
Maptperf: An RFC 8219 compliant tester for benchmarking MAP-T border
relay routers

Ahmed Al-hamadani , Gábor Lencse *

Department of Networked Systems and Services, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Műegyetem rkp. 3.,
Budapest H-1111, Hungary

A R T I C L E I N F O

Keywords:
Benchmarking
Border relay
IPv6 transition technologies
MAP-T
Performance analysis

A B S T R A C T

The Benchmarking Working Group of IETF has published a comprehensive methodology in its RFC 8219 for
benchmarking IPv6 transition technologies. The Mapping of Address and Port using Translation (MAP-T) is one
of the most prominent of these technologies, which is also considered a stateless IPv4-as-a-Service (IPv4aaS)
technology that belongs to the double translation category in RFC 8219. This paper presents the design and
implementation of Maptperf, the World’s first MAP-T benchmarking tool that complies with the guidelines of
RFC 8219 to test the performance of the Border Relay (BR) router device of the technology since it is considered
the focal point of its scalability. As part of the work accomplished in this paper, several design considerations,
operational requirements, and configuration settings are discussed. Then, a detailed description of the imple-
mentation is disclosed, along with various important design decisions that are considered regarding imple-
mentation. Finally, the research findings related to Maptperf for two tests, the performance estimation and the
functional tests, are presented. The performance estimation test proves how fast and robust Maptperf is via an
initial assessment of its performance, while the functional tests include four types of measurements: Throughput,
Frame Loss Rate (FLR), Latency, and Packet Delay Variation (PDV) for MAP-T implementations. For the latter
case, the authors chose a popular MAP-T BR implementation, Jool, whose function is also validated via a testbed
installed for this purpose.

1. Introduction

The Request For Comments (RFC) 8219 [1] was published in 2017 to
standardize a comprehensive methodology for benchmarking the per-
formance of the various IPv6 transition technologies. It classifies them
into four main categories, namely, dual stack, single translation, double
translation, and encapsulation. It is still a feasible demand, at least for
the foreseeable future, to keep providing customers with IPv4 connec-
tivity and services while the network operators maintain IPv6-only core
and access networks. The IPv4-as-a-Service (IPv4aaS) [2] refers to those
transition technologies that facilitate performing this task. The Combi-
nation of Stateful and Stateless Translation (464XLAT) [3], Dual-Stack
Lite (DS-Lite) [4], Lightweight 4 over 6 (Lw4o6) [5], Mapping of
Address and Port with Encapsulation (MAP-E) [6], and Mapping of
Address and Port using Translation (MAP-T) [7] are regarded as the
most prominent IPv4aaS technologies. Considering which technology is
a better choice for a network operator to deploy is viewed as an active
research topic, which can take into consideration various metric factors,

such as performance, security, scalability, etc.
Each of the IPv4aaS technologies has its benefits and drawbacks [2],

but those using translation have the advantage of avoiding the overhead
of encapsulation. Thus, 464XLAT and MAP-T can be considered the
dominant IPv4aaS translation technologies. Although 464XLAT is
commonly used in mobile operator networks, it suffers from scalability
limitations as it deploys stateful NAT64 at its provider-side translator
(PLAT). MAP-T may be considered a better choice in terms of scalability
as it is an entirely stateless technology in the operator network [8].
However, its performance needs to be tested using different kinds of
measurements such as throughput, frame loss rate, latency, and packet
delay variation. In general, benchmarking may also help prevent poor
network performance. One can avoid poor network performance by
using devices the performance of which is undoubtedly sufficient
because it was checked by benchmarking tools. Thus, creating a MAP-T
BR Tester fills a significant gap in the field of benchmarking.

An earlier paper by the authors [9] initiated the effort of developing
the first RFC 8219 [1] compliant MAP-T BR Tester, referred to as

* Corresponding author.
E-mail address: lencse@hit.bme.hu (G. Lencse).

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

https://doi.org/10.1016/j.comnet.2024.111012
Received 23 January 2024; Received in revised form 14 August 2024; Accepted 21 December 2024

Computer Networks 257 (2025) 111012

Available online 24 December 2024
1389-1286/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://orcid.org/0000-0003-4971-2220
https://orcid.org/0000-0001-5552-3237
https://orcid.org/0000-0003-4971-2220
https://orcid.org/0000-0001-5552-3237
mailto:lencse@hit.bme.hu
www.sciencedirect.com/science/journal/13891286
https://www.elsevier.com/locate/comnet
https://doi.org/10.1016/j.comnet.2024.111012
https://doi.org/10.1016/j.comnet.2024.111012
https://doi.org/10.1016/j.comnet.2024.111012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2024.111012&domain=pdf
http://creativecommons.org/licenses/by/4.0/

“Maptperf”, which can measure the performance of this technology,
more specifically, its BR device, usually located in the core network of
the service provider and considered the focal point of its scalability.
However, that paper contained only theoretical considerations, without
any efforts for actual implementation.

This paper documents the design, implementation, initial perfor-
mance estimation, and functional testing of “Maptperf”. To that end, it
presents, in detail, the design principles and considerations, operational
requirements, configuration settings, and implementation constructs
and decisions of the Tester. It validates its performance and functionality
by:

• performing an initial estimation to check whether its performance is
sufficient for benchmarking various MAP-T BR implementations.

• disclosing the results of benchmarking one of the well-known free
software MAP-T implementations called Jool [10].

The rest of this paper is structured as follows. Section 2 introduces
the RFC 8219 [1] benchmarking methodology. Section 3 summarizes
how the MAP-T technology works. Section 4 presents some of the pre-
vious related research work. Section 5 highlights the main operational
elements of the RFC 8219 [1] compliant MAP-T Tester followed by a
description of its scope of measurements. Section 6 discloses the design
principles and considerations of the Tester. Section 7 introduces the
most important design and implementation decisions of the Tester.
Section 8 presents the results of the performance and functional tests
that were run to test the Jool [10] MAP-T implementation. Section 9
discusses future plans for testing, performance benchmarking, and
developing new research solutions. Finally, Section 10 concludes the
paper.

2. The RFC 8219 benchmarking methodology

The Benchmarking Working Group of the Internet Engineering Task
Force (IETF) published RFC 8219 [1] to define a comprehensive meth-
odology for benchmarking the IPv6 transition technologies. First, it
classified these technologies into four categories based on the technol-
ogy used to traverse the core network. A short description for each
category is as follows:

a) Dual Stack: both IPv4 and IPv6 stacks are implemented in the core
network nodes, and for each network flow, the relevant stack will be
used for communication.

b) Single translation: The IPvX packets are translated to IPvY packets and
vice versa at the edge between the IPvX domain and the IPvY core
domain, where X and Y are part of the set {4,6} and X∕=Y.

c) Double translation: The IPvY core domain is connected to two IPvX
domains. Thus, two translations will occur, the first is from IPvX to
IPvY at the edge between the first IPvX domain and the IPvY core
domain and the other one is from IPvY to IPvX at the edge between
the IPvY core domain and the second IPvX domain. However, the
translations will get reversed in the opposite direction of packet
traversal.

d) Encapsulation: The same architecture of the double translation is
followed by the Encapsulation technologies, but instead of trans-
lation, an encapsulation will occur at the edge of one IPvX domain
and the IPvY core domain, and decapsulation will occur at the edge
of the IPvY core domain and the other IPvX domain.

RFC 8219 [1] ignored testing the performance of dual-stack tech-
nologies as this could be fully done by the benchmarking methodology
of the former RFC 2544 [11] and RFC 5180 [12]. In contrast, it focused
on the other three categories of transition technologies.

In practice, the benchmarking methodology of RFC 8219 [1] is based
on two types of test setups: single Device Under Test (DUT) and dual
DUT. The single DUT test setup is used to evaluate the single translation

technologies, where only one DUT is deployed, and it is responsible for
the translation of IPvX packets transmitted by one interface of the Tester
to IPvY packets to be received by another interface of the Tester. Fig. 1
exhibits the single DUT test setup. On the other hand, the dual DUT test
setup is used to evaluate the double translation and encapsulation
technologies, where two DUTs are deployed, one to encapsulate or
translate the IPvX packets transmitted by one interface of the Tester to
IPvY packets and another to decapsulate or translate the IPvY packets
back to IPvX packets to be received by another interface of the Tester.
Fig. 2 exhibits the dual DUT test setup. However, RFC 8219 [1] rec-
ommends additional benchmarking for each DUT separately using the
single DUT test setup to avoid any potential asymmetry in behavior
between the two DUTs, which could be hidden in case one is forming a
bottleneck.

In addition, RFC 8219 [1] recommended following these settings for
the transmitted traffic during benchmarking tests:

• Several different frame sizes should be used when the tests are run.
RFC 8219 [1] recommends these sizes (in bytes): 64, 128, 256, 512,
768, 1024, 1280, 1518, 1522, 2048, 4096, 8192, and 9216.

• The IPv4 addresses used in the tests should be selected according to
the recommendations of section 12 of RFC 2544 [11], whereas the
IPv6 addresses should be selected according to the recommendations
of Section 5 of RFC 5180 [12].

• Background (i.e., native IPv6) traffic should also be transmitted
along with the foreground (translated or encapsulated) traffic, and
distinct proportions of the two types should be generated during
tests.

• Although the arrows in the test setups (Figs. 1 and 2) are shown as
unidirectional, the generated traffic should be bidirectional. How-
ever, one can also generate unidirectional traffic to obtain fine-
grained test results.

• Due to its simplicity, User Datagram Protocol (UDP) is the recom-
mended transport layer protocol to rely on during tests.

For more details about the benchmarking methodology of RFC 8219,
please refer to [1].

3. The MAP-T technology

The MAP-T technology [7] is an IPv4aaS technology that belongs to
the double translation category. It is considered stateless as it performs
only a stateless NAT64 translation in the network of the service
provider.

Two main devices are deployed by this technology to perform its
task: the Customer Edge (CE) and the Border Relay (BR) routers. As
shown in Fig. 3, which exhibits the MAP-T architecture, the CE connects
the subscriber’s IPv4 private network to the IPv6 operator network,
while the BR connects the IPv6 operator network to the native IPv4
public network. A high number of CEs and several BRs may be connected
via an IPv6 network to form a MAP domain, in which all of them will
adhere to the same MAP rules. The service provider can manage single
or multiple MAP domains. The MAP rules in these domains are of three
types, the Basic Mapping Rule (BMR), the Forwarding Mapping Rule

Fig. 1. Single DUT Test Setup [1].

A. Al-hamadani and G. Lencse Computer Networks 257 (2025) 111012

2

(FMR), and the Default Mapping Rule (DMR). These rules will be
introduced later in this section.

