corresponds to the single request it placed inreq i. The output ofsys ideal

conf ,A is the set of routes found

in this response. We will denote the output byview ideal
conf ,A(r′), wherer′ = (r′I , r

′
1, . . . , r

′
n, r′A, r′C).

view ideal
conf ,A will denote the random variable describingview ideal

conf ,A(r′) whenr′ is uniformly chosen.

3.3 Definition of secure routing

Now, we are ready to introduce the definition of secure routing:

Definition 1. A routing protocol is said to be (computationally) secure if, for any configuration conf
and any real-world adversary A, there exists an ideal-world adversary A′, such that view real

conf ,A
c=

view ideal
conf ,A′ , where

c= means “computationally indistinguishable”.

In fact, Definition 1 describes the standard requirement we have on protocols in terms of security.
However, some protocols may satisfy the following stronger definitions:

Definition 2. A routing protocol is said to be statistically secure if the same holds as in Definition 1
but with

s= instead of
c=, where

s= means “statistically indistinguishable”.

Definition 3. A routing protocol is said to be perfectly secure if the same holds as in Definition 1 but

with
d= instead of

c=, where
d= means “equally distributed”.

The meaning of
d= should be clear. Two random variables are statistically indistinguishable if

theL1 distance of their distributions is negligibly small. Two random variables are computationally
indistinguishable if no feasible algorithm can distinguish their samples (although their distribution

may be completely different). Clearly,
d= implies

s=, which implies
c=.

Intuitively, perfect security of a protocol means that everything that a real-world adversary can
achieve against the protocol in the real-world model, an ideal-world adversary can also achieve in the
ideal-world model. Since in the ideal-world model, the ideal-world adversary cannot achieve that a
non-existent route is returned toH, it follows that for perfectly secure protocols,H cannot receive
a non-existent route in the real-world model. For statistically secure protocols the same is true with
overwhelming probability. For (computationally) secure protocols, the view of the honest parties in
the real-world model cannot be efficiently distinguished from their view in the ideal-world model, and
therefore, as far as any practical application is concerned, the real-world model is equivalent to the
ideal-world model (where non-existent routes are never returned).

12

3.4 Proof technique

In order to prove the security of a given routing protocol, one has to find the appropriate ideal-world
adversaryA′ for any real-world adversaryA such that at least Definition 1 is satisfied. In our model,
a natural candidate isA′ = A. This is because for any configurationconf , the operation ofsys real

conf ,A

can easily besimulated by the operation ofsys ideal
conf ,A assuming that the two systems were initialized

with the same random inputr. In order to see this, let us assume for a moment that no message
is dropped due to its corruption flag being set insys ideal

conf ,A. In this case,sys real
conf ,A andsys ideal

conf ,A are
essentially identical, meaning that in each step the state of the corresponding machines and the content
of the corresponding buffers are the same (apart from the the corruption flags attached to the messages
in sys ideal

conf ,A). Since the two systems are identical,view real
conf ,A(r) = view ideal

conf ,A(r) holds for everyr,

and thus, we have perfect security:view real
conf ,A

d= view ideal
conf ,A.

However, it is possible that some route reply messages are dropped insys ideal
conf ,A due to their cor-

ruption flags being set to	. In this case, since those messages are not dropped insys real
conf ,A (by

definition, they have already successfully passed all verifications required by the routing protocol),
sys real

conf ,A andsys ideal
conf ,A may end up in different states and their further steps may not match each

other. We call this situation asimulation failure. In case of a simulation failure, it might be that
view real

conf ,A(r) �= view ideal
conf ,A(r). Nevertheless, the definition of statistical security can still be sat-

isfied, if simulation failures occur only with negligible probability. Hence, when trying to prove
statistical security, one tries to prove that for any configurationconf and adversaryA, the event of
dropping a route reply insys ideal

conf ,A due to its corruption flag being set to	 can occur only with
negligible probability.

Finally, (computational) security can usually be proven in an indirect manner. For this, it is first
assumed thatview real

conf ,A andview ideal
conf ,A can be distinguished by an efficient algorithmD, and then,

a forger is constructed that usesD to break the underlying cryptographic primitive (e.g., a digital
signature scheme) of the protocol.

4 Usage of the model

In this section, we show how the model can be used for analyzing routing protocols. In particular, we
analyze the route discovery part of SRP (Secure Routing Protocol) and Ariadne with signatures. This
analysis leads to as yet unknown attacks against both protocols. Then, we propose a protocol, which
we prove to be statistically secure in our model. Throughout this section, we provide only sketches of
proofs for several claims. These sketches can be made rigorous proofs in our model, but we omit this
for making the presentation easier to follow.

4.1 Analysis of SRP

Operation of SRP. SRP has been proposed in [21] as an extension header for on-demand source
routing protocols such as DSR [16] and the Interzone Routing Protocol of ZRP [12]. In what follows,
we assume that SRP is a stand-alone protocol with basic features similar to that of DSR. This makes
the presentation simpler, and at the same time, it does not weakens our results.

