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Abstract

The attack on RSA [12] in early 2011 represented a big surprise for the IT security industry. It
showed that major security companies are attractive targets for stealthy attacks because of the important
information they possess. The RSA attack induced an interesting discussion in the security industry
and the research community alike. In particular, researchers at RSA modeled stealthy takeovers of a
resource in their FlipIt game [13]. FlipIt is an attacker-defender game in which the players compete
for the control of a resource, which can correspond to the practical case of updating and compromising
a cryptographic key.

In this paper, we present FlipThem, a generalization of the FlipIt game to multiple resources. In
particular, we consider two control models: In the AND control model, the attacker needs to compromise
all resources to gain access to the target system, whereas in the OR control model, the attacker only needs
to control a single resource to reach her goal. First, we propose combinations of basic, single-resource
FlipIt strategies and study the best choices for the defender and the attacker. Then, we extend these
basic strategies with the Markov strategy class to represent more complex combinations of moves.

Based on our FlipThem model, we can provide a few guidelines for the defenders. First, in the AND
control model, we found that the defender should update her resources independently. On the other
hand, the defender should generally update her resources synchronously in the OR control model. We
also found that periodically updating resources is a good choice against a non-adaptive attacker in the
FlipThem model, however, it suffers from the same weaknesses against an attacker with feedback as in
the basic FlipIt model. Thus, the defender needs to carefully assess the potential information available
to the attacker when choosing her strategy. In summary, our results enable a defender to plan her defense
strategy against a range of attacker strategies.

Keywords: FlipIt, game theory, advanced persistent threats, targeted attacks, attacker-defender games

1 Introduction

In recent years, the world witnessed a series of high-profile targeted attacks against critical infrastructure,
governmental organizations or key security companies. The attack on RSA [12] and several CAs [4, 6, 10]
showed that even the networks of major security companies can be compromised. In case of RSA, the
information on about 40 million SecureID token were stolen and that forced the company to issue a massive
change of this product. These security companies are appealing for targeted attacks, because the credentials
obtained in such attacks are key enablers of subsequent attacks against other high-profile targets. Indeed,
it was later discovered that the stolen information in the RSA breach was later used to attack Lockheed
Martin, a major security defense company [5, 9], although Lockheed Martin claims to have blocked the
attempt using their internal security defense solution [3].
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A few distinguishing properties make the RSA attack and similar targeted attacks stand out from the
sea of malware incidents. First and most importantly, these attacks are politically motivated (e.g. by
cyber-espionage) and hence they incorporated a substantial development effort with many advanced security
properties. Second, these attacks have a small attack footprint, stealthy operation and persist for an extended
duration, in some case for years. In the case of Red October, a malware campaign targeting governmental
and diplomatic organizations, the estimated operation has been at least five years [7]. Because of the long
operation, recent targeted malware attacks were widely referred to as advanced persistent threat (APT).
Third, during the stealthy operation, the persistent malware collects a substantial amount of information
from the target systems. Fourth, the malware typically uses advanced attacking techniques with a combi-
nation of zero-day vulnerabilities cutting-edge cryptography methods to penetrate systems that are highly
protected, maybe use and air-gap to separate critical functions into an internal computer network. Stuxnet,
Duqu and Flame demonstrated that air-gap protection as it was implemented is ineffective. For example,
Stuxnet was capable of infecting computers via a USB key [1] and Flame further developed this capability as
it was able to transmit data out from an isolated network using infected USB keys [1]. Furthermore, Flame
was using advanced cryptographic techniques that allowed it to masquerade as a legitimate MS Windows
update. Gauss [1] used a specific key generation method to render all decryption effort ineffective. The
combination of these advanced techniques makes traditional security defenses (perimeter defenses, anti-virus
products, intrusion detection systems, etc.) ineffective and the malware can exist undetected in spite of their
operation.

These sophisticated targeted attacks were eye-openers to the security industry and intensified the efforts
in targeted malware detection. Both established security companies and a new breed of startups started
to work on detecting zero-day attacks and advanced threats. Researchers at RSA in particular modeled
stealthy targeted attacks using game theory in their FlipIt game [13]. They call their model the FlipIt

game, because the attacker and a defender fight over the control of a resource by ”flipping” it for a certain
cost without being able to observe who is controlling the resource before the flip happens. Thus in this
model, the control over the resource is not guaranteed over an extended time period. This model is ideal
to model a security resource with offline properties, such as the use and misuse of crytpographic keys. We
detail the FlipIt model later in Section 2. In [11], the basic FlipIt game is extended by giving the players
the option to “test” if they control the resource before making a move. The extended model is used to study
periodic security assessments and their positive effects. To the best of our knowledge, there are no other
extensions

In this paper, we extend the original FlipIt game for multiple resources. Existing work [13, 2, 11] studies
a single resource, yet in practice the security of a key asset depends on multiple resources that an attacker
has to compromise at the same time. Also, the severity of an attack typically depends on the number of
compromised assets. This property is the key motivation to build our model, which we call FlipThem.

We make the following contributions in this paper:

• We extend the FlipIt game to multiple resources. To formulate the players’ goals, we introduce two
control models, namely the AND and the OR control model.

• To devise good multi-resource FlipThem strategies, we introduce two combinations of single-resource
FlipIt strategies, namely the independent and the synchronous combination. We study and compare
the two combinations and derive analytical results on the players’ gains.

• To represent more complex multi-resource strategies, we introduce the Markov strategy class. We show
how the best-response Markov strategy can be computed using a linear program. Using this linear
program, we compare various defender strategies based on the resulting benefit for the defender.

• Based on our analytical and numerical results, we provide provide practical recommendations for
defenders.

The organization of this paper is the following: In Section 2, we summarize the FlipIt game and the
most important conclusions drawn in related work. In Section 3, we introduce FlipThem, the generalization
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of FlipIt for multiple resources. In Section 4, we show how single-resource (i.e., basic FlipIt) strategies
can be combined into multi-resource strategies and compute the players’ benefits for various combinations.
In Section 5, we introduce the Markov strategy class and show how a best-response Markov strategy can
be computed using a linear program. In Section 6, we discuss the implications of our results and provide
practical recommendations for defenders. Finally, in Section 7, we outline open research questions.