The technology establishes public IPv4 address sharing among many
CEs by dividing the source port range of the public IPv4 address into
fixed-sized pools called port sets, which can be distinguished by a unique
ID, and each of these sets will be assigned to a different CE. Therefore,
each CE will be uniquely identified by the provisioned public IPv4
address plus one port set ID (PSID) and will be enforced to use only the
source port numbers within its assigned port set. However, the client
applications in the IPv4 private network can still use the dynamic port
range as they are neither obliged nor aware of the limitation of the port
set. Therefore, they can use any port numbers within the wide range of
ports when they transmit their packets [8]. When the CE receives these
packets, it will first perform a stateful Network Address and Port
Translation (NAPT) [13] function to translate the private IPv4 address
and port number used by the application to the assigned public IPv4
address and a port number within the restricted port set of the CE. Next,
the CE will perform a stateless NAT46 to translate the public IPv4
address and port number into its corresponding IPv6 address and port
number depending on its BMR, hence the address is called the MAP
address, and the CE will, then, send the IPv6 packets via the IPv6
operator network to their destinations. With this stateless NAT46
translation, MAP-T has an advantage over other transition technologies
for eliminating the overhead of “port routing” of the address plus port (A

+ P) approach [14] utilized by these technologies and performs only
normal IPv6 routing in the operator network [8]. The structure of the
MAP address is shown in Fig. 4.

The BMR depends on the following triplet to derive the MAP address:

• Rule IPv6 prefix (including its length): The service provider defines
this prefix to identify all the CEs belonging to the same MAP domain.
Hence, all these CEs will share the same Rule IPv6 prefix.

• Rule IPv4 prefix (including its length): This prefix is provisioned by
the service provider to the CE for usage in communication. Many CEs
could share the same IPv4 prefix but will be uniquely identified by
their IPv4 suffix and PSID.

• Embedded Address (EA) length: Each CE has its own EA, which
represents the concatenated value of both the IPv4 suffix and PSID of
that CE. The number of bits in this EA is expressed by this field.

A CE uses the BMR to construct its own MAP IPv6 address. In addi-
tion to the BMR, the CE utilizes the other two rules, the DMR and the
FMR, to construct the destination IPv6 address of an outgoing packet or
to check the source IPv6 address of an incoming packet. If the destina-
tion is a public IPv4 site that is located “outside” the MAP network and
can be accessed only by way of a BR, the DMR will be used, which
embeds the public IPv4 address of that destination into the destination
IPv6 address of the packet to be sent and preceding this embedded IPv4
address by a specific IPv6 prefix provisioned by the corresponding BR in
the MAP domain. This prefix will help specify the BR that is responsible
for routing to such a destination. Alternatively, if the destination is a
private IPv4 client of another CE, the FMR will be used. This can occur if
and only if the “mesh mode” is activated, i.e., a direct “CE-to-CE” con-
nectivity is possible. The FMR is merely the same as BMR (i.e., it is used
to derive and verify the IPv6 MAP address of another CE). This means
that there will be a specific FMR for each connected domain. To manage
all these cases, the CE will maintain a MAP rule table, where there is a
single entry for the DMR and an FMR entry for each connected domain.
For any sent or received packet, there will be a look-up for a match of the
Rule IPv6 prefix of any of these rule entries, and once it is found, the
other MAP parameters of the rule will be used accordingly.

On the other hand, the BR may be connected to one or more MAP
domains. Similarly, to manage packet forwarding to/from the CEs of any
one of these domains, the BR uses the FMR of the related domain. In
contrast, all IPv6 packets intended to be routed to public IPv4 destina-
tions “outside” the MAP network will be translated using a stateless
NAT64 with the help of the DMR to verify their IPv6 destination address
(for example, by checking if the same prefix of the BR has been included
in the IPv6 destination address) and consequently extract the IPv4
destination address. However, the IPv6 source address will also be
verified by FMR (i.e., the source address of the CE is valid, and the used
source port is within the allowed port range of the CE) and consequently
extract the IPv4 source address. Finally, the packets can get forwarded
through the IPv4 public network to their destinations. It is also note-
worthy that the BR maintains an equivalent MAP rule table with DMR
entries (for sources/destinations outside the MAP network) and FMR
entries (for the connected MAP domains).

All packets flowing in the reverse direction (i.e., they are received
from the public IPv4 network and intended for an application in a pri-
vate IPv4 network) will experience reverse translations with the help of

Fig. 2. Dual DUT Test Setup [1].

Fig. 3. MAP-T Architecture [7].

Fig. 4. MAP address format (based on [10]).

A. Al-hamadani and G. Lencse Computer Networks 257 (2025) 111012

3

the same mapping rules for derivation and verification. Table 1 sum-
marizes the occasions of using each of the MAP rules for both the CE and
the BR depending on whether the manipulated address of the packet is
the source or the destination address during either NAT46 or NAT64
translation.

To have things clearer by an example, suppose a MAP domain with
the BMR triplet (2001:db8:8000::/50, 192.0.2.0/24, 14). The rule IPv4
prefix 192.0.2.0/24 allows an IPv4 suffix of 8 bits in length. The EA bits
are 14 bits. This means that we have PSIDs of 6 bits long. That is, the
number of port sets is 26 = 64, each of which includes 1024 ports. Thus,
the range of possible ports of PSID 0 is 0–1023, PSID 1 is 1024–2047,
and so on. For example, a CE with the suffix 200 (decimal), which is c8h
or 1100 1000b and PSID 10 (decimal), which is 00 1010b, can construct
a MAP address of 2001:db8:8000:320a:0:c000:2c8:a and use it as a
source address along with a source port number from the range
(10,240–11,263) for any IPv6 packet sent into the MAP domain. The
destination address of this packet can be, for example, 64:
ff9b::203.0.113.56, where 64:ff9b::/64 is the DMR prefix and
203.0.113.56 is the embedded IPv4 address of the intended destination.
When the corresponding BR in this domain receives this packet, it will
verify the source port used as valid if selected within the allowed range
of the port set of the sending CE and extract the public IPv4 address from
the MAP address (i.e., 192.0.2.200) to be used as the source address of
the IPv4 packet sent towards the intended destination in the public IPv4
network. The destination address of this IPv4 packet is, of course,
203.0.113.56. Later, any reply packet will follow reverse translations in
the reverse direction.

For more details about the MAP-T technology, please refer to [7].

4. Related work

Few research studies have been conducted in the literature about
benchmarking the performance and scalability of IPv6 transition tech-
nologies, especially MAP-T. This section summarizes the most related
ones to the scope of this paper.

Georgescu et al. [15] discussed the impact of increasing the traffic
load on the overall performance of four IPv4aaS technologies, namely
464XLAT, DS-Lite, MAP-E, and MAP-T, by measuring four performance
metrics: round-trip delay, jitter, throughput, and packet loss. Two sys-
tems were installed to run the experiments. The first one deployed four

servers, each of which ran one of four different functions: the send
function of the Distributed Internet Traffic Generator (D-ITG) [16], the
Customer Edge (CE) of the technology, the Provider Edge (PE) function
of the technology, and the receive function of the D-ITG, while the
second system deployed 31 servers: one for the PE function and 10 for
each of the other three ones. Although the study presented valuable
results in terms of how increasing the load downgrades the performance
of the tested technologies, its experiments tested both the CE and the PE
devices together at the same time, which hides which one could be the
bottleneck. Consequently, the test results could not be accurate enough
and reveal the actual performance of the technology devices. RFC 8219
[1] recommends testing each device independently to overcome such a
situation.

There already exist testing tools developed for benchmarking some
of the IPv6 transition technologies. The second author’s team designed
and implemented an RFC tool for benchmarking domain name servers at
moderate query rates using network address translation between IPv6
clients and IPv4 servers (DNS64) [17], called dns64perf++ [18]. Next,
the second author designed and implemented the world’s first RFC
8219-compliant free software tool for benchmarking Stateless IP/ICMP
Translation (SIIT) technology [19] (also called stateless NAT64), called
siitperf [20]. Later, the original version of siitperf was extended with
some new features.

In [21], the optional use of pseudorandom port numbers recom-
mended by RFC 4814 [22] was added. Then, siitperf was updated to
benchmark stateful NAT64 gateways in [23].

The second author’s team proposed an RFC 8219-compliant bench-
marking method to measure the performance and scalability of the five
most well-known IPv4aaS technologies [24]. This method aims to
simplify the problem of building a specific testing tool for each IPv4aaS
technology using the dual DUT test setup of RFC 8219 [1] by aggre-
gating the CE and the PE of the tested technology into one stateful
system performing a stateful NAT44 (exploiting the fact that, in any of
the five IPv4aaS technologies, at least one device, the CE or the BR,
usually performs a stateful function), hence, using a stateful NAT44
testing tool for benchmarking the resulted system becomes possible. The
proposed method was examined by measuring the performance and
scalability of two Jool implementations, one for 464XLAT and another
for MAP-T technologies. Although the proposed method could be
promising, the study highlighted the limitation of relying only on the

Table 1
The occasions of use of each MAP rule during packet translation.

(a) At the CE

NAT46 NAT64

Source Address & port Destination Address (& port) Source Address (& port) Destination Address & port

BMR
To derive the IPv6 MAP
address of the CE and manage
the source port selection
within its port set

DMR
To derive the IPv4-embedded IPv6
address of the public IPv4 destination
(i.e., outside the MAP network)

DMR
To verify the IPv4-embedded IPv6 address of the
public IPv4 source (i.e., outside the MAP network) via
match with the prefix of the corresponding router and
then to extract the source address of the IPv4 packet

BMR or equivalent FMR
To verify that the IPv6 destination address
matches the IPv6 MAP address of the CE and
whether the destination port is within the
port set of the CE

FMR
(“mesh mode” is active)
To derive the MAP address of another
CE and manage the destination port
selection within the port set of the
counterpart CE

FMR
(“mesh mode” is active)
To verify the MAP address of the corresponding CE via
Rule IPv6 prefix match and whether the source port is
within the port set of the counterpart CE and then to
extract the source address of the IPv4 packet

(b) At the BR

NAT64 NAT46

Source Address & port Destination Address Source Address Destination Address & port

FMR
To verify the sending MAP address of the CE via
Rule IPv6 prefix match and whether the source
port is within the port set of the sending CE and
then to extract the source address of the IPv4
packet

DMR
To verify the IPv4-embedded IPv6 address of the
public IPv4 destination (i.e., outside the MAP
network) via match with the prefix of the BR and
then to extract the destination address of the IPv4
packet

DMR
To derive the IPv4-embedded
IPv6 address of the public IPv4
source (i.e., outside the MAP
network)

FMR
To derive the MAP address of the
receiving CE and manage the
destination port selection within
its port set

A. Al-hamadani and G. Lencse Computer Networks 257 (2025) 111012

4

dual DUT test setup to benchmark these technologies because the CE and
PE devices have asymmetries in their behavior. Therefore, bench-
marking each one individually is crucial. Section 7.6 of the study dis-
cussed potential solutions for some IPv4aaS technologies. For instance,
siitperf can benchmark the customer-side translation (CLAT) and the
provider-side translator (PLAT) devices of 464XLAT separately based on
the single DUT test setup of RFC 8219 [1]. The CLAT uses stateless
NAT46, and the PLAT uses stateful NAT64. Siitperf is capable of
benchmarking both types of translation. However, for MAP-T, siitperf
can only benchmark the CE device if its two subfunctions (stateful
NAT44 and stateless NAT46) can be implemented using two separate
devices. The authors are not aware of any testing tool for benchmarking
the PE device of the MAP-T technology (i.e., the BR). This paper dis-
cusses the development of such a testing tool.