The operation of SRP and the format of SRP messages are illustrated in Figure 4. The initiator of
the route discovery generates a route request message and broadcasts it to its neighbors. The integrity
of this route request is protected by a MAC that is computed with a key shared by the initiator and
the target of the discovery. Each intermediate node that receives the route request for the first time

13

S → ∗ : (rreq, S, D, id , sn, macS, ())
B → ∗ : (rreq, S, D, id , sn, macS, (B))
C → ∗ : (rreq, S, D, id , sn, macS, (B, C))
D → C : (rrep, S, D, id , sn, (B, C), macD)
C → B : (rrep, S, D, id , sn, (B, C), macD)
B → S : (rrep, S, D, id , sn, (B, C), macD)

Figure 4: Operation example of SRP and format of SRP messages. The identifier of the initiator of
the route discovery isS, the identifier of the target isD, and the identifiers of the intermediate nodes
areB andC. id is a randomly generated query identifier,sn is a query sequence number maintained
by S andD, macS is the MAC generated byS that covers the fieldsrreq, S, D, id , andsn, andmacD

is the MAC generated byD that covers the fieldsrrep, S, D, id , sn, and(B, C).

appends its identifier to the request and re-broadcasts it. The MAC in the request is not checked by the
intermediate nodes (as they do not know the key with which it was computed), and they do not append
their own MACs either. When the route request reaches the target of the route discovery, it contains
the list of identifiers of the intermediate nodes that passed the request on. This list is considered as a
route found between the initiator and the target.

The target verifies the MAC of the initiator in the request. If the verification is successful, then
it generates a route reply and sends it back to the initiator via the reverse of the route obtained from
the route request. The route reply contains the route obtained from the route request, and its integrity
is protected by another MAC generated by the target with a key shared by the target and the initiator.
Each intermediate node passes the route reply to the next node on the route (towards the initiator)
without modifying it. When the initiator receives the reply it verifies the MAC of the target, and if
this verification is successful, then it accepts the route returned in the reply.

The target may receive several route requests that belong to the same route discovery process5,
and it sends a reply to each of these requests. It is assumed that the initiator waits for some time
(possibly defined by a timeout parameter), and then it outputs the set of routes collected from all the
replies it received.

Although SRP does not specify it (as it should be part of the base protocol to which SRP is added
as an extension), we will nonetheless assume that each node also performs the following verifications
when processing SRP messages:

• If a nodev receives a route request for the first time, then it verifies if the last identifier of
the accumulated route in the request corresponds to a neighbor ofv. If the accumulated route
does not contain any identifiers, thenv verifies if the identifier of the initiator corresponds to a
neighboring node. If these verifications fail, then the request is dropped.

• If an intermediate nodev receives a route reply, then it verifies if its identifier is included in
the route carried by the reply. In addition, it also verifies if the identifier that precedes and the
identifier that followsv’s identifier in the route correspond to neighboring nodes. If there is no
preceding identifier, thenv verifies if the identifier of the initiator corresponds to a neighbor.
If there is no following identifier, thenv verifies if the identifier of the target corresponds to a
neighbor. If these verifications fail, then the reply is dropped.

5Since the neighbors of the target re-broadcast the request at most once, the target can receive at most as many requests
as the number of its neighbors.

14

• When the initiator receives a route reply, it verifies if the first identifier in the route carried by
the reply corresponds to a neighboring node. If this verification fails, then the reply is dropped.

These verifications are quite simple, yet make the protocol more resistant against attacks by identify-
ing non-existent routes in the protocol messages as early as possible.

Analysis. SRP is not secure in our model. Below we present some observations that one could make
when attempting to prove the security of SRP. These observations actually lead to the discovery of an
attack against SRP.

In the following discussion, we will refer to the machines that represent the devices in the network
by their labels. This does not lead to ambiguity since the labelling functionL is a bijection.

Let us suppose that for some configurationconf = (G, ṽ) and adversaryA, the following message
is received by a non-corrupted machine�ini in sys ideal

conf ,A:

msg = (rrep, �ini , �tar , id , sn, (�1, . . . , �p), mac�tar)

Let us further suppose thatmsg has been received with a corruption flag set to	, and thatmsg passed
all the verifications required by SRP at�ini . This means thatmac�tar is correct,�1 is a neighbor of
�ini , and(�ini , �1, . . . , �p, �tar) is a non-existent route inG.

Observation 1: Given that the assumptions above hold, adversaryA must have outputmsg .

Sketch of the proof: Let us assume thatA has never outputmsg . This means that only non-corrupted
machines have output it. In other words,�ini receivedmsg from a non-corrupted machine, who
received it from another non-corrupted machine, etc. Note that a non-corrupted machine� processes
msg only if it was sent to it (i.e., a non-corrupted machine does not process overheard messages).
Furthermore,� passes onmsg only if it finds itself in the list(�1, . . . , �p) and if the preceding machine
on the list is a neighbor of�. All these observations lead to the conclusion thatmsg must have reached
�ini by passing through�p, . . . , �1. This contradicts with the assumption that(�ini , �1, . . . , �p, �tar) is
a non-existent route. �
Observation 2: Given that the assumptions above hold, machine�tar has outputmsg with overwhelm-
ing probability.

Sketch of the proof: We know from Observation 1 thatA has outputmsg . Let the earliest round in
which this happened beρ. Sincemac�tar in msg is a correct MAC,A can generatemsg by himself
only with negligible probability. So, with overwhelming probability,A receivedmsg in roundρ′ ≤ ρ.
Since correct machines apart from�tar outputmsg only if they received it earlier, there must be a
roundρ′′ < ρ′ in which �tar generated and outputmsg . �

By assumption,�1 is a neighbor of�ini , and(�ini , �1, . . . , �p, �tar) is a non-existent route. This
means that there exists1 ≤ i ≤ p such that�i and�i+1 (where�p+1 stands for�tar) are not neighbors.

Observation 3: If �i is a non-corrupted machine, then it does not outputmsg .