2 The FlipIt Game

In this section, we first summarize the FlipIt game. We also mention the most important conclusions
drawn in related work. It is important to get familiar with the key concepts and notation of the original
FlipIt game to understand our results for the multiple resources case. Table 1 contains the most important
difference in notation between the original FlipIt game and our FlipThem game.

Table 1: List of Symbols

Symbol Description
FlipIt

ci player i’s flipping cost
βi ” asymptotic benefit rate
γi ” ” gain rate
αi ” ” flip rate
Zi random variable representing the time since the last flip of player i

FlipThem

N number of resources
cir player i’s flipping cost for resource r
αir ” asymptotic flip rate for resource r
Zir random variable representing the time since the last flip of player i on resource r

FlipIt [13, 2] is a two-player, zero-sum game modeling stealthy takeovers, in which both players are
trying take control of a single resource. One of the players is called the defender (denoted by D), while the
other player is called the attacker (denoted by A). The game starts at time t = 0 and continues indefinitely
(that is, t → ∞). In general, time can be both continuous and discrete, with most results being applicable
to both cases. At any time instance, player i may choose to take control of the resource by “flipping” it,
which costs her ci. Then, the resource remains under the control of player i until the other player flips it.
Consequently, at any given time instance, the resource is controlled by either one or the other player. The
interesting aspect of the FlipIt game is that neither of the players knows who is in control. As a result,
the players occasionally make unnecessary flips (i.e., flip the resource when it is already under their control)
since they have to execute their flips “blindly”. For an illustration of the game, see Figure 1.

The state of the game is represented by the time dependent variables CA and CD: CA(t) = 1 when the
attacker controls the resource, and 0 otherwise; CD(t) is vice versa (i.e., CD(t) = 1− CA(t)). Since players
can (and, as we will soon see, should) employ randomized strategies, both CD(t) and CA(t) are random
variables. The variables CD(t) and CA(t) can be also expressed using the times elapsed since the last flips
made by the players as

CD(t) = IZD(t)≤ZA(t) (1)

and
CA(t) = IZD(t)>ZA(t) , (2)

where Zi is the time elapsed since the last flip of player i and I is the indicator function.
Player i’s asymptotic gain rate γi is defined as the average fraction of time the resource is controlled by

player i. Formally,

γi = lim inf
t→∞

∫ t
0
Ci(τ)dτ

t
. (3)
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Figure 1: An illustration of the FlipIt game when flip timing is discrete. Blue and red circles represent the
defender’s and attacker’s flips. Takeovers, that is flips changing the control of the resource, are indicated by
arrows. Blue and red shaded rectangles represent control of the resource by the defender and the attacker,
respectively.

Note that player i’s asymptotic gain is equal to the probability that the resource is controlled by player i at
a random time instance. Formally,

γi = Pr
[
Ci = 1

]
. (4)

Player i’s asymptotic flip rate αi is defined as the average number of flips made by player i in a unit of time.
Formally,

αi = lim inf
t→∞

ni(t)

t
, (5)

where ni(t) denotes the number of flips made by player i up to time t. Finally, player i’s game-theoretic
utility, called player i’s asymptotic benefit βi, is defined as the average fraction of time the resource is
controlled by the player minus the average cost of flips. Formally,

βi = γi − ciαi . (6)

Since takeovers are assumed to be stealthy in the FlipIt game, players do not automatically know when
the other player has last moved. However, when a player makes a move (i.e., flips the resource), she might
be able to receive some feedback. For example, when an attacker compromises a system, she may learn when
the defender last updated the system (that could be attributed as a flip action), and use this information to
plan her next move. In [13], three models are introduced for feedback received by a player during the game:

• Non-adaptive (NA): The player does not receive any feedback when she moves.

• Last move (LM): The player learns the exact time of the other player’s last flip.

• Full history (FH): The player learns the complete history of flips made by the other player.

Besides receiving feedback during the game, a player might also be able to receive information before the
game starts. For example, an attacker might learn the defender’s flip strategy and exploit this knowledge.
In [13], two models are introduced for information received by a player before the game starts:

• Rate of Play (RP): The player knows the asymptotic flip rate α of the other player.

• Knowledge of Strategy (KS): Besides the asymptotic flip rate, the player knows additional information
about the other player’s strategy. For example, the player may know that the other player employs a
renewal process to generate her flip sequence, and may also know the probability density function of
the process. However, it is always assumed that the randomness of the other player’s strategy remains
secret; consequently, the player cannot know which realization of the renewal process will be used.

In our analysis of defender’s strategies in Section 5, we assume a strong attacker model meaning that the
attacker always has the Knowledge of Strategy. We assume that the attacker knows everything, except the
randomness part of the defender’s strategy. This complies with Kerckhoff’s principle on security without
obscurity.
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2.1 Strategies

In this subsection, we summarize the most important strategies and the corresponding results from [13]. For
a detailed analysis of these and some other strategies, we refer the reader to [13].

In this paper, we focus on non-adaptive strategies, which do not require feedback received by the player
during the game. The rationale behind this is that

• defenders rarely know the exact strategies of the attackers (or even the identities of the attackers) in
practice; thus, they have to use strategies that do not rely on feedback,

• defenders can choose randomized strategies that schedule their subsequent flips such that even an FH
attacker has no more advantage than random guessing (see exponential strategy below), and

• in case of high-importance computer systems, attackers might have limited feedback options if they
want to operate stealthily.

A renewal strategy is a non-adaptive strategy in which the time intervals between consecutive flips are
generated by a renewal process. More formally, time intervals between consecutive moves are independent
and identically distributed random variables chosen according to a probability density function f . Renewal
strategies include (but are not limited to) periodic strategies and non-arithmetic renewal strategies, which
we discuss below.

A player can also choose to drop out of the game (i.e., never flip the resource), which is a rational decision
if her expected benefit is less than zero for every strategy choice available to her. This can happen when her
opponent’s flipping cost is much lower and her opponent can afford to flip the resource extremely fast.

Periodic P: A strategy is periodic if the time intervals between consecutive flips are constant. It is
assumed that a periodic strategy has a random phase, that is, the time of the first flip is chosen uniformly
at random from [0, δ]. A periodic strategy with random phase is characterized by the fixed time interval
between consecutive flips, denoted by δ. It is easy to see that the flip rate of a periodic strategy is α = 1

δ .
The periodic strategy of rate α is denoted by Pα , and the class of all periodic strategies is denoted by P.