5. Operational elements and scope of measurements

As stated earlier, MAP-T is a double translation technology. This
means that its benchmarking should follow the dual DUT test setup of
the RFC 8219 [1] methodology. However, the two main devices of
MAP-T (i.e., the CE and the BR) are not symmetric in their behavior, thus
they should be benchmarked separately via the single DUT test setup
according to the recommendations of RFC 8219 [1] to have more ac-
curate test results. Since the BR represents the focal point of scalability
in the technology as it, in practice, serves a high number of CEs at the
same time, this paper focuses on benchmarking the BR using the single
DUT test setup.

5.1. Test setup requirements

The following requirements should be met by the test setup to run
according to the guidelines of RFC 8219 [1]:

• The BR is the DUT device, and the Tester is the MAP-T test program
(Maptperf) executed by another device.

• Both devices must have at least two interfaces (called by their side as
“left” and “right”, for simplicity), where one of them is mainly
configured as IPv4 and the other as IPv6. Each side interface must be
connected to its counterpart of the same type of the other device (i.e.,
the IPv4 to IPv4 and the IPv6 to IPv6).

• The IPv4-configured interfaces should also be configurable with IPv6
to be able to forward the non-translated native IPv6 traffic (i.e.,
background traffic).

• The interfaces of the devices must be able to both send and receive
traffic, i.e., bidirectional traffic is possible.

• Although RFC 8219 [1] refers to the possibility of working on
different media types, Ethernet would be the one to be relied on as it
is the dominant media in use. The Ethernet frame sizes that could be
used in testing are 64, 128, 256, 512, 768, 1024, 1280, 1518, 1522,
2048, 4096, 8192, and 9216, taking into consideration the frame
overhead introduced by the NAT64 translation. For example, the
64-byte frames carrying IPv4 datagrams should be replaced by
84-byte frames carrying IPv6 datagrams to compensate for the dif-
ference in length between the IPv6 and IPv4 headers.

• RFC 8219 [1] has conformed to the requirements of its predecessors
(RFC 5180 [12] and RFC 2544 [11]) to use UDP as the transport layer
protocol.

• The interfaces of the devices should be set with IPv4 addresses from
this recommended range 198.18.0.0/15 and/or with IPv6 addresses
from this recommended range 2001:2::/48, as mentioned in section
12 of RFC 2544 [11] and Section 5 of RFC 5180 [12], respectively,
and referenced by RFC 8219 [1].

5.2. Scope of benchmarking measurements

Four types of benchmarking measurements are to be executed by

Maptperf: throughput, FLR, latency, and PDV. Please, refer to section 3.
B of the authors’ earlier paper [9] for a detailed description of each of
them.

6. Design principles and considerations

As stated earlier, benchmarking the BR adheres to the single DUT test
setup of RFC 8219 [1], where the BR acts as the DUT and Maptperf will
be the Tester.

As RFC 8219 [1] requires the possibility to benchmark using bidi-
rectional traffic, the Tester can generate and receive traffic in two di-
rections, called “forward” (the direction of the traffic is the same as that
of the arrows in Fig. 1.) and “reverse”.

In the forward direction, the Tester will simulate one or more CE
device(s) when sending the frames and a public IPv4 destination host or
server when receiving them. The Tester will send IPv6 test frames from
its IPv6 interface and should receive them as translated IPv4 frames
through its IPv4 interface.

In the reverse direction, the Tester will simulate a public IPv4 source
host or server when sending the frames and one or more CE devices
when receiving them. The Tester will send IPv4 test frames from its IPv4
interface and should receive them as translated IPv6 frames through its
IPv6 interface.

The following things should be considered in the design of the Tester:

• The Tester is not to be designed as a commodity Tester that can run
many routine tests at once. Instead, the goal is to build a flexible
measurement tool that is primarily used to get useful research re-
sults. The design of this tool should focus on performing certain
subtasks that give important feedback about the performance of
some network entities.

• The Tester should be resilient enough to work with variable testing
conditions. For instance, it should handle different input parameters
(e.g., frame size, frame rate, percentage of foreground and back-
ground traffic, etc.) and produce results of different types of mea-
surements (e.g., throughput, FLR, latency, PDV).

• The Tester should simulate a high number of CEs because this is the
usual scenario in the production networks. Thus, implementing such
a capability requires setting some configurations and handling a
suitable approach.

• Since the Tester can flow packets in two directions, “forward’’ and
“reverse”, and in each direction, packets are sent and received, it
needs at least four threads. To make things smoother and faster, each
thread should be run on a separate CPU core. Consequently, Mapt-
perf requires at least four CPU cores to measure traffic in both di-
rections plus another core for the main program thread.

• The Tester will not deal with some measurements referred to by RFC
8219 [1] as they are either optional or rarely used, such as Inter
Packet Delay Variation (IPDV), back-to-back frames, system recov-
ery, and reset. The IPDV is significantly essential for getting
fine-grained analysis of delay variation, especially for real-time ap-
plications, but it is marked as “optional” in the RFC 8219 [1], and
alternatively, the PDV will be sufficient for this matter. The
back-to-back frames and system recovery tests demand the Tester to
transmit frames at the maximum rate of the connected media, which
is not possible in practice when commodity servers are used to
execute the test program. The reset test requires the Tester to cause
or sense a DUT reset, but in this case, supplementary hardware would
be needed.

7. Design and implementation decisions

RFC 8219 [1] requires running the benchmarking tests under various
operational conditions to emulate, as much as possible, the environment
of production networks [1]. The primary functions of the Tester will be
implemented as high-performance object-oriented programs that can be

A. Al-hamadani and G. Lencse Computer Networks 257 (2025) 111012

5

run by certain shell scripts accepting argument values that can be
modified to reflect different benchmarking conditions.

7.1. Maptperf in a nutshell

The Maptperf Tester consists of three main test binaries, namely,
Maptperf-tp, which is responsible for measuring the throughput as well
as the FLR, Maptperf-lat, which is responsible for measuring the la-
tency, and Maptperf-pdv, which is responsible for measuring the PDV.
Each of these binaries accepts several varying parameter values, which
change during testing and are provided as command line arguments, and
other fixed parameter values, which stay static without change during
testing and are provided in a specific configuration file. The design and
implementation of Maptperf are inspired by that of siitperf [20]. A brief
description of each configuration file parameter can be found in Ap-
pendix A.1 and a brief description of each command line argument can
be found in Appendix A.2, which also specifies which of the test binaries
should be supplied. The results of each of the four designated mea-
surements (i.e., throughput, FLR, latency, and PDV) are to be obtained
by running a relevant shell script on the Tester device. Each shell script
will execute its related test program, passing the appropriate
command-line argument values to reflect different testing conditions.
The benchmarking scheme of Maptperf is shown in Fig. 5.

The following sections give an overview of the main Maptperf test
binaries to allow for an easy understanding of the following sections.

7.1.1. Maptperf-tp
In this test, a stream of frames is sent from one interface of the Tester

at a frame rate equal to the “frame rate” parameter value and should be
received through the other interface of the Tester. Depending on the
active direction of testing, the frames should also be of a size equal to the
“IPv6 frame size” parameter value or “IPv6 frame size minus 20”, which
represents the IPv4 frame size. Furthermore, “m” number of the frames
should be foreground frames, and “n minus m” (of them) should be
background frames, where “n” and “m” are two relatively prime
numbers. The frames should be translated by and passed through the
DUT. The Tester should keep sending for a time equal to the “test
duration” parameter value and keep receiving them concurrently from
the other interface as long as the “stream timeout” parameter value has
not expired. Then, the test will be passed if and only if the number of
received frames is equal to the number of sent frames for all active

directions.
This test must be repeated at least 20 times with different frame

rates, frame sizes, and proportions of foreground and background frames
(i.e., according to n and m parameter values). The throughput will then
represent the highest frame rate at which the test is “passed”.

When measuring the FLR, it can be calculated as in (1).

FLR(%) =
sent frames − received frames

sent frames
× 100% (1)

7.1.2. Maptperf-lat
In this test, a stream of frames is also sent for both directions by the

Tester with the aforementioned parameter settings at the frame rate
previously determined by the throughput test and within at least 120
seconds duration (see Section 7.2 of RFC 8219 [1]), and they should be
received by the Tester after being translated by and passed through the
DUT. Some of the frames, whose number is specified by the “Tagged”
parameter value, should be tagged, and their indices in the stream are
specified according to the uniform time distribution. The Tester can start
sending the tagged frames once the “first tagged delay” parameter time
value (usually 60 s) expires and for a duration equal to “test duration”
minus “first tagged delay” and can continue receiving the frames as long
as the “stream timeout” parameter time value has not expired.

Now, the Tester should record the timestamp of complete sending
and the timestamp of complete receiving of each tagged frame before
calculating two main quantities, the Typical Latency (TL) and the Worst-
Case Latency (WCL). The TL represents the median of the latencies of all
tagged frames, while the WCL represents the 99.9th percentile of them,
where the frame latency is the difference between the receiving time-
stamp and the sending timestamp.

This test must also be repeated at least 20 times, and consequently,
the median values of all TLs and the median value of all WCLs should be
reported.

7.1.3. Maptperf-pdv
This test program can play two roles: either as a PDV Tester in the

case when the value of its “frame timeout” parameter is 0, or as a precise
throughput Tester, as recommended by [25], in the case when the
“frame timeout” parameter value is greater than 0. In the former case, the
test should be used at the previously determined throughput frame rate,
while the latter one can use any desired “frame rate” parameter value.

Fig. 5. The benchmarking scheme of Maptperf.

A. Al-hamadani and G. Lencse Computer Networks 257 (2025) 111012

6

For both directions, a stream of frames is sent by the Tester and with
the other aforementioned parameter settings for a time equal to the “test
duration” parameter value and received by the Tester after being trans-
lated by and passed through the DUT. Here, the test programwill not tag
any frame, but rather it will set a unique identifier for every sent frame
and record the timestamp of sending and the timestamp of receiving for
each one of them. It keeps receiving the frames as long as the time does
not exceed the “stream timeout” parameter value.

Then, the behavior of the test programwill be identified based on the
“frame timeout” parameter value. If it is 0, the test program will calculate
PDV after reporting all the one-way latencies of all the received frames
(e.g., from the recorded sending and receiving timestamps) and taking
the difference between the 99.9th percentile latency value and the
minimum latency value.

If the value of the “frame timeout” parameter is greater than 0, the test
programwill use it as a frame loss specifier, if the one-way latency of any
single frame has exceeded it, the frame will be marked as “lost”. It
should be noted that this approach of calculating the throughput has a
greater performance penalty as it could consume more memory re-
sources and CPU cycles since it records and handles the sending and
receiving timestamps for every single frame.

This test must also be repeated at least 20 times, and the median
value of all calculated values should be considered.