Sketch of the proof: Before outputtingmsg , �i verifies that it is on the list(�1, . . . , �p) and that�i+1 is
its neighbor. Since the latter does not hold,�i dropsmsg . �
Observation 4: If �i+1 is a non-corrupted machine, then it does not outputmsg .

Sketch of the proof: The proof of this is similar to that of Observation 3. �
In summary, we know that�tar has outputmsg , wheremsg carries the list of machines(�1, . . . , �p).

We also know that there must be an1 ≤ i ≤ p such that�i and�i+1 are not neighbors. In addition,

15

if �1, . . . , �p, and�tar are all non-corrupted machines, then neither�i nor �i+1 has outputmsg . The
question is then howmsg could reach�ini from �tar? The key observation is thatA must have output
msg . CanA bridge the gap between�i and�i+1? This is possible ifA overhears the transmission of
msg by a machine�x for somex > i+1 and can transmitmsg to another machine�y for somey < i.

i

i+1

i+2
i-1

ini tar... ...
A

Figure 5: Part of a configuration where an attack against SRP is possible

Attack. Let us consider Figure 5, which illustrates part of a configuration where an attack against
SRP based on the above observations is possible. The attack scenario is the following:�ini sends
a route request towards�tar . The request reaches�i−1 that re-broadcasts it. Thus,A receives the
following route request message:

msg1 = (rreq, �ini , �tar , id , sn, mac�ini , (�1, . . . , �i−1))

A then broadcasts the following message in the name of�i+1:

msg2 = (rreq, �ini , �tar , id , sn, mac�ini , (�1, . . . , �i−1, �i, λ, �i+1))

whereλ is an arbitrary sequence of identifiers. Since�i+2 is a neighbor ofA, it will hear the transmis-
sion. In addition, since the list of machines in the message ends with�i+1, which is also a neighbor of
�i+2, it will process the request and re-broadcast it. Later,�tar sends the following route reply back to
�ini :

msg3 = (rrep, �ini , �tar , id , sn, (. . . , �i−1, �i, λ, �i+1, �i+2, . . .), mac�tar)

When�i+2 sends this message to�i+1, A overhears the transmission, and forwards the message to
�i−1 in the name of�i. �i−1 will accept the message and passes it on towards�ini . Finally, �ini will
output the route(�ini , . . . , �i, λ, �i+1, . . . , �tar), which is clearly a non-existent route.

Note that whenA generatesm2, it cannot be sure that�i−1 and�i are neighbors. Similarly, it does
not know if �i+1 and�i+2 are neighbors. Hence the attack may fail. However, the success probability
of the attack is non-negligible, given that�i−1, �i, �i+1, and�i+2 are all neighbors ofA, and it is
known that in this case, the probability that�i−1 and�i, as well as�i+1 and�i+2 are also neighbors is
significantly higher than if we just put these nodes on the plane randomly.

4.2 Analysis of Ariadne with signatures

Operation of Ariadne with signatures. Ariadne has been proposed in [13] as a secure on-demand
source routing protocol for ad hoc networks. Ariadne comes in three different flavors correspond-
ing to three different techniques for data authentication. More specifically, authentication of routing
messages in Ariadne can be based on TESLA [22], on digital signatures, or on MACs. We discuss
Ariadne with digital signatures.

16

S : hS = MAC SD(rreq, S, D, id)
S → ∗ : (rreq, S, D, id , hS, (), ())
B : hB = H(B, hS)
B → ∗ : (rreq, S, D, id , hB, (B), (sigB))
C : hC = H(C, hB)
C → ∗ : (rreq, S, D, id , hC, (B, C), (sigB, sigC))
D → C : (rrep, D, S, (B, C), (sigB, sigC), sigD)
C → B : (rrep, D, S, (B, C), (sigB, sigC), sigD)
B → S : (rrep, D, S, (B, C), (sigB, sigC), sigD)

Figure 6: Operation example of Ariadne with signatures and format of Ariadne messages. The initiator
of the route discovery isS, the target isD, and the intermediate nodes areB andC. id is a randomly
generated query identifier,H is a publicly known one-way hash function, andMAC SD is a MAC
function used with the key shared byS andD. sigB, sigC, andsigD are digital signatures ofB, C, and
D, respectively. Each signature is computed over the message fields that precede the signature.

The operation of Ariadne with digital signatures is illustrated in Figure 6. There are two main dif-
ferences between Ariadne and SRP. First, in Ariadne not only the initiator and the target authenticate
the protocol messages, but intermediate nodes too insert their own digital signatures in route requests.
Second, Ariadne uses per-hop hashing to prevent removal of identifiers from the accumulated route in
the route request.

The initiator of the route discovery generates a route request message and broadcasts it to its
neighbors. The route discovery message contains the identifiers of the initiator and the target, a
randomly generated request identifier, and a MAC computed over these elements with a key shared by
the initiator and the target. This MAC is hashed iteratively by each intermediate node together with
its own identifier using a publicly known one-way hash function. The hash values computed in this
way are called per-hop hash values. Each intermediate node that receives the request for the first time
re-computes the per-hop hash value, appends its identifier to the list of identifiers accumulated in the
request, and generates a digital signature on the updated request. Finally, the signature is appended to
a signature list in the request, and the request is re-broadcasted.