Periodic is probably the strategy most widely used in practice as most systems require passwords, cryp-
tographic keys, etc. to be changed at regular intervals, for example, every thirty days or every three months.
In [13], it was shown that the periodic strategy strongly dominates all other renewal strategies if the other
player uses a periodic or non-arithmetic renewal strategy. Thus, the periodic strategy is a good choice for
an attacker who plays against a non-adaptive (NA) defender.

However, due to its completely deterministic nature1, the periodic strategy is a very poor choice for
defenders who face an attacker observing the last move of the defender (LM attacker). An LM attacker
can learn the exact time of the defender’s next flip, and schedule her own flip to be immediately after
that. Consequently, if flipping costs are of the same order of magnitude, an attacker can keep the resource
permanently under her control (with negligible interrupts from the defender). Therefore, a defender facing
an LM attacker has two options: if her flipping cost is much lower than that of the attacker, she can flip
fast enough to force the attacker to drop out; otherwise, she has to use a randomized strategy, such as the
following ones.

Non-arithmetic renewal R: A renewal process is called non-arithmetic if there is no positive real number
d > 0 such that interarrival times are all the integer multiples of d. The renewal strategy generated by the
non-arithmetic renewal process with probability density function f is denoted by Rf , and the class of all
non-arithmetic renewal strategies is denoted by R.

The class of non-arithmetic renewal strategies is very broad as there are an infinite number of possible
probability density functions, even for a given flip rate. Of these probability density functions, the exponential
is the most important one in the FlipIt game:

1The random phase ensures that an NA opponent cannot determine the flip times of the player; however, if the opponent
learns the exact time of at least one flip made by the player, she is able to determine the time of every flip.
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Exponential (Poisson) E: An exponential (or Poisson) strategy is a non-arithmetic renewal strategy
generated by a Poisson process. Formally, the interarrival times of the process follow an exponential distri-
bution:

f(τ) = λe−λτ , (7)

where λ is the parameter characterizing the distribution. The flip rate of this strategy is simply α = λ. The
exponential strategy with rate λ is denoted by Eλ, and the class of all exponential strategies is denoted by
E .

The exponential strategy is of key importance, because the exponential distribution is the only memoryless
continuous probability distribution. The memoryless property means that the conditional probability that
we have to wait more than τ1 time before the next flip, given that the time elapsed since the last flip is
τ2, is independent of τ2. This implies that, if a defender uses an exponential strategy, an LM (or even an
FH) attacker cannot learn any information regarding the time of the defender’s next flip. Consequently, the
exponential strategy is a good choice for a defender facing an LM attacker.

3 The FlipThem Game: FlipIt on Multiple Resources

In this section, we generalize the FlipIt game for multiple resources as follows. There are N resources,
identified by integer numbers 1, . . . , N . Each resource can be flipped individually and, as a result, becomes
controlled by the flipping player. The cost of flipping resource r for player i is cir. Each resource has to be
flipped individually; i.e., if a player chooses to flip multiple resources at the same time, she still has to pay
the flipping cost for each resource that she flips.

The goal of the attacker is to control the system of resources, while the goal of defender is to prevent
the attacker from doing so. The criterion for the attacker controlling the system can be defined in multiple
ways. In this paper, we study two prototypical control models (see Figure 2 for an illustration):

• All resources [AND]: The attacker controls the system only if she controls all resources. Formally,

Ci(t) = ZD1 (t) > ZA1 (t) ∧ . . . ∧ ZDN (t) > ZAN (t) . (8)

This models scenarios where the attacker has to compromise every resource (e.g., multiple passwords)
in order to compromise her target.

• One resource [OR]: The attacker controls the system if she controls at least one resource. Formally,

Ci(t) = ZD1 (t) > ZA1 (t) ∨ . . . ∨ ZDN (t) > ZAN (t) . (9)

This models scenarios where the attacker only has to compromise a single resource in order to com-
promise her target.

Similarly to the basic FlipIt game, the players receive benefits proportional to the time that they are
controlling the system minus their costs of flipping the resources.

Notice that, for non-adaptive strategies, the two control models are completely symmetric: the benefit
of one player in one model is equivalent to the benefit of the other player in the other model. Consequently,
for non-adaptive strategies, it suffices to compute the benefits only in one control model (the AND model in
our paper) as the formulas for the other model can be derived readily.

In the following sections, we introduce and study various FlipThem (i.e., multi-resource) strategies,
compute the resulting asymptotic benefits, and discuss which strategies should be chosen by the players.
First, in Section 4, we study combinations of multiple single-resource strategies. Then, in Section 5, we
propose a novel multi-resource strategy class, called the Markov strategy class.
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tResource #1:

tResource #2:

AND:

OR:

Figure 2: An illustration of the FlipThem game with the AND and OR control models (see Figure 1 for
graphical notations).

4 Combining Single-Resource Strategies

An obvious way of finding good multi-resource strategies is to combine multiple single-resource strategies that
are known to perform well in the basic FlipIt game. In this section, we study the two most straightforward
combinations:

• Independent: The player flips each resource independently of the other resources. More specifically, the
player uses N independent single-resource strategies (i.e., processes), one for each resource, with each
one having its own flip rate αi. The asymptotic benefit of a player i using the independent combination
is

βi = γi −
N∑
r=1

cirα
i
r . (10)

• Synchronized: The player always flips all resources together. More specifically, the player uses only one
single-resource strategy (i.e., process) for all of the resources, with a single flip rate αi. The asymptotic
benefit of a player i using the synchronized combination is

βi = γi − αi
N∑
r=1

cir . (11)

Since the AND and OR control models are symmetric, we only compute the asymptotic gains in the
AND model in this paper. Formulas for the asymptotic gains in the OR model can be derived from our
results readily. Furthermore, since the defender’s asymptotic gain γD can be computed from the attacker’s
asymptotic gain γA using the simple formula γD = 1 − γA, we only compute the asymptotic gain of the
attacker.