7.2. Most important implementation decisions

The implementation details of the test program are described in
Appendix A.5. This section provides an overview of the most important
decisions taken during the implementation of the Tester to get correct
and efficient operation.

7.2.1. Pregeneration of template frames
Generating the foreground and background test frames in the

sending cycle could have a significant negative impact on the perfor-
mance of the Tester. Therefore, Maptperf pre-generates buffers of tem-
plate frames (i.e., foreground IPv6 frames for the forward direction,
foreground IPv4 frames for the reverse direction, and background IPv6
frames for both directions). Later in the sending cycle, they are manip-
ulated before sending to make them carry the correct field values (i.e.,
the varying or randomly generated ones that adhere to the MAP rules)
such as the source and destination IP addresses, port numbers, and,
consequently, the checksums (UDP checksum in the case of both IPv4
and IPv6 frames plus IPv4 header checksum in the case of IPv4 frames).
This procedure considerably enhanced the performance of the Tester by
saving significant time during the sending cycle.

7.2.2. The CE MAP array
The construction of the MAP addresses of the simulated CEs in the

sending cycle could significantly affect the performance of the Tester.
Therefore, an individual CE MAP array is built for the sender of each
direction in advance to be ready for use when sending packets in the
given direction.

The size of the CE MAP array is specified by the “NUM-OF-CEs”
parameter in the Maptperf.conf configuration file. Each element of
this array represents a simulated CE and is a struct that binds the
following components:

• The IPv6 MAP address. This address will be used as a source address
for the foreground packets or the background packets to be sent in
the forward direction or as a destination address of the background
packets to be sent in the reverse direction.

• The checksum value of the IPv6 MAP address.
• The public IPv4 address of the simulated CE. This address will be
used as a destination address of the foreground packets to be sent in
the reverse direction.

• The checksum value of the public IPv4 address of the simulated CE.

• The PSID of the port set assigned to the simulated CE. This element
will be used for specifying the range of allowed source port numbers
in testing in the forward direction or the destination port numbers in
testing in the reverse direction for that CE.

The CE elements are pseudorandomly enumerated in the array and
the Tester, then, cycles sequentially over all of them during the sending
loop.

7.2.3. Construction of MAP addresses
The IPv6 MAP address of each simulated CE element in the CE MAP

array will be constructed according to the structure described in Section
3 with the help of the bitwise operations of C++.

As it is correct to have only the BMR rule triplet (Rule IPv6 prefix
with its length, Rule IPv4 prefix with its length, and the EA length)
defined in the Maptperf.conf configuration file as Tester parameters
(i.e., the user will specify only these values concerning the BMR settings
according to its definition), it is, then, the responsibility of the Tester to
calculate all the other values such as the number of IPv4 suffixes, the
number of port sets, the number of ports in each port set, etc. from the
BMR rule triplet, which helps in deriving the IPv6 MAP address.

To set a uniquely pseudorandom MAP address for each simulated CE
element in the CE MAP array, the Tester creates a vector array of the
pseudorandom enumerations of all possible IPv4 suffix and PSID com-
binations based on the Dustenfeld’s random shuffle algorithm [26] in
the NUMA local memory of the sender of each direction. The function
responsible for building the MAP array, then, loops throughout all the
enumerations and sets the MAP address of its elements accordingly.
Naturally, the number of the simulated CEs must not exceed the number
of all possible IPv4 suffix and PSID combinations. It is checked, and a
“Configuration Error” message is given, if the input parameters are
contradicting (i.e., Num − of − CEs > 2BMR− EA− Length).

The selection of the next item in each iteration of Dustenfeld’s
random shuffle algorithm itself is done using the 64-bit Mersenne
Twister pseudorandom number generator (std::mt19937_64), which was
chosen based on the results of Oscar David Arbeláez [27].

7.2.4. Verification of the received frames
The receive function could be implemented in a way that verifies the

translation functionality of the DUT for each received frame, but the
authors did not see this worthwhile as they used other sufficient ways of
verification for the DUT translation such as the MAP-T testbed described
in Section 5 of their earlier paper [9] and the tshark captures of the
traffic of the interfaces of the DUT as explained in Section 8.2. Instead, it
will only validate receiving the 64-bit integer value of the
ASCII-encoded “IDENTIFY” string (in the case of a normal test frame) or
that of the ASCII-encoded “Identify” string (in the case of a latency test
frame) at the first 8 octets of the payload data field of each received
frame. This is sufficient to distinguish the test frames from other frames
in the test network. The advantage gained in this way is to relieve the
receive function from the burden of verifying the correctness of the MAP
address for every single frame received and to obtain a more resilient
and faster function.

7.2.5. Port selection
The source and destination port numbers of the UDP datagrams to be

sent will be selected from certain ranges. These ranges are defined
through “min” and “max” variables in the Tester program, but the values
of only some of them are pre-specified in the configuration file, such as
those described in Appendix A.1, and are similar to those of the exten-
sion of Siitperf [21] without any certain restriction about which
values should be selected. Hence, the entire UDP port space (0–65,535)
can be utilized. In addition, RFC 4814 [22] recommends some other
settings when selecting these values. However, for the foreground
packets, the values of the source port range in the forward direction and
the destination port range in the reverse direction cannot be specified in

A. Al-hamadani and G. Lencse Computer Networks 257 (2025) 111012

7

advance because they will be limited to the range of the port set of the
pseudorandomly enumerated CEs, which will be known only during the
sending cycle. Hence, there are no configuration parameters for these
port ranges in the configuration file. On the other hand, as background
traffic is not part of the MAP-T operation (i.e., not considered as trans-
lated traffic), no such limitation exists for its source and destination
ports. Therefore, both forward and reverse sender threads could use the
same port ranges for the background traffic, which can be set by their
related configuration parameters, which are specified in Appendix A.1.

As for setting the port number value within the port range, the au-
thors follow the approach of Siitperf in its extension [21], which
defines three ways of changing the value in each sending cycle:
Increasing, decreasing, or pseudorandom port number generation. The
former two are not RFC 4814 compliant, but they are computationally
less expensive and could be useful in some cases [23]. The latter uses the
64-bit Mersenne Twister random number generator (std::mt19937_64)
based on the results of Oscar David Arbeláez [27].

7.2.6. Time handling
All timing activities in the Tester binaries are handled using the Time

Stamp Counter (TSC) due to its high precision level yet yielding low
computation cost. This counter is a 64-bit register whose value will be
monotonically incremented based on the CPU clock and can be read by a
single instruction, the RDTSC instruction [28]. However, the input and
output time values in the Tester programwill be handled in “seconds” or
“milliseconds” and converted to/from the TSC unit [20].

All logical cores (“lcore”-s in DPDK terminology) belonging to the
same CPU will share the same TSC readings, but synchronization may be
needed for those belonging to different CPUs. Therefore, the user of the
Tester must make sure that the four cores allocated for the four different
threads of the Tester program as well as the main core running the main
program of the Tester are of the same CPU to satisfy synchronized local
timing among them, and thus, proper execution of the Tester program
[20].

7.2.7. Proportional traffic generation
As stated earlier, RFC 8219 [1] requires sending different pro-

portions of foreground and background traffic during testing; therefore,
the authors follow the same approach of dns64perf++ (when it specified
the proportions of the repetitions of domain names in the test) [29] to
accomplish this in a cost-effective way that is appropriate for a fast
sending cycle and ensures suitable interleaving among the two kinds of
frames. It simply works as follows:

The Tester will send a foreground packet if and only if N% n < m;
otherwise, the Tester will send a background packet. N is the ordinal
number of the packet to be sent and n and m are relatively prime
numbers.

7.2.8. The sending start delay
As the starting of the sender and receiver functions require non-zero

time, originally the “START_DELAY” parameter was defined as a C
preprocessor constant to help in a synchronized start of the sender and
receiver functions [20]. When the Tester is ready to start the sender and
receiver functions, it reads the actual system time, adds the value of this
parameter, and then considers the result as the time when the senders
should start sending frames. (The receivers start receiving as soon as
they are ready for receiving.)

Later this parameter became useful for another purpose. It was
discovered that there was some frame loss at the beginning of the tests
because some parts of the test system, at most, the interfaces of the DUT,
were not ready to receive the sent frames directly after initializing the
interfaces of the Tester. Therefore, the value of the “START_DELAY”
parameter was increased to 2 seconds, and it fixed the issue. It should be
noted that on specific hardware, a further increase of the value of this
parameter (e.g., to 4 seconds) may be necessary [23].

7.2.9. Negative delay reset
As stated in Section 7.1.2, when the Tester measures the delay of the

sent frame, it records the timestamp right after sending the entire frame.
An interrupt might occur at this sensitive time (after sending the frame
and before recording the timestamp via the rte_rdtsc() DPDK API),
which may result in a negative delay value if servicing the interrupt
takes a longer processing time than the one-way delay of the sent frame.
In practice, it has no impact on the latency test of Maptperf-lat as it only
measures the typical value (i.e., TL) and the worst-case value (i.e., WCL).
Adversely, the PDV test could be affected as it relies on the one-way
delay to obtain the measurement result. This phenomenon was first
discovered in [20] and it has been relatively alleviated by resetting the
negative values to “0”. This solution is not perfect as it cannot be applied
to the decreased delay values that are still positive. It could even happen
that an interrupt might cause an incorrect receiving timestamp
recording for a received frame, which may also negatively affect
measuring the PDV correctly because of a wrong 99.9th percentile value.
Whatever the case may be, this seldom-happening phenomenon always
results in an increased PDV value, which is acceptable in the sense that
the real PDV value is certainly less than the one measured by
Maptperf-pdv.

8. Performance and functional tests

As RFC 8219 [1] methodology can be considered the primary
reference for benchmarking IPv6 transition technologies, it includes the
most important metrics for measuring the performance of real-world
IPv6 transition implementations like throughput, latency, PDV, and
FLR. However, one can run different types of experiments to satisfy the
RFC 8219 [1] recommendations mentioned in Section 2 for accurate
measurement of the performance metrics of the MAP-T BR imple-
mentations, such as the following:

• Using different frame sizes.
• Using different proportions of background (i.e., non-translated) and
foreground (i.e., translated) traffic.

• Using unidirectional traffic and not only the bidirectional one for
fine-grained results.

In addition to that, the authors find it crucial to consider also further
parameters regarding testing the scalability of a MAP-T BR device
including:

• Using a different number of served CEs.
• Using a different number of managed MAP domains.
• Using a different number of active CPU cores at the tested MAP-T BR
(i.e., the DUT).

However, covering all these types of tests is out of the scope of this
paper. The main focus of this paper is to validate the design and
implementation of Maptperf by testing its functionality and perfor-
mance through several test experiments that use basic settings (e.g.,
IPv6 frame size of 84 bytes, bidirectional traffic, 100% background
traffic, and so on), which comply with the guidelines of RFC 8219 [1].
Subsequent research work will include such types of tests to show the
practical ability of Maptperf to benchmark MAP-T BR implementations
under various testing conditions to simulate, to some extent, the envi-
ronment of the production network and to comprehensively analyze and
compare the performance of these implementations (e.g., there could be
a discussion on how changing the values of some test parameters could
influence their performance and, eventually, how the poor or high
performances influence the overall performance).