When the target receives the request, it verifies the per-hop hash by re-computing the initiator’s
MAC and the per-hop hash value of each intermediate node. Then it verifies all the digital signatures
in the request. If all these verifications are successful, then the target generates a route reply and sends
it back to the initiator via the reverse of the route obtained from the route request. The route reply
contains the identifiers of the target and the initiator, the route and the list of digital signatures obtained
from the request, and the digital signature of the target on all these elements. Each intermediate node
passes the reply to the next node on the route (towards the initiator) without any modifications. When
the initiator receives the reply, it verifies the digital signature of the target and the digital signatures of
the intermediate nodes (for this it needs to reconstruct the requests that the intermediate nodes signed).
If the verifications are successful, then it accepts the route returned in the reply.

We assume that every node performs the same verifications on the accumulated routes found in
the routing messages as those described in the previous subsection in the context of SRP.

Analysis. Ariadne is not secure in our model. When attempting to derive a proof, one can make the
following observations, which actually lead to the construction of an attack scenario described below.

17

Let us suppose that for some configurationconf = (G, ṽ) and adversaryA, the following message
is received by a non-corrupted machine�ini in sys ideal

conf ,A:

msg = (rrep, �tar , �ini , (�1, . . . , �p), (sig�1 , . . . , sig�p
), sig�tar)

Let us further suppose thatmsg has been received with a corruption flag set to	, and thatmsg passed
all the verifications required by Ariadne at�ini . This means that all signatures inmsg are correct,�1

is a neighbor of�ini , and(�ini , �1, . . . , �p, �tar) is a non-existent route inG. We will denote the query
identifier and the initiator’s MAC that are used in the corresponding route request and needed for the
verification of the signatures inmsg by id andmac, respectively.

Observation 1: Given that the assumptions above hold, both adversaryA and�tar must have output
msg . This can be proven in the same way as in the case of SRP.

By assumption,�1 is a neighbor of�ini , and(�ini , �1, . . . , �p, �tar) is a non-existent route. This
means that there exists1 ≤ i ≤ p such that�i and�i+1 (where�p+1 stands for�tar) are not neighbors.

Observation 2: �i+1 = A with overwhelming probability.

Sketch of the proof: Assume that�i+1 �= A. This means that�i+1 is a non-corrupted machine. Since
A can generatesig�i+1

only with negligible probability,�i+1 must have generated and output the
following request with overwhelming probability:

(rreq, �ini , �tar , id , h�i+1 , (�1, . . . , �i+1), (sig�1 , . . . , sig�i+1
))

whereh�i+1 = H(�i+1, H(�i, H(. . . H(�1,mac)))). However,�i+1 cannot output this request, be-
cause it verifies the accumulated route in the request, and detects that the preceding machine�i is not
its neighbor. �
Observation 3: A may be able to generate the following message without being the neighbor of�i:

(rreq, �ini , �tar , id , hA, (�1, . . . , �i, A), (sig�1 , . . . , sig�i
, sigA))

wherehA = H(A, h�i).

Sketch of the proof: A can easily generate this message if it receivessig�1 , . . . , sig�i
, and anyh�j such

that j ≤ i as parts of some other message. The key observation is thatA does not necessarily need
to receive these in a single message. Figure 7 illustrates a configuration, whereA can receive all the
necessary information to easily generate the message above. �

i X

i-1
ini tar... ...

A

Figure 7: Part of a configuration where an attack against Ariadne is possible

Attack. The observations above lead to the following attack scenario (see Figure 7):�ini sends
a route request towards�tar . The request reaches�i−1 that re-broadcasts it. Thus,A receives the
following route request message:

msg1 = (rreq, �ini , �tar , id , h�i−1 , (�1, . . . , �i−1), (sig�1 , . . . , sig�i−1
))

18

A doesnot re-broadcastmsg1. Later,A receives another route request fromX:

msg2 = (rreq, �ini , �tar , id , hX , (�1, . . . , �i−1, �i, X), (sig�1 , . . . , sig�i−1
, sig�i

, sigX))

From msg2, A knows that�i is a neighbor of�i−1. A computeshA = H(A, H(�i, h�i−1)), where
h�i−1 is obtained frommsg1. A obtains the signaturessig�1 , . . . , sig�i

from msg2. Then,A generates
and broadcasts the following request:

msg3 = (rreq, �ini , �tar , id , hA, (�1, . . . , �i−1, �i, A), (sig�1 , . . . , sig�i−1
, sig�i

, sigA))

Later,�tar generates the following route reply and sends it back towards�ini :

msg4 = (rrep, �tar , �ini , (�1, . . . , �i−1, �i, A, . . .), (sig�1, . . . , sig�i, sigA, . . .), sig�tar)

WhenA receives this route reply, it forwards it to�i−1 in the name of�i. Finally, �ini will output the
route(�ini , �1, . . . , �i−1, �i, A, . . . , �tar), which is a non-existent route.

4.3 A provably secure routing protocol

Inspired by Ariadne, we present a routing protocol that can be proven to be statistically secure. We call
the protocol endairA (which is the reverse of Ariadne), because instead of signing the route request,
we propose that intermediate nodes should sign the route reply. The operation and the messages of
endairA are illustrated in Figure 8.

S → ∗ : (rreq, S, D, id , ())
B → ∗ : (rreq, S, D, id , (B))
C → ∗ : (rreq, S, D, id , (B, C))
D → C : (rrep, S, D, (B, C), (sigD))
C → B : (rrep, S, D, (B, C), (sigD, sigC))
B → S : (rrep, S, D, (B, C), (sigD, sigC, sigB))

Figure 8: Operation example and messages of endairA. The initiator of the route discovery isS, the
target isD, and the intermediate nodes areB andC. id is a randomly generated query identifier.sigB,
sigC, andsigD are digital signatures ofB, C, andD, respectively. Each signature is computed over the
message fields that precede the signature.