The proofs of the formulas presented in this section can be found in Appendix A. Here, we first show
the more general results for the R∪ P strategy class (Table 2); then, we analyze the game for the E and P
classes (Table 3 and Figure 3).
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Table 2: Asymptotic Gain for Various Combinations of Single-Resource Strategies

Defender Attacker Attacker’s gain
single-resource
strategy

combination single-resource
strategy

combination γA

R∪ P

independent

R∪ P

independent
∏N
r=1

∫∞
0
fZDr (zr)FZAr (zr)dzr

synchronized

∫∞
0

∏N
r=1

(
1− FZDr (z)

)
fZA(z)dz

synchronized

∫∞
0
fZD (z)FZA(z)dz

independent
∫∞

0

∏N
r=1 FZAr (z)fZD (z)dz

Table 2 shows the attacker’s asymptotic gain for various multi-resource strategies chosen by the defender
and the attacker. The R∪P in the first and third column indicates that we assume the players use combina-
tions of either non-arithmetic renewal (R) or periodic (P) single-resource strategies. The combinations used
by the defender and the attacker are in the second and fourth columns, respectively. Finally, the attacker’s
gain γA for the given combinations is in the fifth column.

To express the attacker’s gain, we use a notion similar to that of the basic FlipIt game, and let Zir be
the random variable representing the time elapsed since player i’s last flip on resource r (Zi if the player
uses a synchronized strategy). We denote the cumulative distribution and density functions of Zir by FZir (z)
and fZir (z). These functions can easily be computed from the generating distribution of any non-arithmetic
renewal strategy (see Appendix A).

It is noteworthy that, when both players use the synchronized combination, the game is equivalent to the
basic FlipIt game (with ci =

∑
r c
i
r): each player uses only one single-resource (i.e., basic FlipIt) strategy,

and the state of all resources is the same as they are always flipped together. Consequently, the formula for
the attacker’s gain is identical to that of [13].

Table 3: Asymptotic Gain for Various Combinations of Exponential and Periodic Strategies

Defender Attacker Attacker’s gain
single-resource
strategy

combination single-resource
strategy

combination γA

E

independent
E

independent
∏N
r=1

αAr
αAr + αDr

synchronized

αA

αA +
∑N
r=1 α

D
r

synchronized
αA

αA + αD

independent

P

independent
∏N
r=1

αAr
αDr

(
1− e−

αDr
αAr

)

synchronized

αA∑N
r=1 α

D
r

(
1− e−

∑N
r=1 α

D
r

αA

)

synchronized
αA

αD

(
1− e−

αD

αA

)
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Table 3 shows the attacker’s asymptotic gain for various combinations of exponential and periodic strate-
gies. We selected these single-resource strategies because they are known to be optimal in some respect
(see Section 2). The table is similar to Table 2, except that the synchronized defender against independent
attacker case is omitted to keep the table simple (it can be found in Appendix A) and because it is not a
good strategy for either of the players.

The table shows that the independent combination is generally better than the synchronized one for the
defender as her flip rates are added together in the former. This can be explained by the AND control model:
since the defender only needs to control at least one resource, her best strategy is to flip one resource at a
time. This forces the attacker to frequently flip all resources back as she cannot know which resources were
flipped by the defender (since the exponential process is memoryless).

The formulas also suggest that the attacker should choose the synchronized combination over the in-
dependent one. When both players use exponential single-resource strategies, the attacker’s gain decays
exponentially as the number of resources increases (∼ k−N ) if she uses the independent combination, but
only according to a power law (∼ N−k) if she uses the synchronized one (given that flip rates stay the
same). When the attacker uses the periodic single-resource strategy, the relationship between the number
of resources and the attacker’s gain is more complicated, but similar.

N

1 2 3 4 5 6 7 8 9 10

γA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) Both players use exponential strategies.

N

1 2 3 4 5 6 7 8 9 10

γA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Defender uses exponential, attacker uses periodic
strategy.

Figure 3: The attacker’s asymptotic gain for various combinations of exponential and periodic strategies and
varying number of resources. Plotted pairs of combination are: both players use independent (solid line),
attacker uses synchronized while defender uses independent (dashed line), and both players use synchronized
(dotted line). In this figure, the flip rates are assumed to be uniform, i.e., αA = αAr = αD = αDr = 1, r =
1, . . . , N .

Figure 3 shows the attacker’s asymptotic gain for various combinations of exponential and periodic strate-
gies and varying number of resources. The plotted pairs of combinations are: both players use independent
strategies (solid line ), attacker uses synchronized while defender uses independent strategy (dashed line

), and both players use synchronized strategies (dotted line ). The flip rates are assumed to be uniform,
i.e., αA = αAr = αD = αDr = 1, r = 1, . . . , N .
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The figure shows that, for the given single-resource classes and parameters, the synchronized combination
strongly dominates the independent one for the attacker. Again, this can be explained by the AND control
model: since the attacker needs to control all resources, it makes to flip them at once. Otherwise, the prob-
ability that all resources become controlled by the attacker is very low. However, by using the synchronized
combination, the attacker loses the freedom of choosing the flipping rate for each resource independently.
Thus, when the heterogeneity of the attacker’s flipping costs is very high, the independent combination may
outperform the synchronized one.

The figure also supports our finding that the independent combination strongly dominates the synchro-
nized one for the defender. Since the player has complete freedom in choosing her flip rates in the independent
combination, this combination is better for the defender even for very heterogeneous flipping costs.

Finally, the figure supports that the periodic strategy dominates the exponential strategy as the attacker’s
gain is higher when she chooses the former.

5 The Markov Strategy Class

In the previous section, we studied how single-resource strategies can be combined into multi-resource strate-
gies. However, such combinations represent only a tiny fraction of the actual multi-resource strategy space
as there are an infinite number of multi-resource strategies that cannot be represented as such simple combi-
nations. For example, a defender might choose to flip one resource periodically, then wait for a time interval
chosen according to an exponential distribution, and then flip another resource. To model such complex
multi-resource strategies, in this section, we introduce the Markov strategy class.

For the clarity of presentation, we derive results for two resources, yet the strategy is applicable for any
number of resources. Furthermore, as opposed to the basic model, we are going to use a discrete model in
this section. Note that the discrete model can be very realistic as players typically do not flip their resources
at arbitrary times. Examples are the change of passwords, cryptographic keys or the application of software
updates. We denote the duration of a time step by ∆. Finally, let us introduce the time-dependent age
functions as follows. The random variable representing the number of time steps elapsed since the last flip
against resource r at time step k is denoted by ZAr (k) and ZDr (k), respectively.