Two types of test systems were installed: a loopback test system and a
Tester-DUT test system. In the loopback test system, the two 10 G
network interfaces of a Dell PowerEdge R720 server were inter-
connected via a direct cable, as shown in Fig. 6, to measure the

A. Al-hamadani and G. Lencse Computer Networks 257 (2025) 111012

8

performance of Maptperf through self-tests. On the other hand, the
Tester-DUT test system was installed by connecting the two 10 G
network interfaces of another Dell PowerEdge R720 server (representing
the Tester) to their counterparts of a Dell PowerEdge R730 server
(representing the DUT), as shown in Fig. 7, to measure the performance
of the DUT.

8.1. Performance test results

As a first step to verify the consistency and stability of Maptperf, in
addition to measuring its performance, the loopback test system was
used. The experiments were run based on the parameter settings of the
Maptperf.conf configuration file whose contents are set as in Ap-
pendix A.3.

Table 2 shows the results of 20 runs of the Maptperf-tp self-test
throughput experiment with one million simulated CEs using bidirec-
tional traffic, different IPv6 frame sizes (IPv4 is 20 bytes less by default),
60 seconds test duration, and 2000 milliseconds stream timeout. While

Table 3 shows the results of the special-case throughput test of
Maptperf-pdv using the same beforementioned configuration settings
and with the frame timeout set to 100milliseconds. The dispersion in the
tables was calculated as in (3).

Dispersion(%) =
99th Percentile − 1st Percentile

Median
× 100% (3)

The results proved that Maptperf is capable of achieving high

throughput rates, compared to the theoretical maximum frame rates
achieved by the Ethernet interface for the tested frame sizes, which are
referred to in Appendix A.1 of RFC 5180 [12]. As a result, the satisfying
performance of Maptperf allows for testing powerful MAP-T BR imple-
mentations without forming a bottleneck in the test. The bottleneck of
the Tester can only happen when the performance of the tested MAP-T
BR implementation is so high that Maptperf cannot handle it. That is,
the MAP-T BR implementation can yield higher throughput rates than
that achieved by Maptperf for the specified settings.

8.2. Functional test results

After verifying that Maptperf was functional with high enough per-
formance through running the performance test experiments, it was
deployed as the Tester program in the Tester-DUT test experiments,
where the MAP-T BR implementation of Jool [10] was run at the DUT.
These experiments were run using the test system shown in Fig. 7 and
based on the parameter settings of the Maptperf.conf configuration
file whose contents are set as in Appendix A.4.

Fig. 6. Loopback test system.

Fig. 7. Tester-DUT test system.

Table 2
Maximum frame rate achieved after 20 runs of Maptperf-tp self-test experiment
for different frame sizes using bidirectional traffic.

IPv6 Frame
size (bytes)

1st Percentile
(fps)

99th
Percentile
(fps)

Median
(fps)

Dispersion
(%)

84 6,894,530 6,904,789 6,903,988 0.14860
148 5,767,693 5,769,558 5,768,792 0.03231
276 4,223,186 4,223,193 4,223,188 0.00016
532 2,264,614 2,264,618 2,264,618 0.00015
1044 1,174,883 1,174,886 1,174,885 0.00025

Table 3
Maximum frame rate achieved after 20 runs of Maptperf-pdv self-test experi-
ment for different frame sizes using bidirectional traffic and 100 milliseconds
frame timeout.

IPv6 Frame
size (bytes)

1st Percentile
(fps)

99th
Percentile
(fps)

Median
(fps)

Dispersion
(%)

84 4,115,233 4,384,315 4,382,761 6.13
148 3,793,831 4,208,788 4,076,424 10.17
276 2,845,845 3,227,117 2,936,304 12.98
532 1,788,122 2,072,432 1,958,553 14.51
1044 1,124,602 1,174,858 1,174,826 4.27

A. Al-hamadani and G. Lencse Computer Networks 257 (2025) 111012

9

Figs. 8 and 9 show the “tshark" capture of the traffic at both in-
terfaces of the DUT, eno1 and eno2, respectively. They prove the proper
use of the MAP rules by the Tester and the valid translation behavior of
the DUT in both directions. For example, packet 5, sent by the Tester and
captured by the eno1 interface (which is an IPv6 interface), carried the
source port number 43,195, which belongs to the port set
(43,008–45,055), identified by the PSID 0× 15 (21 in decimal), which is
part of the MAP address 2001:db8:ce:1815:0:c000:2c0:15. To compute
the port set, it is known from the configuration file that EA length is 13
bits and IPv4 suffix length is 8 bits. These leave 5 bits for the PSID, which
results in 32 port sets, each of 2048 ports. Thus, the PSID 21 (in decimal)
will include all ports from 21 × 2048 = 43,008 to (22 × 2048)-1 =

45,055. Packet 6 is a translated packet outgoing from the eno1 interface
with destination port 43,082, which is in the same previous port set. The
port numbers are different because the Tester pseudorandomly gener-
ated them.

All the following functional test experiments were run 20 times, and
the median value was considered for evaluation. They use bidirectional
traffic and stream timeout of 2000 milliseconds. The test duration in the
throughput, FLR, and PDV test experiments was 60 seconds, while it was
120 seconds in the latency test experiments.

8.2.1. Throughput test results
Table 4 shows the 1st percentile, 99th percentile, and median values

for the maximum frame rate achieved by Jool in the throughput test
using five different IPv6 frame sizes: 84, 148, 276, 532, and 1044 (the
IPv4 frame size is always 20 bytes less). The dispersion value is also
included to show how much the results are consistent or scattered.

The results showed slight performance degradation for Jool as the
test frame size increased. However, it should be noted that the frame

rates shown in the table were the same for both directions. Thus it can be
inferred that the cumulative number of frames being translated and
forwarded by Jool during the test duration was double the outcome of
the rates in the table.

The following two main observations can be concluded from this
test:

• With the use of the same test settings, the throughput rates achieved
byMaptperf in the self-test experiments (i.e., recorded in Table 2) are
much higher than what Jool produced. This highlights the capability
of Maptperf to benchmark MAP-T implementations which are more
powerful than Jool.

• The performance of Jool was relatively stable despite the slight
degradation in the throughput rates against the increase in the test
frame size.

8.2.2. FLR test results
RFC 8219 [1] reused the definition of FLR mentioned in section 26.3

of RFC 2544 [11], which requires starting testing from the maximum
frame rate of the media and then decreasing it (at most) by 10% in each
consecutive step. However, in practice, the actual throughput rate is
much lower than these required starting rates. So, typical rates were
relied on, which could give more meaningful results.

Fig. 10 shows the results of the FLR test when the frame rate starts

Fig. 8. Sample tshark capture at eno1 interface of the DUT (Jool).

Fig. 9. Sample tshark capture at eno2 interface of the DUT (Jool).

Table 4
Throughput of Jool achieved after 20 runs of Maptperf-tp Tester-DUT experi-
ment for different frame sizes using bidirectional traffic.

IPv6 Frame
size (bytes)

1st Percentile
(fps)

99th
Percentile
(fps)

Median
(fps)

Dispersion
(%)

84 845,205 861,149 853,175 1.86
148 837,550 852,638 844,578 1.78
276 829,416 847,028 839,222 2.09
532 826,152 836,357 831,469 1.22
1044 808,159 825,651 813,856 2.14 Fig. 10. FLR of Jool MAP-T BR.

A. Al-hamadani and G. Lencse Computer Networks 257 (2025) 111012

10

from 200,000 frames per second until it reaches 2000,000 frames per
second with an increase of 200,000 frames per second in each consec-
utive run. Each bar in the figure represents the median FLR value for the
corresponding used IPv6 frame size (84, 532, or 1044 bytes).

The results proved that Jool was losing more frames in a relatively
congruent manner when increasing the frame rate regardless of the
frame size. This is rational. As more test frames need to be translated by
Jool, more frames could not be served within the test time limits due to
exceeding the capacity of Jool, and, consequently, more frame loss could
happen.

8.2.3. Latency test results
Table 5 shows the 1st percentile, 99th percentile, median, and

dispersion values for TL and WCL measurements in each direction of the
latency test of Jool using an IPv6 frame size of 84 bytes and a frame rate
of 853,175 frames per second, which is the median frame rate achieved
by the throughput test for that IPv6 frame size. In each experiment, the
number of latency tagged frames was 50,000 and they were sent after
passing 60 seconds from the start of the test according to the uniform
time distribution.

The results proved a consistent performance of Jool in both di-
rections in terms of the delay incurred during the translation of IPv6
packets to IPv4 packets and vice versa using MAP rules. This can be
justified by the fact that the increase of the frame size (whether IPv6 or
IPv4 test frame) occurs in the data field and not in the header, whose size
is fixed regardless of the entire frame size. And since the translation
activity is related to the frame header, its processing time is almost the
same for all frame sizes.

8.2.4. PDV test results
Table 6 shows the 1st percentile, 99th percentile, median, and

dispersion values of the PDV test of Jool in both directions using an IPv6
frame size of 84 bytes and a frame rate of 853,175 frames per second,
which was the median frame rate achieved by the throughput test for
that IPv6 frame size. The frame timeout was set to 0 to enable the PDV
measurement.

Again, the results reflected a relatively congruous performance of
Jool in both directions in terms of the variations of packet delays in each

active direction. The same reason related to the latency test results could
justify the PDV test results.

9. Future work

For the next step of research work, the authors plan to perform the
following main tasks:

• Performing comprehensive benchmarking of Jool and other MAP-T
implementations using Maptperf and comparing their performance
based on their collected test results. This can be done using more
than one testing system to generate a more thorough analysis, (e.g.,
to distinguish the inherent behavior of an implementation from the
effects of a given CPU architecture).

• Using Maptperf as a model for developing benchmarking Testers for
other IPv4aaS technologies, especially the MAP-E technology, which
deploys a similar concept of using MAP rules but with encapsulation
functionality.

• Optimizing the performance of Maptperf even more by adding some
other functionalities, such as the capability to reply to neighbor so-
licitation messages advertised by the DUT to allow dynamic addi-
tions of CE information into the neighbor table. Additionally,
Maptperf-pdv can be extended to measure the optional IPDV
measurement.

10. Conclusions

This paper presented the design and implementation details of a
software Tester for benchmarking the MAP-T BR router based on the
guidelines and recommendations of the IETF RFC 8219 [1]. It also dis-
closed several operational requirements and design considerations that
had been adhered to, followed by a list of design and implementation
decisions that had been taken during the development process.

It can be concluded that the results obtained from the benchmarking
tests proved that Maptperf is reliable and efficient enough to benchmark
various MAP-T implementations, which also gives a solid basis to use it
as a model for developing new Testers for the devices of other IPv6
transition technologies.

CRediT authorship contribution statement

Ahmed Al-hamadani:Writing – review& editing, Writing – original
draft, Visualization, Software, Methodology, Investigation, Conceptu-
alization. Gábor Lencse: Writing – review & editing, Supervision, Re-
sources, Project administration, Methodology, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgement

The resources of NICT StarBED, 2-12 Asahidai, Nomi-City, Ishikawa
923-1211, Japan were used remotely for the original development of
Maptperf.