In endairA, the initiator of the route discovery process generates a route request, which contains
the identifiers of the initiator and the target, and a randomly generated query identifier. Each interme-
diate node that receives the request for the first time appends its identifier to the route accumulated so
far, and re-broadcasts the request. When the request arrives to the target, it generates a route reply.
The route reply contains the identifiers of the initiator and the target, the accumulated route obtained
from the request, and a digital signature of the target on these elements. The reply is sent back to
the initiator on the reverse of the route found in the request. Each intermediate node that receives the
reply verifies that its identifier is in the route carried by the reply, and that the preceding and follow-
ing identifiers on the route belong to neighboring nodes. If these verifications fail, then the reply is
dropped. Otherwise, it is signed by the intermediate node, and passed to the next node on the route
(towards the initiator). When the initiator receives the route reply, it verifies if the first identifier in the
route carried by the reply belongs to a neighbor. If so, then it verifies all the signatures in the reply. If
all these verifications are successful, then the initiator accepts the route.

19

Theorem 1. endairA is statistically secure if the signature scheme is secure against chosen message
attacks.

Sketch of the proof: In order to prove that endairA is statistically secure, it is enough to show that for
any configurationconf and any adversaryA, a route reply message insys ideal

conf ,A is dropped due to its
corruption flag set to	 with negligible probability.

Let us suppose that for some configurationconf = (G, ṽ) and adversaryA, the following message
is received by a non-corrupted machine�ini in sys ideal

conf ,A:

msg = (rrep, �ini , �tar , (�1, . . . , �p), (sig�tar , sig�p
, . . . , sig�1))

Let us further suppose thatmsg has been received with a corruption flag set to	, and thatmsg passed
all the verifications required by endairA at�ini . This means that all signatures inmsg are correct,�1

is a neighbor of�ini , and(�ini , �1, . . . , �p, �tar) is a non-existent route inG. It follows that there exists
1 ≤ i ≤ p such that�i and�i+1 (where�p+1 stands for�tar) are not neighbors.

We prove that the above is only possible ifA forged the signature of�i or �i+1. (a) Let us assume
that �i �= A. Then,�i is non-corrupted, and it verifies the route in the route reply before signing it.
Consequently, it detects that�i+1 is not its neighbor and it does not sign the route reply. As other
non-corrupted machines do not generate signatures in the name of�i, �ini can receivemsg only if A
forgedsig�i

. (b) Now let us assume that�i = A. Then,�i+1 is non-corrupted, and an argument similar
to the one above leads to the conclusion thatA must have forgedsig�i+1

.
It should be intuitively clear that if the signature scheme is secure, thenA can forge a signature

only with negligible probability, and thus, a route reply message insys ideal
conf ,A is dropped due to its

corruption flag set to	 only with negligible probability. Nevertheless, we sketch how this could
be proven formally. The proof is indirect. We assume that there exist a configurationconf and an
adversaryA such that a route reply message insys ideal

conf ,A is dropped due to its corruption flag set to	
with probabilityε, and then, based on that, we construct a forgerF that can break the signature scheme
with probability ε/n. If ε is non-negligible, then so isε/n, and thus, the existence ofF contradicts
with the assumption on the security of the signature scheme.

The construction ofF is the following. Letpuk be an arbitrary public key of the signature scheme.
Let us assume that the corresponding private keyprk is not known toF , butF has access to a signing
oracle that produces signatures on submitted messages usingprk . F runs a simulation ofsys real

conf ,A

where all machines are initialized as described in the model, except that that the public key of a
randomly selected non-corrupted machine�i is replaced withpuk . During the simulation, whenever
�i signs a messagem, F submitsm to the oracle, and replaces the signature of�i on m with the one
produced by the oracle. This signature verifies correctly on other machines later, since the public
verification key of�i is replaced withpuk . By assumption, with probabilityε, the simulation of
sys real

conf ,A will result in a route reply messagemsg such that all signatures inmsg are correct andmsg
contains a non-existent route. As we saw above, this means that there exists a non-corrupted machine
�j such thatmsg contains the signaturesig�j

of �j , but�j has never signed (the corresponding part of)
msg . Let us assume thati = j. In this case,sig�j

is a signature that verifies correctly with the public
keypuk . Since�j did not signed (the corresponding part of)msg , F did not call the oracle to generate
sig�j

. This means thatF managed to produce a signature on a message that verifies correctly with

puk . SinceF selected�i randomly, the probability ofi = j is 1
n , and hence, the success probability

of F is ε/n. �
Note 1: The proof uses only the fact that the adversary has only a single compromised key. In
particular, the same proof would apply to an Active-1-x adversary, which has a single compromised
key, but several devices in the network.

20

Note 2: While we designed endairA purely for demonstration purposes, it has some remarkable fea-
tures. Besides being provably secure against an Active-1-1 adversary (and most probably against an
Active-1-x adversary too), it is extremely simple and intuitive (e.g., it does not use per-hop hash val-
ues). In addition, it requires the nodes to sign only route reply messages, which means that the nodes
need to produce orders of magnitude less signatures than in Ariadne, where the route request is signed
by every node in the network due to the flooding of the request.

We must note, however, that endairA is not very resistant against DoS attacks. In particular, it
allows the network to be flooded with fake route request messages. However, its resistance to such
attacks can be increased by requiring the initiator to sign the request and the intermediate nodes to
verify this signature.