In discrete time, the attacker can perform one of the following actions in a given time slot:

• It does not flip any of the resources,

• it flips one of the resources,

• or, it flips both resources.

If the decision which action to choose depends only on the time elapsed since the previous flips against the
resources, then {(ZA1 (k), ZA2 (k)), k = 0, 1, . . . } defines a Markov process. The behavior of the attacker can
be characterized by the following joint distributions corresponding to the events that can happen in two
consecutive time steps.

p
(0)
i,j = Pr

[
ZA1 (0) = i, ZA2 (0) = j, ZA1 (1) = i+ 1, ZA2 (1) = j + 1

]
, (12)

p
(1)
i,j = Pr

[
ZA1 (0) = i, ZA2 (0) = j, ZA1 (1) = 0, ZA2 (1) = j + 1

]
, (13)

p
(2)
i,j = Pr

[
ZA1 (0) = i, ZA2 (0) = j, ZA1 (1) = i+ 1, ZA2 (1) = 0

]
, (14)

p
(1,2)
i,j = Pr

[
ZA1 (0) = i, ZA2 (0) = j, ZA1 (1) = 0, ZA2 (1) = 0

]
, (15)

where p
(0)
i,j is the probability that no flip takes place in the next time step, p

(1)
i,j (p

(2)
i,j ) is the probability that

there will be a flip against resource 1 or 2, while p
(1,2)
i,j corresponds to the case when both resources will be

flipped in the next time step.
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We denote by Mp the Markov strategy generated by a Markov process with event probabilities p =

{p(0)
i,j , p

(1)
i,j , p

(2)
i,j , p

(1,2)
i,j for i, j = 0, 1, . . . }, and by M the class of all Markov strategies. That is:

M = {Mp | p is the set of event probabilities} . (16)

5.1 Linear Programming Solution

With these definitions and notations we can define a linear program to determine the optimal probabilities

p
(•)
i,j . However, since linear programming problems can only be solved with finite number of variables (in

the general case), we have to restrict the game to a finite time horizon. The last time step we take into
consideration is denoted by T .

The attacker wants to maximize her benefit βA, which is composed of the gain probability and the cost
of the flips against both resources as

βA = max
p

{ T∑
i=0

T∑
j=0

qi,jPr
[
ZD1 > i, ZD2 > j

]
︸ ︷︷ ︸

γA

−cA1
( T∑
i=0

T∑
j=0

p
(1)
i,j + p

(1,2)
i,j

) 1

∆︸ ︷︷ ︸
αA1

−cA2
( T∑
i=0

T∑
j=0

p
(2)
i,j + p

(1,2)
i,j

) 1

∆︸ ︷︷ ︸
αA2

}
,

(17)

where qi,j is the probability that the age of the attack against resource 1 and 2 is i and j, respectively. This
probability can be expressed easily as

qi,j = p
(0)
i,j + p

(1)
i,j + p

(2)
i,j + p

(1,2)
i,j , (18)

thus the subject function given by (17) defines a linear relation with regards to p
(•)
i,j .

As variables p
(•)
i,j must be valid probabilities, we need to apply inequality constraints

p
(0)
i,j > 0, p

(1)
i,j > 0, p

(2)
i,j > 0, p

(12)
i,j > 0 , (19)

and we also need to ensure that the probabilities sum up to 1

T∑
i=0

T∑
j=0

p
(0)
i,j + p

(1)
i,j + p

(2)
i,j + p

(1,2)
i,j = 1 . (20)

Further equality constraints are required to define the possible state transitions, yielding

qi,j = p
(0)
i−1,j−1, for i > 0, j > 0, (21)

q0,j =

T∑
i=0

p
(1)
i,j−1, for j > 0, (22)

qi,0 =

T∑
j=0

p
(2)
i−1,j , for i > 0, (23)

q0,0 =

T∑
i=0

T∑
j=0

p
(1,2)
i,j , (24)

with qi,j given by (18).
Finally, we have to express with appropriate constraints that the age of resource r can not be T unless

it is flipped in the next time step. We get

p
(0)
i,j = 0, for i = T or j = T, (25)

p
(1)
i,j = 0, for j = T, (26)

p
(2)
i,j = 0, for i = T. (27)
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5.2 Results

The linear program defined above helps to answer several questions regarding the FlipThem game. Such
questions are:

• What is the optimal strategy of the attacker given the strategy of the defender?

• What are the optimal flip rates that maximize the benefit at the defender side given that the attacker
always plays an optimal strategy?

• What is the Nash equilibrium of this game?

Solving the optimization problem using linear programming based approach poses some challenges. The
length of the time horizon (T ) is limited by the capabilities of the linear programming solution algorithm.
In our examples, we used the built-in solver of MATLAB with T = 30, which means 900 variables if we have
two resources.2 Note that the number of variables increases polynomially in the length of the time horizon
and exponentially in the number of resources. Specialized software can extend the analysis to optimize a
large number of variables.

In the rest of the section we consider several numerical examples to demonstrate the usefulness of the
model. In each of the examples the attacker is assumed to be Non-adaptive (NA, see Section 2), but she
is also assumed to know the strategy of the defender (KS in Section 2). The defender, however, has no
information about the attacker. For the definitions and rationale behind these modeling choices, see Section
2.

5.2.1 Optimal attack for a given defender strategy

In this example the defender flips the resources according to independent Poisson processes with parameters
αD1 = 1 and αD2 = 3. The joint age function since flipping the resource is then

P (ZD1 > i, ZD2 > j) = e−α
D
1 i∆−α

D
2 j∆ . (28)

The flip costs of the attacker are cA1 = 0.1 and cA2 = 0.05. The discrete problem is solved with T = 30 and
∆ = 0.03.