The authors would like to thank Shuuhei Takimoto for the possibility
of using StarBED.

The authors thank Bertalan Kovács for reading and commenting on
the manuscript.

Table 5
Latency of Jool after 20 runs of Maptperf-lat Tester-DUT experiment for a frame
size of 84 bytes at a frame rate of 853,175 frames per second using bidirectional
traffic.

Forward
TL

ForwardWCL Reverse
TL

Reverse
WCL

1st Percentile
(ms)

0.02266 0.03711 0.02172 0.03604

99th Percentile
(ms)

0.02311 0.04443 0.02216 0.04379

Median (ms) 0.02290 0.03831 0.02197 0.03801
Dispersion (%) 1.99 19.10 2.00 20.38

Table 6
PDV of Jool after 20 runs of Maptperf-pdv Tester-DUT experiment for a frame
size of 84 bytes at a frame rate of 853,175 frames per second using bidirectional
traffic.

Forward PDV Reverse PDV

1st Percentile (ms) 0.02386 0.02175
99th Percentile (ms) 0.02772 0.02776
Median (ms) 0.02538 0.02434
Dispersion (%) 15.23 24.69

A. Al-hamadani and G. Lencse Computer Networks 257 (2025) 111012

11

Appendix

A.1. Description of configuration file parameters

Configuration File
Parameters

Description

Basic Parameters
Tester-L-IPv6 The IPv6 address of the left-side interface of the Tester. It should be in the same subnet as that of the DUT-L-IPv6. It is used only for the background

traffic. For the MAP-T traffic, it is replaced by the MAP address of the simulated CE.
Tester-R-IPv4 The IPv4 address of the right-side interface of the Tester. It should be in the same subnet as that of the DUT-R-IPv4. This will simulate an IPv4 server.
Tester-R-IPv6 The IPv6 address that will be used by the Tester for forwarding the background (i.e., non-translated) traffic via the right-side interface.
Tester-L-MAC The MAC address of the left-side interface of the Tester.
Tester-R-MAC The MAC address of the right-side interface of the Tester.
DUT-L-MAC The MAC address of the left-side interface of the DUT.
DUT-R-MAC The MAC address of the right-side interface of the DUT.
FW-dport-min The lower limit value of the destination port range that can be used by the forward test packets of the foreground traffic.
FW-dport-max The upper limit value of the destination port range that can be used by the forward test packets of the foreground traffic.
RV-sport-min The lower limit value of the source port range that can be used by the reverse test packets of the foreground traffic.
RV-sport-max The upper limit value of the source port range that can be used by the reverse test packets of the foreground traffic.
bg-sport-min The lower limit value of the source port range that can be used by the background test packets.
bg-sport-max The upper limit value of the source port range that can be used by the background test packets.
bg-dport-min The lower limit value of the destination port range that can be used by the background test packets.
bg-dport-max The upper limit value of the destination port range that can be used by the background test packets.
FW-var-sport How the source port numbers vary within their range when sending forward test frames. Possible values are 1 for increase, 2 for decrease, or 3 for

pseudo-randomly change.
FW-var-dport How the destination port numbers vary within their range when sending forward test frames. Possible values are 1 for increase, 2 for decrease, or 3 for

pseudo-randomly change.
RV-var-sport How the source port numbers vary within their range when sending reverse test frames. Possible values are 1 for increase, 2 for decrease, or 3 for

pseudo-randomly change.
RV-var-dport How the destination port numbers vary within their range when sending reverse test frames. Possible values are 1 for increase, 2 for decrease, or 3 for

pseudo-randomly change.
MAP Rules Parameters
NUM-OF-CEs The number of CEs to be simulated in the test.
BMR-IPv6-Prefix The rule IPv6 prefix of the BMR that will be shared among all CEs of the same MAP domain.
BMR-IPv6-Prefx-Length The number of bits in the MAP address that will be reserved for the BMR-IPv6-Prefix.
BMR-IPv4-Prefix The public IPv4 prefix of the BMR that will be shared among all CEs of the same MAP domain.
BMR-IPv4-Prefx-Length The number of bits of the BMR-IPv4-Prefix.
BMR-EA-Length The number of EA-bits (i.e., IPv4 suffix + PSID) in the MAP address.
DMR-IPv6-Prefix The IPv6 prefix of the DMR that will be provisioned by the corresponding BR to the simulated CE.
DMR-IPv6-Prefx-Length The number of bits in the DMR address (i.e., the IPv4-embedded IPv6 address) that will be reserved for the DMR-IPv6-Prefix.
Device Hardware Parameters
CPU-FW-Send The ID of the CPU core to be used by the forward sender thread.
CPU-FW-Receive The ID of the CPU core to be used by the forward receiver thread.
CPU-RV-Send The ID of the CPU core to be used by the reverse sender thread.
CPU-RV-Receive The ID of the CPU core to be used by the reverse receiver thread.
Mem-Channels The number of memory channels to be used.
Network Traffic Parameters
FW A switch flag to enable or disable testing in the forward direction. Possible values are 0 for inactive and 1 for active.
RV A switch flag to enable or disable testing in the reverse direction. Possible values are 0 for inactive and 1 for active.
Promisc A switch flag to enable or disable testing in the promiscuous mode. Possible values are 0 for inactive and 1 for active. It is only set when needed for the

sake of fixing some testing problems (e.g., using incorrect MAC addresses or generating bad checksum).

A.2. Description and usage of command line arguments

Command Line
Argument (unit)

Description Usage

IPv6 frame size (bytes). The size of the IPv6 test frames. It should be set according to section 5.1.1 of RFC 8219 [1]. The IPv4 frames will
automatically be 20 bytes shorter.

Maptperf-tp, Maptperf-lat,
Maptperf-pdv

Frame rate (frames per
second).

The rate at which the test frames will be transmitted. Maptperf-tp, Maptperf-lat,
Maptperf-pdv

Test duration (seconds). The time duration of a single experiment. Section 24 of RFC 2544 [2] specifies the lower limit value to 60, while
Maptperf sets the upper limit value to 3600.

Maptperf-tp, Maptperf-lat,
Maptperf-pdv

Stream timeout
(milliseconds).

How long the Tester should wait before stopping receiving test frames after sending them completely? This parameter
could be compared to the 2000 milliseconds “after sending timeout” recommended by RFC 2544 [2] in its section 23
and complied with RFC 8219 [1] recommendations.

Maptperf-tp, Maptperf-lat,
Maptperf-pdv

n & m (n/a) Two relatively prime numbers to specify the proportions of the foreground and background frames. Maptperf-tp, Maptperf-lat,
Maptperf-pdv

First tagged delay
(seconds)

The delay from the beginning of the test until the sending of the first tagged frame. Section 7.2 of RFC 8219 [1] specifies
the lower limit value to 60, while Maptperf sets the upper limit value to 3600.

Maptperf-lat

Number of tagged frames
(n/a)

The number of tagged frames (i.e., frames with timestamps). Section 7.2 of RFC 8219 [1] requires at least 500, while
Maptperf sets the upper limit value to 50,000.

Maptperf-lat

Frame timeout
(milliseconds)

The frame will be considered “lost” if its delay is greater than the value of this parameter. The value of 0 means that no
per-frame timeout is used.

Maptperf-pdv

A. Al-hamadani and G. Lencse Computer Networks 257 (2025) 111012

12

A.3. The Maptperf.conf configuration file to be used in the self-test

Maptperf.conf (to be used in the self-test)

Basic parameters

Tester-L-IPv6 2001:db8:6::41

Tester-R-IPv4 203.0.113.56

Tester-R-IPv6 2001:db8:42::2 # for background traffic

Tester-L-MAC ec:f4:bb:dd:07:28 # ST eno1

Tester-R-MAC ec:f4:bb:dd:07:2a # ST eno2

DUT-L-MAC ec:f4:bb:dd:07:2a # ST eno2

DUT-R-MAC ec:f4:bb:dd:07:28 # ST eno1

Port selection parameters

Some port range boundary values

FW-dport-min 1 # as RFC4814 recommends

FW-dport-max 49,151 # as RFC4814 recommends

RV-sport-min 1024 # as RFC4814 recommends

RV-sport-max 65,535 # as RFC4814 recommends

bg-dport-min 1 # as RFC4814 recommends

bg-dport-max 49,151 # as RFC4814 recommends

bg-sport-min 1024 # as RFC4814 recommends

bg-sport-max 65,535 # as RFC4814 recommends

How port numbers vary? 1:increase, 2:decrease, 3:random

FW-var-sport 3

FW-var-dport 3

RV-var-sport 3

RV-var-dport 3

MAP rules parameters

NUM-OF-CEs 1000,000 # Number of simulated CEs in the test

BMR-IPv6-Prefix 2001:db8:ce::

BMR-IPv6-Prefix-Length 51

BMR-IPv4-Prefix 192.0.2.0

BMR-IPv4-Prefix-Length 24

BMR-EA-Len 20

DMR-IPv6-Prefix 64:ff9b::

DMR-IPv6-Prefix-Length 96

Device hardware parameters

CPU-FW-Send 2 # Forward Sender runs on this core

CPU-FW-Receive 4 # Forward Receiver runs on this core

CPU-RV-Send 6 # Reverse Sender runs on this core

CPU-RV-Receive 8 # Reverse Receiver runs on this core

Mem-Channels 2

Network traffic parameters

FW 1 #Forward direction (0:inactive ; 1:active)

RV 1 #Reverse direction (0:inactive ; 1:active)

Promisc 0 #Promiscuous mode (0:inactive ; 1:active)

A.4. The Maptperf.conf configuration file to be used in the Tester-dut test

Maptperf.conf (to be used at the MAP-T BR Tester)

Basic parameters

Tester-L-IPv6 2001:db8:6::41

Tester-R-IPv4 203.0.113.56

Tester-R-IPv6 2001:db8:42::2 # for background traffic

Tester-L-MAC ec:f4:bb:ef:98:a0 # Tester eno1

Tester-R-MAC ec:f4:bb:ef:98:a2 # Tester eno2

DUT-L-MAC ec:f4:bb:dc:a6:b8 # DUT eno1

DUT-R-MAC ec:f4:bb:dc:a6:ba # DUT eno2

Port selection parameters

Some port range boundary values

FW-dport-min 1 # as RFC4814 recommends

FW-dport-max 49,151 # as RFC4814 recommends

RV-sport-min 1024 # as RFC4814 recommends

RV-sport-max 65,535 # as RFC4814 recommends

bg-dport-min 1 # as RFC4814 recommends

bg-dport-max 49,151 # as RFC4814 recommends

bg-sport-min 1024 # as RFC4814 recommends

A. Al-hamadani and G. Lencse Computer Networks 257 (2025) 111012

13

bg-sport-max 65,535 # as RFC4814 recommends

How port numbers vary? 1:increase, 2:decrease, 3:random

FW-var-sport 3

FW-var-dport 3

RV-var-sport 3

RV-var-dport 3

MAP rules parameters

NUM-OF-CEs 1000 # Number of simulated CEs in the test

BMR-IPv6-Prefix 2001:db8:ce::

BMR-IPv6-prefix-length 51

BMR-IPv4-Prefix 192.0.2.0

BMR-IPv4-prefix-length 24

BMR-EA-length 13

DMR-IPv6-Prefix 64:ff9b::

DMR-IPv6-prefix-length 96

Device hardware parameters

CPU-FW-Send 2 # Forward Sender runs on this core

CPU-FW-Receive 4 # Forward Receiver runs on this core

CPU-RV-Send 6 # Reverse Sender runs on this core

CPU-RV-Receive 8 # Reverse Receiver runs on this core

Mem-Channels 2

Network traffic parameters

FW 1 #Forward direction (0:inactive ; 1:active)

RV 1 #Reverse direction (0:inactive ; 1:active)

Promisc 0 #Promiscuous mode (0:inactive ; 1:active)

A.5. Implementation details of Maptperf

The object-oriented design of the Tester is fairly simple and flexible. It is implemented in C++ as three main classes: one base class, the Throughput
class, and two derived classes from the throughput class, the Latency and PDV classes. In addition, there exist some other classes that perform certain
tasks for the Tester other than the measurement testing itself such as packing parameters for the send and receive functions. The three main classes call
some DPDK APIs [30] to perform specific functionalities as this user-space networking framework is popular in offering fast packet processing and
efficient buffer management. The source code of Maptperf along with the shell scripts, configuration file, Make file, and other files can be accessed on
GitHub [31].