5 Related work

There are several proposals for secure ad hoc routing protocols (see [15] for a recent overview).
However, these proposals come with an informal security analysis with all the pitfalls of informal
security arguments. Another set of papers deal with provable security for cryptographic algorithms
and protocols (see Parts V and VI of [18] for a survey of the field). However, these papers are not
concerned with ad hoc routing protocols. The papers that are the most closely related to the approach
we used in this paper are [6], [26], and [23]. These papers apply the simulation paradigm for different
security problems: [6] and [26] deal with key exchange protocols, and [23] is concerned with security
of reactive systems in general, and secure message transmission in particular. To the best of our
knowledge, we are the first who applied the notions of provable security and used the simulation
approach in the context of routing protocols for wireless ad hoc networks.

A different approach with similar goals to ours is presented in [28]. The authors of [28] propose a
formal model for ad hoc routing protocols with the aim of representing insider attacks (which corre-
spond to our notion of corrupted nodes). Their model is similar to the strand spaces model [10], which
has been developed for the formal verification of key exchange protocols. Routing security is defined
in terms of a safety and a liveness property. The liveness property requires that it is possible to dis-
cover routes, while the safety property requires that discovered routes do not contain corrupted nodes.
In contrast to this, our definition of security allows the protocol to return routes that pass through
corrupted nodes. As we mentioned earlier, our definition corresponds to the informal definitions of
security given in [21] and [13]. In addition, it seems to be impossible to guarantee that discovered
routes do not contain corrupted nodes, since corrupted nodes can behave correctly and follow the
routing protocol faithfully.

Another approach, presented in [19], is based on a formal method, called CPAL-ES, which uses
a weakest precondition logic to reason about security protocols. Unfortunately, the work presented in
[19] is very much centered around the analysis of SRP, and it is not general enough. For instance, the
author defines a security goal that is specific to SRP, but no general definition of routing security is
given. In addition, the attack discovered by the author on SRP is not a real attack, because it essentially
consists in setting up a wormhole between two non-corrupted nodes, and SRP is not supposed to
defend against this. In our opinion, wormhole attacks are attacks against the neighbor discovery
mechanism and not against routing. The CPAL-ES analysis of SRP in [19] does not identify the
attack presented in Section 4, which we have discovered with our approach. On the other hand, the
advantage of the approaches of [19] and [28] is that they can be automated.

Finally, we must mention that SRP has been analyzed by its authors in [21] using BAN logic [7].
However, BAN logic has never been intended for the analysis of routing protocols. There are several

21

problems with applying BAN logic in this context. First, BAN logic has no means to describe the
goals of secure routing protocols, and to derive them from the protocol. It might be possible to extend
BAN logic in such a way that those goals can be represented in it, but the authors of [21] have not
done that. Second, a basic assumption of BAN logic is that the protocol participants are trustworthy
and do not release secrets [8]. This assumption does not hold in the typical case that we are interested
in, namely, when there are corrupted nodes in the network controlled by the adversary that may not
follow the routing protocol faithfully. It is dangerous to draw conclusions from a BAN analysis of the
protocol when the basic assumptions of BAN logic are not satisfied. The fact that the BAN analysis
of SRP in [21] was inappropriate is best illustrated by the attack presented in Section 4, which was
completely overlooked by the authors of [21].

6 Conclusion and future work

In this paper, we made the first steps toward a formal model in which one can precisely define what
secure routing means and prove (or fail to prove) that a given routing protocol indeed satisfies that
definition (under some cryptographic assumptions). Our approach is based on the commonly known
simulation paradigm for proving cryptographic protocols correct. The main contribution of the paper
is the application of this approach to on-demand source routing protocols proposed for wireless ad
hoc networks.

More specifically, we formally defined a real-world and an ideal-world model that capture the
basic features of wireless ad hoc networking in general, and ad hoc routing protocols in particu-
lar. The real-world model describes the real operation of the routing protocol, while the ideal-world
model formalizes the requirement that a secure routing protocol should not return non-existent routes
to honest parties. Then, we gave a formal definition of routing security in terms of computational
indistinguishability of the two models from the point of view of honest parties.

We demonstrated the usefulness of our approach by analyzing two “secure” ad hoc routing pro-
tocols, SRP and Ariadne. This analysis has led to the discovery of as yet unknown attacks against
both protocols. Finally, we proposed a novel on-demand source routing protocol for wireless ad hoc
networks, which can be proven to be secure in our model. This protocol served purely illustrative
purposes in this paper, however, it has some remarkable features that make it worthy to consider by
protocol designers when building their future protocols.

In terms of future work, we intend to extend our model to handle parallel protocol runs and Active-
x-y adversaries (currently it handles only Active-1-1 adversaries). We also intend to adopt our model
for routing protocols that use routing tables instead of source routes (e.g., SEAD [14] and ARAN
[25]).

A particularly interesting direction for future work is trying to automate the analysis of ad hoc
routing protocols. There are analysis approaches based on formal methods, such as state exploration
tools and process calculi, that are easy to automate. However, they usually consider cryptographic
primitives as unbreakable black boxes. This has the disadvantage of abstracting away details that may
be important with respect to security. On the other hand, analysis approaches, such as the simulation
approach, that do not abstract away cryptography provide rigorous results with respect to security,
but they seem to be more difficult to automate. Recent work in both the formal method and the
cryptography community has started to bridge this gap between the two approaches [17, 1, 11, 24].
Our intention is to extend these pioneering attempts to ad hoc routing protocols, and to define a model
which is cryptographically sound but, at the same time, amenable to automation.

22

Acknowledgement

This work has partially been supported by the Hungarian Scientific Research Fund under project
number T046664. The work of the first author have been further supported by the Hungarian Ministry
of Education under contract number BÖ2003/70.