At this point we take the opportunity to introduce matrices P (0),P (1),P (2) and P (1,2) that help to
visualize and to understand the strategy of the attacker. The entries of these matrices are

[P (0)]i,j =
p

(0)
i,j

p
(0)
i,j + p

(1)
i,j + p

(2)
i,j + p

(1,2)
i,j

, [P (1)]i,j =
p

(1)
i,j

p
(0)
i,j + p

(1)
i,j + p

(2)
i,j + p

(1,2)
i,j

, (29)

[P (2)]i,j =
p

(2)
i,j

p
(0)
i,j + p

(1)
i,j + p

(2)
i,j + p

(1,2)
i,j

, [P (1,2)]i,j =
p

(2)
i,j

p
(0)
i,j + p

(1)
i,j + p

(2)
i,j + p

(1,2)
i,j

. (30)

To simulate the attack, one has to follow the state of the attacker given by the i, j position in the matrix.
In state (i, j), no flips occur with probability [P (0)]i,j , and the next state of the attacker will be (i+1, j+1).
With probability [P (1)]i,j ([P (2)]i,j) only resource 1 (resource 2) is flipped in the next time step, and the
next state of the system is (0, j + 1) ((i+ 1, 0)), respectively. Finally, both resources are flipped in the next
time step with probability [P (1,2)]i,j , followed by a jump to state (0, 0).

In this particular example all the non-zero entries of all four matrices are 1. The structure of the matrices
is depicted in Figure 4, where black squares mean probability 1, and white squares mean probability 0 (matrix
P (1) is not depicted as it has only zero entries). Let us follow the strategy of the attacker starting from the
initial state, which is (0, 0) (bottom left corner of the plots in the figure). The black square located at (0, 0)

2This models, for example, the key update policy of a company over a duration of 2.5 years assuming that updates are
defined by the granularity of a month.
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Figure 4: Optimal attack strategy against two resources flipped according to independent Poisson processes
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Figure 5: Optimal attack strategy against two resources flipped according to independent periodic processes

in matrix P (0) means that no flip occurs in the current time instant with probability 1, and that the next
state will be (1, 1). The black square in (1, 1) means that there will be no flip at the next time step either.
The first flip occurs at time step 9, since matrix P (2) has a probability 1 at position (9, 9). After the flip
the new state of the attacker will be (0, 10). The state of the attacker increases to (1, 11), (2, 12), etc., with
no flips occurring. Finally, at the 20th time step, when the state of the attacker is (20, 11), she flips both
resources (as [P (2)]20,11 = 1) and returns to state (0, 0).

Thus, based on the matrices a periodic attack can be identified with a period of δ = 20. The resources
are not flipped in a synchronized manner. Resource 2 is flipped at the 9th time step from the beginning of
the period, while both resources are flipped at the end of the period.

If the defender flips both resources according to independent periodic strategies, the joint age process is
given by

P (ZD1 > i, ZD2 > j) =

{
(1− αD1 i∆)(1− αD2 j∆), if i∆ < 1/αD1 , j∆ < 1/αD2
0, otherwise.

(31)

When keeping all parameters the same as before, the optimal strategy of the attacker is more complex in
this case (see Figure 5). The period of her strategy is δ = 22 now. It flips solely resource 2 at time step 6
and at time step 13, while it flips both resources at time step 22, which also marks the end of the period.

It is worth noting that the benefit of the attacker is 0.265 in the Poisson, and it is 0.047 in the periodic
case, meaning that periodic defense is less economical to attack (given, of course, that the attacker has no
knowledge on the last move of the defender, thus it is of type NA).
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5.2.2 Determining the optimal flip rates of the defender

The linear program can also be used to determine what the best flip rates of the defender are given that the
attacker applies the optimal strategy. (Notice that we do not calculate the Nash equilibrium in this section,
thus the defender does not take the strategy of the attacker into consideration).

Let us first consider the case when the defender flips his resources according to independent Poisson
processes. The question is what the best choice for the flipping rates is. Assume the flipping costs of the
attacker are cA1 = 0.1 and cA2 = 0.2. We solved the linear program with various combinations of αD1 and αD2 ,
and with two different settings for cD1 and cD2 parameters. The benefit of the attacker and the defender has
been recorded in each case. The results are shown in Figure 6. As the benefit of the attacker is the subject
of optimization in the linear program, the corresponding plot is obviously smooth, and gives higher values
for lower flip rates of the defender. The corresponding gain rates, however, are not smooth. As the benefit of
the defender is in direct relation with the gain rates of the attacker, the plots of the benefit of the defender
are not smooth either. (Note that similar plots in Figure 5. in [13] are not smooth either.) The best benefit
for the defender is 0.222 obtained at αD1 = 0.8, αD2 = 0.7.
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Figure 6: Benefits of the attacker and the defender by various flip rates of the defender (Poisson case).
Darker shades of gray indicates higher benefit.

If the defender flips the resources according to independent periodic processes, higher flip rates are
required to maximize the benefits. The corresponding results are depicted in Figure 7. The optimal flip
rates are αD1 = 0.9, αD2 = 1.2, but also the benefit is higher when compared to the Poisson case, βD = 0.61595.
Observe that the attacker drops out in several cases, as indicated by the white area on the plot of her benefit
and also by the sharp line appearing on the plots of the benefits of the defender.

5.2.3 Calculating the Nash equilibrium

The proposed linear program can be applied to calculate the optimal strategies of both the defender and
the attacker. We can thus obtain a simple iterative algorithm to determine the Nash equilibrium of the
game. This algorithm starts with assigning a random strategy to the defender, followed by the alternating
optimization of the attacker and the defender strategies. In practice, however, we found that this algorithm
does not converge in the vast majority of the cases, but it starts oscillating after a given number of iterations,
suggesting that no Nash equilibrium exists.

6 Discussion and Recommendations

Extending the FlipIt game for multiple resources requires to model the goals of the players as functions of
the compromised resources. We selected the two most intuitive choices, namely the AND and OR control
models, to represent the gains derived from controlling the resources. From the attacker’s viewpoint, the
AND control model represents the case when all resources need to be compromised to get access to the
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Figure 7: Benefits of the attacker and the defender by various flip rates of the defender (periodic case).
Darker shades of gray indicates higher benefit.

desired system. This is similar to the total effort model of security interdependence in the state-of-the-art
[8, 14]. The OR control model represents the case when the compromise of a single resource suffices to get
access. This second choice relates to the weakest link model of security interdependence.