What follows is a walkthrough of the experiment procedure for each one of the test binaries:

A.5.1. Maptperf-tp experiment workflow
As stated earlier, Maptperf-tp measures throughput. Hence, it mainly depends on the “Throughput” class to accomplish its task. First, the

readConfigFile() member function reads the configuration parameter values stored in the “Maptperf.conf” configuration file and sets their
corresponding data members in the Throughput class accordingly. Then, the readCmdLine() member function reads the command line parameter
values passed by the corresponding throughput script and sets their corresponding data members in the Throughput class accordingly. Once the
parameter values are set, the Maptperf-tp calls the init()member function, which performs the following tasks:

• It initializes the Environment Abstraction Layer (EAL) of DPDK, which provides seamless access to low-level resources such as hardware and
memory through a generic interface that hides the environment specifics from the applications and library functions [32].

• It creates the packet pools of both the sender and the receiver threads for both directions (i.e., forward and reverse) after calculating their
appropriate sizes.

• It installs the TX/RX queues of the network interfaces.
• It checks, configures, and then starts the network interfaces.
• It checks the states of the links.
• It performs some other sanity checks such as whether there is a match between the Non-Uniform Memory Access (NUMA) node of the CPU cores
and of the network interfaces or not and whether the Time Stamp Counters (TSCs) of the deployed CPU cores are synchronized or not.

• It prepares the timing values needed during the test like the number of clock cycles per second, the start time of sending the frames, and the end
time of receiving the frames.

• It calculates essential MAP information required to build the MAP CE array and run the test properly.
• Finally, it calls the buildMapArray()member function to build the MAP CE array (please refer to Section 7.2.2).

Next, the measure()member function packs all the required parameters for the sender threads in all active directions (i.e., forward and reverse)
via instantiating the senderCommonParameters class and the senderParameters class and packs all the required parameters for the receiver
threads in both directions via instantiating the receiverParameters class. The senderCommonParameters class involves those sending pa-
rameters whose values are the same for testing in both directions, whereas the senderParameters class involves those sending parameters whose
values are different. Then, the measure() function launches the sender and receiver threads for the active direction(s) by calling the rte_eal_-
remote_launch() DPDK API twice: one for the sender thread and passing the appropriate sender parameter values to its related send() function
and another for the receiver thread and passing the proper receiver parameter values to its related receive() function.

As a next step, the send() function starts by creating an N-sized buffer of template foreground test packets and another N-sized buffer of template
background test packets, where N is a predefined integer number specifying the number of template test packets in the buffer. The reason behind

A. Al-hamadani and G. Lencse Computer Networks 257 (2025) 111012

14

creating N copies of template test packets and not a single one is to avoid facing the “rewrite after send” problem that has been experienced by
siitperf before. The rte_eth_tx_burst() DPDK API was reporting that some frames were sent, but actually, they were still in their sending
buffer, and it caused the problem that they were rewritten during the preparation of the next frame to send. For more information about this problem,
please refer to section 3.6.5 of [20]. The sender thread will cycle through these N copies of packets. Depending on the active direction, the foreground
frames could be IPv6 packets (in the case of the forward direction) or IPv4 packets (in the case of the reverse direction), while all test packets in the
background buffer are native IPv6. For each of the test packets, any header field that needs to be manipulated before sending the packet will be
accessed by a pointer inside the sending cycle. This includes the following fields:

• The IPv6 source address of the foreground packet to be sent in the forward direction, as this will be the MAP address of the simulated sending CE.
This address will be constructed later in the sending loop of the send() function (i.e., it will be specified dynamically during the sending loop
cycle, as described in Section 7.2.3).

• The destination IPv4 address of the foreground packet which is to be sent in the reverse direction as this will represent one of the targeted receiving
CEs.

• The IPv4 header checksum of the foreground packet in the reverse direction as its calculation depends on the change occurring to the destination
IPv4 address field.

• The UDP source port number, the UDP destination port number, and the UDP checksum fields of all types of test packets as the UDP port numbers
will vary, and the UDP checksum should be changed accordingly. Additionally, the UDP source port number of the foreground packet in the
forward direction will be selected according to the PSID of the simulated CE, and this will only be identified inside the sending loop of the send()
function. This would also be applied to the UDP destination port number of the foreground packet in the reverse direction. As a result of all of that,
the UDP checksum should be recalculated.

The sender thread keeps sending the test frames until their number reaches the (Test duration * Frame rate) value. This number, then, will be
reported to be “grep”-ed by the corresponding measurement script for further processing.

For the test packets to be distinguished from other packets in the test network, the sender thread will insert a verifiable string “IDENTIFY” ASCII-
encoded as a 64-bit integer in the first 8 octets of the UDP data payload. The receive() function will recognize the test frames by checking if this
string exists in the payload of the received UDP datagrams. This makes the receive() function fast and resilient in processing and verifying the
received packets. Similarly, it will report how many test frames are received to be “grep”-ed by the corresponding measurement script for further
processing.

A.5.2. Maptperf-lat experiment workflow
The latency measurement is implemented by the Maptperf-lat test binary. It mainly depends on the “Latency” class, which is derived from the

“Throughput” base class, and its implementation is fairly similar to that of the throughput test. The main differences exist in the send() and receive
() functions. Here, a certain T number of test frames are tagged to be involved in the latency measurement. These latency test frames are also pre-
generated and put into a specific buffer ahead of the sending cycle. To differentiate latency test frames from other frames in the network, including
normal test frames, the sender thread will insert a verifiable string “Identify” ASCII-encoded as a 64-bit integer in the first 8 octets of the UDP data
payload (it is different from the counterpart “IDENTIFY” string of the normal test frames). The first tagged frame will be sent after a delay specified by
the First tagged delay parameter value. Then, the latency test frames are uniformly distributed in the remaining test duration interval.

Once the sender thread sends a specific latency test frame, it records the sending timestamp using the rte_rdtsc() DPDK API. The receiver
thread (through the receive() function), in contrast, will check the first 8 octets of the payload of every received frame to verify if it contains the
“Identify” tag. Whenever the tag is found, the corresponding frame will be validated as a latency test frame, and its receiving timestamp will be
recorded. The recorded sending and receiving timestamps of all latency frames will then be used by the evaluateLatency() function to calculate
the Typical Latency (TL) and the Worst-Case Latency (WCL) for the active direction/s (forward and/or reverse), as described in Section 7.1.2, and
prepare them for collection by the latency shell script for summary evaluation.

A.5.3. Maptperf-pdv experiment workflow
The Maptperf-pdv test binary is based on the “Pdv” class, which is derived from the “Throughput” base class. Here, the sent test frames will not be

tagged, instead, each of themwill have a unique 64-bit integer identifier. The sender thread will insert the value of this identifier (typically, the ordinal
number of the test frame) into the second eight octets of the payload after the “IDENTIFY” string. This identifier will be used later as an index in the
arrays which store the sending and receiving timestamps of the test frames for the evaluation of their delays. Once the sender thread sends a test frame,
it records the timestamp of complete sending and stores it in the element of the sending array whose index is equal to the identifier of the sent frame.
When the receiver thread receives a PDV test frame, it uses its 64-bit identifier as an index in the receiving array to determine where to store the
receiving timestamp.

Next, the evaluatePdv() function reads the value of the “Frame timeout” command line parameter to decide whether to calculate the PDV (if it is
“0”) or to calculate a “special case” throughput (if it is higher than “0”). In the latter case, the delay of each test frame (i.e., the difference between the
receiving timestamp and the sending timestamp values) will be checked individually against the value of the “Frame timeout”, as described in Section
7.1.3. Any frame whose delay value is greater than the “Frame timeout” value will be counted as a “lost” frame.

To calculate the PDV, the evaluatePdv() function will specify two values: the lowest recorded delay (Dmin) and the 99.9th percentile delay
(D99.9th_perc). The PDV will, then, represent their difference as in (2).

PDV = D99.9th perc − Dmin (2)

Finally, the PDV shell script will “grep” the PDV values in the active direction(s) for summary evaluation.

A. Al-hamadani and G. Lencse Computer Networks 257 (2025) 111012

15

Data availability

No data was used for the research described in the article.

References

[1] M. Georgescu, L. Pislaru, and G. Lencse, “Benchmarking methodology for IPv6
transition technologies”, IETF RFC 8219, Aug. 2017, doi:10.17487/RFC8219.

[2] G. Lencse, J.P. Martinez, L. Howard, R. Patterson, and I. Farrer, “Pros and cons of
IPv6 transition technologies for IPv4-as-a-service (IPv4aaS)”, IETF RFC 9313, Oct.
2022, doi:10.17487/RFC9313.

[3] M. Mawatari, M. Kawashima, and C. Byrne, “464XLAT: combination of stateful and
stateless translation”, IETF RFC 6877, Apr. 2013, doi:10.17487/RFC6877.

[4] A. Durand, R. Droms, J. Woodyatt, and Y. Lee, “Dual-stack lite broadband
deployments following IPv4 exhaustion”, IETF RFC 6333, 2011, doi:10.1748
7/RFC6333.

[5] Y. Cui, Q. Sun, M. Boucadair, T. Tsou, Y. Lee et al., “Lightweight 4over6: an
extension to the dual-stack lite architecture”, IETF RFC 7596, 2015, doi:10.1748
7/RFC7596.

[6] E.O. Troan, W. Dec, X. Li, C. Bao, S. Matsushima et al., “Mapping of address and
port with encapsulation (MAP-E)”, IETF RFC 7597, 2015, doi:10.17487/RFC7597.