References

[1] M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational soundness
of formal encryption). InProceedings of the IFIP Conference on Theoretical Computer Science,
Springer LNCS 1872, pages 3–22, 2000.

[2] M. Backes and B. Pfitzmann. A Cryptographically Sound Security Proof of the Needham-
Schroeder-Lowe Public-Key Protocol. to appear inIEEE Journal on Selected Areas in Com-
munication.

[3] D. Beaver. Foundations of secure interactive computing. InProceedings of Crypto’91, 1991.

[4] M. Bellare and P. Rogaway. Entity authentication and key distribution. InProceedings of
Crypto’93, 1993.

[5] M. Bellare and P. Rogaway. Provably secure session key distribution – the three party case. In
Proceedings of the ACM Symposium on the Theory of Computing, May 1995.

[6] M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to the design and analysis of
authentication and key exchange protocols. InProceedings of the ACM Symposium on the Theory
of Computing, 1998.

[7] M. Burrows, M. Abadi, and R. Needham. A logic of authentication.ACM Transactions on Com-
puter Systems, 8(1):18–36, February 1990.

[8] M. Burrows, M. Abadi, and R. Needham. Rejoinder to Nessett.ACM Operating Systems Review,
24(2):39–40, April 1990.

[9] R. Canetti. Studies in Secure Multiparty Computation and Applications. PhD dissertation, De-
partment of Computer Science and Applied Mathematics, Weizmann Institute of Science, June
1995.

[10] J. Guttman. Security goals: packet trajectories and strand spaces. InFoundations of Security
Analysis and Design, edited by R. Focardi and R. Gorrieri, Springer LNCS 2171, 2000.

[11] J. Guttman, F. J. Thayer, and L. Zuck. The faithfulness of abstract protocol analysis: message
authentication. InProceedings of the ACM Conference on Computer and Communications Se-
curity, 2001.

[12] Z. Haas, M. Perlman, and P. Samar. The Interzone Routing Protocol (IERP) for ad hoc networks.
Internet Draft, IETF MANET Working Group, June 2001.

[13] Y.-C. Hu, A. Perrig, and D. Johnson. Ariadne: A secure on-demonad routing protocol for ad
hoc networks. InProceedings of the ACM Conference on Mobile Computing and Networking
(Mobicom), 2002.

23

[14] Y.-C. Hu, D. Johnson, and A. Perrig. SEAD: Secure efficient distance-vector routing for mobile
wireless ad hoc networks. InProceedings of the IEEE Workshop on Mobile Computing Systems
and Applications (WMCSA), 2002.

[15] Y.-C. Hu and A. Perrig. A survey of secure wireless ad hoc routing.IEEE Security and Privacy
Magazine, 2(3):28–39, May/June 2004.

[16] D. Johnson and D. Maltz. Dynamic source routing in ad hoc wireless networks. InMobile Com-
puting, edited by Tomasz Imielinski and Hank Korth, Chapter 5, pages 153–181. Kluwer Aca-
demic Publisher, 1996.

[17] P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. Probabilistic polynomial-time equivalence
and security analysis. InProceedings of Formal Methods’99, Springer LNCS 1708, pages 776–
793, 1999.

[18] W. Mao.Modern Cryptography: Theory and Practice. Prentice Hall PTR, 2004.

[19] J. Marshall. An Analysis of the Secure Routing Protocol for mobile ad hoc network route discov-
ery: using intuitive reasoning and formal verification to identify flaws. MSc thesis, Department
of Computer Science, Florida State University, April 2003.

[20] S. Micali and P. Rogaway. Secure computation. InProceedings of Crypto’91, 1991.

[21] P. Papadimitratos and Z. Haas. Secure routing for mobile ad hoc networks. InProceedings of SCS
Communication Networks and Distributed Systems Modelling Simulation Conference (CNDS),
2002.

[22] A. Perrig, R. Canetti, J. D. Tygar, and D. Song. Efficient authentication and signing of multicast
streams over lossy channels. InProceedings of the IEEE Symposium on Security and Privacy,
May 2000.

[23] B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its application to
secure message transmission. InProceedings of the IEEE Symposium on Security and Privacy,
May 2001.

[24] B. Pfitzmann. Sound idealizations of cryptography for tool-supported proofs (position statement
for panel discussion). InProceedings of the ACM Workshop on Formal Methods in Security
Engineering (FMSE), Oct 2003.

[25] K. Sanzgiri, B. Dahill, B. Levine, C. Shields, and E. Belding-Royer. A secure routing protocol for
ad hoc networks. InProceedings of the International Conference on Network Protocols (ICNP),
2002.

[26] V. Shoup. On formal models for secure key exchange (version 4), revision of IBM Research
Report RZ 3120, November 1999.

[27] M. G. Zapata and N. Asokan. Securing ad hoc routing protocols.Proceedings of the ACM Work-
shop on Wireless Security (WiSe), 2002.

[28] S. Yang and J. Baras. Modeling vulnerabilities of ad hoc routing protocols. InProceedings of
the ACM Workshop on Security of Ad Hoc and Sensor Networks, October 2003.

24

A A note on the implicit deletion of routes

In principle, there are exactly two ways by which the effect of implicit deletion of routes (see the
discussion on the ideal-world model in Subsection 2.1) can be prevented. One of them is when every
node authenticates all incoming messages, and therefore dummy messages injected by the adversary
are foiled immediately by one of the neighbors of the adversary. In this case the dummy messages do
not change the state of any node in the network. The other way is when the intermediate nodes do not
filter route request messages based on a request identifier, but they re-broadcast all requests received
in a round and not heard previously. In this case, a dummy message injected by the adversary does
not prevent the processing of other requests with the same request identifier as the dummy, and hence
no route is deleted implicitly.