We considered two major classes of multi-resource strategies: combinations of single-resource strategies
(independent processes and synchronized processes) and the Markov class of strategies. Based on our result,
we can formulate a set of recommendations for the defender. These recommendations can readily be used
in practice where the assumptions of the FlipIt game apply, for example, when defining the key update
strategy for a security infrastructure.

• For the AND control model, we found that the defender should use independent flipping strategies.
In practice, this means that cryptograhic keys should not be updated at the same time, but rather
independently.

• On the other hand, for the OR control model, the defender should use synchronous flipping strategies.
In practice, this means to update cryptographic keys synchronously. However, the defender needs to pay
attention to the cost of updating keys in the OR control model. If these costs are very heterogeneous,
the key update processes remain synchronized, but with different update rates across the keys.

• If the attacker is non-adaptive, then the periodic defender strategy is a good choice according to the
numerical results.3 Periodic strategies have multiple advantageous properties such as higher benefits
for the defender, robustness to optimization errors and ease of implementation in practice. However,
periodic strategies perform poorly against an LM attacker [13]. Thus, the defender carefully needs to
assess the potential information available to the attacker when choosing her strategy.

• Surprisingly, the defender’s benefit is not a smooth or monotonous function of her flip rates, which
makes optimization in practice much more difficult. Numerical results imply that this observation holds
for any combination of the periodic and the exponential strategy classes. The major reason behind this
non-monotonous property is that, as the defender’s flip rate reaches a threshold, the attacker drops out
of the game. In realistic cases, the defender’s flipping cost is much lower than the attacker’s flipping
cost, which causes the attacker to drop out.

7 Future Work

In this paper, we present the FlipThem game, the generalization of the FlipIt game for multiple resources.
There are several avenues to further develop this model.

3This complies with the results of the basic FlipIt game for a single resource in [13].

15



First, we solved the case for a non-adaptive attacker modeling a situation with limited defender knowledge
and limited attacker options for feedback (such as highly-protected computer systems). There exist cases
when the attacker can potentially obtain (a limited) feedback from the targeted system and can use this
knowledge to implement a feedback strategy (LM). In the original FlipIt paper [13], the authors introduce
a greedy strategy as a good response for an LM attacker against a defender employing a renewal strategy.
We can generalize this greedy single-resource strategy in the FlipThem game for multiple resources.

In this paper, we extensively study the AND and OR control models and derive results based on them.
There exist cases when the attacker neither has to compromise all resources nor does she reach her goal
by compromising only a single resource. In general, the attacker can have various options to compromise
a subset of the available resources to reach her goal. For example, in order to compromise trust within a
group of ten nodes, an attacker might have to compromise any subset consisting of at least five nodes.

Targeted attacks typically involve the compromise of multiple resources where the attack of a resource is
based on the successful compromise of another resource. An attacker typically has to realize such an attack
path to reach her goal. Attack trees were proposed to represent the collection of possible attack paths for the
attacker. Clearly, these attack paths represent subsets of the available resources and hence the methodology
of playing FlipThem for a subset of resources can be applied to this special case.
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A Asymptotic Gain of the Attacker for Various Combinations of
Single-Resource Strategies

To compute the attacker’s asymptotic gain γA, we rely on that it is equal to the probability of the attacker
being in control at a random time instant. In the AND model, we can write this as

γA = Pr
[
CA = 1

]
= Pr

[
ZD1 > ZA1 ∧ . . . ∧ ZDN > ZAN

]
. (32)

We also use the following two results from [13].
For a non-arithmetic renewal process given by a cumulative distribution function F , the age density fZ (t)

and cumulative distribution FZ (t) functions converge as

lim
t→∞

fZ (t)(z) =
1− F (z)

µ
(33)

and

lim
t→∞

FZ (t)(z) =

∫ z
0

(1− F (x))dx

µ
, (34)

where µ is the expected value of the distribution generating the renewal process.
For a periodic strategy with random phase, the age density and cumulative distribution functions are

fZ (t)(z) =

{
α, z < 1

α

0, z ≥ 1
α

(35)

and

FZ (t)(z) =

{
αz, z < 1

α

1, z ≥ 1
α

. (36)

Since we also want to find the attacker’s gain for the exponential strategy, we have to compute the
age density and cumulative distribution functions for the exponential strategy. The cumulative distribution
function and the mean of the exponential distribution are 1− eλx and λ−1; thus, we have that

lim
t→∞

fZ (t)(z) =
1− (1− e−λz)

λ−1
= λe−λz = αe−αz . (37)

and

lim
t→∞

FZ (t)(z) = λ

∫ z

0

e−λxdx = 1− e−λz = 1− e−αz . (38)

A.1 Both Players Use Non-arithmetic Renewal Strategies

A.1.1 Both Players Use Independent Strategies

γA = Pr
[
ZD1 > ZA1 ∧ . . . ∧ ZDN > ZAN

]
(39)

= Pr
[
ZD1 > ZA1

]
· . . . · Pr

[
ZDN > ZAN

]
(40)

=

∫ ∞
0

fZD1 (z1)FZA1 (z1)dz1 · . . . ·
∫ ∞

0

fZDN (zN )FZAN (zN )dzN (41)

=

N∏
r=1

∫ ∞
0

fZDr (zr)FZAr (zr)dzr . (42)
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For exponential strategies,

γA =

N∏
r=1

∫ ∞
0

αDr e
−αDr zr

(
1− e−α

A
r zr
)
dzr (43)

=

N∏
r=1

(
αDr

∫ ∞
0

e−α
D
r zdz − αDr

∫ ∞
0

e−(αDr +αAr )z)dz

)
(44)

=

N∏
r=1

(
1− αDr

1

αAr + αDr

)
(45)

=

N∏
r=1

αAr
αAr + αDr

. (46)

A.1.2 Synchronized Attack

γA =

∫ ∞
0

Pr
[
z < ZD1 ∧ . . . ∧ z < ZDN

]
fZA(z)dz (47)

=

∫ ∞
0

Pr
[
z < ZD1

]
· . . . · Pr

[
z < ZDN

]
fZA(z)dz (48)

=

∫ ∞
0

N∏
r=1

Pr
[
z < ZDr

]
fZA(z)dz (49)

=

∫ ∞
0

N∏
r=1

(
1− FZDr (z)