[7] X. Li, C. Bao, E.W. Dec, O. Troan, S. Matsushima et al., “Mapping of address and
port using translation (MAP-T)”, IETF RFC 7599, 2015, doi:10.17487/RFC7599.

[8] G. Lencse, N. Nagy, Towards the scalability comparison of the Jool implementation
of the 464XLAT and of the MAP-T IPv4aaS technologies, Int. J. Commun. Syst. 35
(18) (2022) e5354, https://doi.org/10.1002/dac.5354.

[9] A. Al-hamadani, G. Lencse, Towards implementing a software tester for
benchmarking MAP-T devices, Infocommun. J. 14 (3) (2022) 45–54, https://doi.
org/10.36244/ICJ.2022.3.6.

[10] Jool. “Jool MAP-T Summary”; 2024 https://www.jool.mx/en/map-t.html.
[11] S. Bradner, and J. McQuaid, “Benchmarking methodology for network

interconnect devices”, IETF RFC 2544, Mar. 1999, doi:10.17487/RFC2544.
[12] C. Popoviciu, A. Hamza, G.V. d. Velde, and D. Dugatkin, “IPv6 benchmarking

methodology for network interconnect devices”, IETF RFC 5180, May. 2008,
doi:10.17487/RFC5180.

[13] P. Srisuresh, and M. Holdrege, “IP network address translator (NAT) terminology
and considerations”, IETF RFC 2663, 1999, doi:10.17487/RFC2663.

[14] R. B. (ed.), “The Address plus Port (A+P) approach to the IPv4 address shortage”,
IETF RFC 6346, 2011, doi:10.17487/RFC6346.

[15] M. Georgescu, H. Hazeyama, T. Okuda, Y. Kadobayashi, S. Yamaguchi,
Benchmarking the load scalability of IPv6 transition technologies: a black-box
analysis, in: Proceedings of the IEEE Symposium on Computers and
Communication (ISCC), 2015, pp. 329–334, https://doi.org/10.1109/
ISCC.2015.7405536.

[16] S. Avallone, S. Guadagno, D. Emma, A. Pescape, G. Ventre, D-ITG distributed
Internet traffic generator, in: Proceedings of the First International Conference on
the Quantitative Evaluation of Systems, 2004, pp. 316–317, https://doi.org/
10.1109/QEST.2004.1348045.

[17] M. Bagnulo, A. Sullivan, P. Matthews, and I.V. Beijnum, “DNS64: DNS extensions
for network address translation from IPv6 clients to IPv4 servers”, IETF RFC 6147,
Apr. 2011, doi:10.17487/RFC6147.

[18] G. Lencse, D. Bakai, Design and implementation of a test program for
benchmarking DNS64 servers, IEICE Trans. Commun. 100 (6) (2017) 948–954,
https://doi.org/10.1587/transcom.2016EBN0007.

[19] C. Bao, X. Li, F. Baker, T. Anderson, F. Gont, IP/ICMP Translation Algorithm, IETF
RFC (2016) 7915, https://doi.org/10.17487/RFC7915.

[20] G. Lencse, Design and implementation of a software tester for benchmarking
stateless NAT64 gateways, IEICE Trans. Commun. E104-B (2) (2021) 128–140,
https://doi.org/10.1587/transcom.2019EBN0010.

[21] G. Lencse, Adding RFC 4814 random port feature to siitperf: design,
implementation and performance estimation, Int. J. Adv. Telecommun.
Electrotech. Signals Syst. 9 (3) (2020), https://doi.org/10.11601/ijates.v9i3.291.

[22] D. Newman, and T. Player, “Hash and stuffing: overlooked factors in network
device benchmarking”, IETF RFC 4814, Mar. 2007, doi:10.17487/RFC4814.

[23] G. Lencse, Design and implementation of a software tester for benchmarking
stateful NATxy gateways: theory and practice of extending siitperf for stateful tests,
Comput. Commun. 192 (2022) 75–88, https://doi.org/10.1016/j.
comcom.2022.05.028.

[24] G. Lencse, Á. Bazsó, Benchmarking methodology for IPv4aaS technologies:
comparison of the scalability of the Jool implementation of 464XLAT and MAP-T,
Comput. Commun. 219 (2024) 243–258, https://doi.org/10.1016/j.
comcom.2024.03.007.

[25] G. Lencse, K. Shima, Performance analysis of SIIT implementations: testing and
improving the methodology, Comput. Commun. 156 (2020) 54–67, https://doi.
org/10.1016/j.comcom.2020.03.034.

[26] R. Durstenfeld, Algorithm 235: random permutation, Commun. ACM 7 (7) (1964)
420, https://doi.org/10.1145/364520.364540.

[27] O.D. Arbeláez. “How competitive are C++ standard random number generators”;
2024 https://medium.com/@odarbelaeze/how-competitive-are-c-standard-rando
m-number-generators-f3de98d973f0.

[28] Intel. “Intel 64 and IA-32 architectures software developer’s manual," Volume 2B:
instruction Set Reference, M-U, Order Number: 253667-060US”; 2024 http
s://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia
-32-architectures-software-developer-vol-2b-manual.pdf.

[29] G. Lencse, Enabling dns64perf++ for benchmarking the caching performance of
DNS64 servers, J. Comput. Inf. Technol. 26 (1) (2018) 19–28, https://doi.org/
10.20532/cit.2018.1004078.

[30] DPDK. “DPDK documentation”; 2024 https://core.dpdk.org/doc/.
[31] A. Al-Hamadani. “Maptperf: an RFC 8219 Compliant MAP-T BR Tester written in C

++ using DPDK ” 2024; https://github.com/alhamadani-ahmed/Maptperf_v1.3.
[32] DPDK, “Programmer’s guide-environment abstraction layer” 2024; https://doc.

dpdk.org/guides/prog_guide/env_abstraction_layer.html#environment-abstraction
-layer.

Ahmed Al-hamadani graduated from the Florida Institute of
Technology (FIT), the USA in 2013 with an MSc in Computer
Science. Since then, he has worked as a lecturer at the
Department of Computer Engineering, University of Mosul,
Iraq. Ahmed has been awarded the Stipendium Hungaricum
scholarship to do his Ph.D. in informatics at the Budapest
University of Technology and Economics (BME), Hungary. He
started his study in the Department of Networked Systems and
Services in September 2020. His research field is the bench-
marking and performance analysis of IPv6 Transition
Technologies.

Gábor Lencse received his M.Sc. and Ph.D. degrees in com-
puter science from the Budapest University of Technology and
Economics, Budapest, Hungary in 1994 and 2001, respectively.
He has been working for the Department of Telecommunica-
tions, Széchenyi István University, Győr, Hungary since 1997.
Now, he is a Professor. He has also been a part-time Senior
Research Fellow at the Department of Networked Systems and
Services, Budapest University of Technology and Economics
since 2005. His research interests include the performance and
security analysis of IPv6 transition technologies. He is a co-
author of RFC 8219 and RFC 9313.

A. Al-hamadani and G. Lencse Computer Networks 257 (2025) 111012

16

http://10.17487/RFC8219
http://10.17487/RFC9313
http://10.17487/RFC6877
http://10.17487/RFC6333
http://10.17487/RFC6333
http://10.17487/RFC7596
http://10.17487/RFC7596
http://10.17487/RFC7597
http://10.17487/RFC7599
https://doi.org/10.1002/dac.5354
https://doi.org/10.36244/ICJ.2022.3.6
https://doi.org/10.36244/ICJ.2022.3.6
https://www.jool.mx/en/map-t.html
http://10.17487/RFC2544
http://10.17487/RFC5180
http://10.17487/RFC2663
http://10.17487/RFC6346
https://doi.org/10.1109/ISCC.2015.7405536
https://doi.org/10.1109/ISCC.2015.7405536
https://doi.org/10.1109/QEST.2004.1348045
https://doi.org/10.1109/QEST.2004.1348045
http://10.17487/RFC6147
https://doi.org/10.1587/transcom.2016EBN0007
https://doi.org/10.17487/RFC7915
https://doi.org/10.1587/transcom.2019EBN0010
https://doi.org/10.11601/ijates.v9i3.291
http://10.17487/RFC4814
https://doi.org/10.1016/j.comcom.2022.05.028
https://doi.org/10.1016/j.comcom.2022.05.028
https://doi.org/10.1016/j.comcom.2024.03.007
https://doi.org/10.1016/j.comcom.2024.03.007
https://doi.org/10.1016/j.comcom.2020.03.034
https://doi.org/10.1016/j.comcom.2020.03.034
https://doi.org/10.1145/364520.364540
https://medium.com/@odarbelaeze/how-competitive-are-c-standard-random-number-generators-f3de98d973f0
https://medium.com/@odarbelaeze/how-competitive-are-c-standard-random-number-generators-f3de98d973f0
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-2b-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-2b-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-2b-manual.pdf
https://doi.org/10.20532/cit.2018.1004078
https://doi.org/10.20532/cit.2018.1004078
https://core.dpdk.org/doc/
https://github.com/alhamadani-ahmed/Maptperf_v1.3
https://doc.dpdk.org/guides/prog_guide/env_abstraction_layer.html#environment-abstraction-layer
https://doc.dpdk.org/guides/prog_guide/env_abstraction_layer.html#environment-abstraction-layer
https://doc.dpdk.org/guides/prog_guide/env_abstraction_layer.html#environment-abstraction-layer

	Maptperf: An RFC 8219 compliant tester for benchmarking MAP-T border relay routers
	1 Introduction
	2 The RFC 8219 benchmarking methodology
	3 The MAP-T technology
	4 Related work
	5 Operational elements and scope of measurements
	5.1 Test setup requirements
	5.2 Scope of benchmarking measurements

	6 Design principles and considerations
	7 Design and implementation decisions
	7.1 Maptperf in a nutshell
	7.1.1 Maptperf-tp
	7.1.2 Maptperf-lat
	7.1.3 Maptperf-pdv

	7.2 Most important implementation decisions
	7.2.1 Pregeneration of template frames
	7.2.2 The CE MAP array
	7.2.3 Construction of MAP addresses
	7.2.4 Verification of the received frames
	7.2.5 Port selection
	7.2.6 Time handling
	7.2.7 Proportional traffic generation
	7.2.8 The sending start delay
	7.2.9 Negative delay reset

	8 Performance and functional tests
	8.1 Performance test results
	8.2 Functional test results
	8.2.1 Throughput test results
	8.2.2 FLR test results
	8.2.3 Latency test results
	8.2.4 PDV test results

	9 Future work
	10 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	Appendix
	A.1 Description of configuration file parameters
	A.2 Description and usage of command line arguments
	A.3 The Maptperf.conf configuration file to be used in the self-test
	A.4 The Maptperf.conf configuration file to be used in the Tester-dut test
	A.5 Implementation details of Maptperf
	A.5.1 Maptperf-tp experiment workflow
	A.5.2 Maptperf-lat experiment workflow
	A.5.3 Maptperf-pdv experiment workflow

	Data availability
	References