The first way is costly to implement, because it needs extensive cryptographic operations and
corresponding security management. The second way is investigated in more details below.

The number of elementary operations required by a machine to perform its tasks in a round basi-
cally depends on the number of input messages to be processed and the number of output messages
to be produced, where the amount of calculations per message is basically determined by the eventual
cryptographic operations (e.g MAC verification, generation, etc.). The number of processed input
messages depends on the communication graph (through the number of neighbors), while the number
of output messages (per node per round) is specified by the protocol. If this latter number is limited by
a constantt, then, obviously, the number of input messages will also be limited bytn, wheren denotes
the number of vertices of the graph. The other extreme is, when the number of output messages is not
limited. In this case, nodes re-broadcast all received route requests after processing them according to
the protocol.

GraphG can be represented by a binary string the length of which is a polynomial in the number
of nodes (e.g., the upper half of the adjacency matrix). The security parameterk, typically, gives the
size of some cryptographic material (e.g., the binary length of a secret MAC key). LetT (G, k) denote
the amount of time required to run the protocol summed over nodes and rounds. The processing time
of a message per node per round is bounded by a polynomialproc(n, k) (typically b · n · kc1 for
some constantsb, c1 > 0). The amount of communicationcom(G) is defined as the total number
of input/output messages summed over all nodes and rounds and averaged over randomly selected
source-target pairs. If the number of output messages per node per round is limited by constant
t, thencom(G) = O(nc2) for some constantc2 > 0. However, for an all-forwarding protocols,
com(G) = O(ec3·n) for some constantc3 > 0 for the majority of randomly selected graphs (i.e., the
total number of forwarded messages exponentially increases in the number nodes).

T (G, k)/n = com(G) · proc(n, k)/n gives the amount of time per node per run (averaged over
source-target pairs). All participants use polynomial time machines, therefore such machines have not
enough resources to run an all-forwarding protocol in a typical communication graph. Consequently
we have to require a finite limit on the number of output messages. Note that an exponential-time
resource could perform a successful brute force attack against cryptographic primitives.

Corollary: In case of polynomial time machines, implicit deletion of routes can only be prevented by
requiring every node to authenticate all incoming messages.

Note: It is a plausible expectation that setting parametert to higher fixed value would decrease the
effect of implicit deletion: the probability that the number of messages arriving to a node remains
belowt increases. It might happen that keepingt as high as the implementation cost can afford could
decrease the effect of implicit deletion to a practically acceptable level, however, we cannot expect
asymptotical negligibility.

25

B An Active-1-2 attack against Ariadne

In this section, we present another attack against Ariadne that can be mounted by an Active-1-2
adversary. Let us consider the configuration illustrated in Figure 9. The adversary has two devices but
only a single corrupted key (identityA). We explain the attack when Ariadne is used with standard
MACs, but it also works if TESLA is used, or when signatures are used and intermediate nodes do not
verify the signature list in the route request.

X
...

A A YV Z Z' W

Figure 9: Part of a configuration where an Active-1-2 attack against Ariadne is possible

X initiates a route discovery process towardY . The first adversarial node receives the following
route request:

msg1 = (rreq, X, Y, id , hV , (V), (macV Y))

A does not append his MAC to the request, instead, it putshV on the MAC list, and re-broadcasts the
following request:

msg2 = (rreq, X, Y, id , hV , (V, A), (macV Y , hV))

Note that intermediate nodes cannot verify the MACs in the request. Note also that MAC functions
based on cryptographic hash functions (e.g., HMAC) output a hash value as the MAC, therefore,hV

looks like a MAC. Hence,Z will not detect the attack, and the following request arrives to the second
adversarial node:

msg3 = (rreq, X, Y, id , H(Z ′, H(Z, hV)), (V, A, Z, Z ′), (macV Y , hV ,macZY ,macZ′Y))

A removesZ andZ ′ from the node list and their MACs from the MAC list6. A can do this in the fol-
lowing way: By noticing identifierA in the accumulated route,A knows that the request passed
through the first adversarial node. By looking at the position of identifierA in the node list,A
will know wherehV is on the MAC list. FromhV , A computeshA = H(A, hV) and a MAC on
(rreq, X, Y, id , hA, (V, A),macV Y), and re-broadcasts the following request:

msg4 = (rreq, X, Y, id , hA, (V, A), (macV Y ,macAY))

As the per-hop hash value and all the MACs are correct inmsg4, Y will receive a correct request, and
returns the following reply:

msg5 = (rrep, Y, X, (V, A, W), macY X)

When the reply reaches the second adversarial node, it will forward the following message toZ ′:

msg6 = (rrep, Y, X, (V, A, Z, Z ′, A, W), macY X)

Note that neitherZ ′ nor Z can verify the MAC inmsg6. In addition, their identifiers are in the route
carried by the reply, and the preceding and following identifiers belong to their neighbors. Therefore,

6If there are more nodes on the route between the two adversarial nodes, then all of them can be removed.

26

both of them forwards the reply. Finally, when the first adversarial node receives the reply, it removes
Z, Z ′, andA from the node list:

msg7 = (rrep, Y, X, (V, A, W), macY X)

In this way,X receives the route reply thatY sent. This means thatX accepts the route(X, V, A, W, Y),
which is non-existent.

27