)
fZA(z)dz (50)

(51)

For exponential strategies,

γA =

∫ ∞
0

N∏
r=1

(
1− (1− e−α

D
r z)
)
αAe−α

Azdz (52)

= αA
∫ ∞

0

N∏
r=1

(
e−α

D
r z
)
e−α

Azdz (53)

= αA
∫ ∞

0

e−z(α
A+

∑N
r=1 α

D
r )dz (54)

=
αA

αA +
∑N
r=1 α

D
r

. (55)
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A.1.3 Synchronized Defense

γA =

∫ ∞
0

Pr
[
z > ZA1 ∧ . . . ∧ z > ZAN

]
fZD (z)dz (56)

=

∫ ∞
0

Pr
[
z > ZA1

]
· . . . · Pr

[
z > ZAN

]
fZD (z)dz (57)

=

∫ ∞
0

N∏
r=1

Pr
[
z > ZAr

]
fZD (z)dz (58)

=

∫ ∞
0

N∏
r=1

FZAr (z)fZD (z)dz . (59)

For exponential strategies,

γA =

∫ ∞
0

N∏
r=1

(
1− e−α

A
r z
)
αDe−α

Dzdz . (60)

A.1.4 Both Players Use Synchronized Strategies

For this strategy profile, the game is equivalent to the basic FlipIt game. Consequently, we already have
from [13] that

γA =

∫ ∞
0

fZD (z)FZA(z)dz . (61)

For exponential strategies,

γA =

∫ ∞
0

αDe−α
Dz(1− e−α

Az)dz (62)

= αD
∫ ∞

0

e−α
Dzdz − αD

∫ ∞
0

e−(αD+αA)z)dz (63)

= 1− αD 1

αA + αD
(64)

=
αA

αA + αD
. (65)

A.2 Defender Uses Non-arithmetic Renewal, Attacker Uses Periodic Strategy

A.2.1 Both Players Use Independent Strategies

γA =

∫ ∞
0

· · ·
∫ ∞

0

Pr
[
z1 < ZD1 ∧ . . . ∧ zN < ZDN

]
fZA (z1, . . . , zN ) dz1 . . . dzN (66)

=

∫ ∞
0

· · ·
∫ ∞

0

Pr
[
z1 < ZD1

]
· . . . · Pr

[
zN < ZDN

]
fZA1 (z1) · . . . · fZAN (zN ) dz1 . . . dzN (67)

=

∫ ∞
0

· · ·
∫ ∞

0

N∏
r=1

Pr
[
zr < ZDr

] N∏
r=1

fZAr (zr) dz1 . . . dzN (68)

=

∫ 1

αA1

0

· · ·
∫ 1

αA
N

0

N∏
r=1

(
1− FZDr (zr)

) N∏
r=1

αAr dz1 . . . dzN . (69)
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For exponential defender strategy,

γA =

∫ 1

αA1

0

· · ·
∫ 1

αA
N

0

N∏
r=1

e−α
D
r zr

N∏
r=1

αAr dz1 · · · dzN (70)

=

∫ 1

αA1

0

· · ·
∫ 1

αA
N−1

0

αAN

∫ 1

αA
N

0

e−α
D
NzNdzN

N−1∏
r=1

e−α
D
r zr

N−1∏
r=1

αAr dz1 · · · dzN−1 (71)

=

∫ 1

αA1

0

· · ·
∫ 1

αA
N−1

0

αAN
αDN

(
1− e

αDN
αA
N

)
N−1∏
r=1

e−α
D
r zr

N−1∏
r=1

αAr dz1 · · · dzN−1 (72)

=
αAN
αDN

(
1− e

αDN
αA
N

)∫ 1

αA1

0

· · ·
∫ 1

αA
N−1

0

N−1∏
r=1

e−α
D
r zr

N−1∏
r=1

αAr dz1 · · · dzN−1 = . . . (73)

=

N∏
r=1

αAr
αDr

(
1− e−

αDr
αAr

)
. (74)

A.2.2 Synchronized Attack

γA =

∫ ∞
0

Pr
[
z < ZD1 ∧ . . . ∧ z < ZDN

]
fZA(z)dz (75)

=

∫ ∞
0

Pr
[
z < ZD1

]
· . . . · Pr

[
z < ZDN

]
fZA(z)dz (76)

=

∫ ∞
0

N∏
r=1

Pr
[
z < ZDr

]
fZA(z)dz (77)

=

∫ 1

αA

0

N∏
r=1

(
1− FZDr (z)

)
αAdz . (78)

For exponential defender strategy,

γA =

∫ 1

αA

0

N∏
r=1

e−α
D
r zαAdz (79)

= αA
∫ 1

αA

0

e−z
∑
r α

D
r dz (80)

=
αA∑N
r=1 α

D
r

(
1− e−

∑N
r=1 α

D
r

αA

)
. (81)
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A.2.3 Synchronized Defense

γA =

∫ ∞
0

Pr
[
z > ZA1 ∧ . . . ∧ z > ZAN

]
fZD (z)dz (82)

=

∫ ∞
0

Pr
[
z > ZA1

]
· . . . · Pr

[
z > ZAN

]
fZD (z)dz (83)

=

∫ ∞
0

N∏
r=1

Pr
[
z > ZAr

]
fZD (z)dz (84)

=

∫ minr
1

αAr

0

N∏
r=1

(
αAr z

)
fZD (z)dz (85)

=

(
N∏
r=1

αAr

)∫ minr
1

αAr

0

zNfZD (z)dz . (86)

For exponential defender strategy,

γA =

(
N∏
r=1

αAr

)∫ minr
1

αAr

0

zNαDe−α
Dzdz . (87)

A.2.4 Both Players Use Synchronized Strategies

For this strategy profile, the game is equivalent to the basic FlipIt game. Thus,

γA = 1−
∫ ∞

0

FZD (z)fZA(z)dz (88)

= 1−
∫ 1

αA

0

FZD (z)
1

αA
dz . (89)

For exponential defender strategy,

γA = 1−
∫ 1

αA

0

(1− e−α
Dz)

1

αA
dz (90)

= 1−

αA 1

αA
+ αA

e
−α

D

αA − 1

αD

 (91)

=
αA

αD

(
1− e−

αD

αA

)
. (92)
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