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A B S T R A C T

The Benchmarking Working Group (BMWG) of the Internet Engineering Task Force (IETF) has defined a series of Requests for Comments (RFC) to standardize the
benchmarking of network interconnect devices (e.g., bridges, routers, different IPv6 transition solutions). The paper points out that there are cases where the
performance results are significantly different when a single IP address pair or multiple IP addresses are used. The cause of this phenomenon is rooted in the recent
hardware and software advancements: Receive Side Scaling (RSS) makes it possible to distribute packet processing workload over multiple CPU cores. However, this
may be implemented in two ways: the first way only includes the IP addresses into the hash function used to distribute the workload among the CPU cores, whereas
the second one also includes the port numbers. RFC 4814 proposed an excellent solution for the second case by recommending the usage of pseudorandom port
numbers during benchmarking; however, the first case was not handled properly, because no explicit recommendation was given regarding the usage of multiple IP
addresses. This paper attempts to bridge this methodological gap; a practical solution is proposed for using pseudorandom IP addresses in various scenarios including
the benchmarking of IPv4 and IPv6 routers and Network Address Translation from IPv6 Clients to IPv4 Servers (stateful NAT64) gateways. Its feasibility is shown by
disclosing the details of its implementation in siitperf. Then the proposed solution is validated by both stateless and stateful tests. It is shown that the measurement
results of the tests following the proposed solution can better characterize the true performance of the network interconnect devices that follow the first type of RSS
implementation than the results of the tests using a single IP address pair.

1. Introduction

Benchmarking of network interconnect devices aims to accurately
measure their certain standardized performance characteristics in order
to obtain reasonable and comparable results, which are essential for
both the developers and the users of the devices. To that end, the
Benchmarking Working Group (BMWG) of the Internet Engineering
Task Force (IETF) has defined a series of Requests for Comments (RFCs).
RFC 2544 [1] was published in 1999, and it still determines how com-
mercial network performance testers work. In its appendix, it has
defined a test frame format with fixed IP addresses and fixed User
Datagram Protocol (UDP) port numbers for router testing, which was
very convenient for the manufactures of the testers, as the very same test
frames could be reused. As time passed by, state-of-the-art routers
started using multiple processing units, among which the network traffic
was distributed by using the entropy1 provided by the different source
and destination IP addresses and port numbers. This solution is called
Receive-Side Scaling (RSS) [2]. To that end, RFC 4814 [3] highly rec-
ommends the use of pseudorandom port numbers during benchmarking,
however, it did not provide a solution regarding the IP addresses for the
general case (please refer to Section 2.1.2 for the details).

Depending on the implementation, RSS may only include the source
and destination IP addresses or it may also include the source and
destination port numbers into the tuple used for hashing. RFC 4814
compliant testers work properly in the second case, however, pseudo-
random port numbers cannot provide entropy if the Device Under Test
(DUT) follows the first type of RSS implementation; therefore, these
devices produce poor benchmarking results in RFC 4814 compliant
laboratory tests, whereas they can exhibit a high performance in pro-
duction environments where the usage of multiple IP addresses ensures
the entropy for the proper operation of their RSS implementation.
Therefore, the conditions of laboratory tests should be improved to
ensure unbiased performance testing. To that end, this paper examines
how the usage of multiple IP addresses can be introduced in the per-
formance testing of various network interconnect devices. Practical
recommendations are provided for the usage of pseudorandom source
and destination IP addresses in the case of both stateless and stateful
benchmarking following the approach of RFC 4814 regarding the port
numbers. The most important design and implementation consider-
ations for extending siitperf [4] to support the usage of multiple IP
addresses are also disclosed. The solution proposed is validated by
performing benchmarking measurements pointing out a significant
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1 It is used as a general term expressing randomness, not as the precise “information content” of the IP addresses and port numbers according to Shannon’s
definition.
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improvement of the results. The findings should make an important
contribution to the field of benchmarking network interconnect devices
by making stateless and stateful performance measurements unbiased
regarding the type of RSS implementation of the DUT.

The rest of this paper is organized as follows: Section 2 gives a
summary of the background information regarding stateless and stateful
network interconnect device performance testing. Section 3 presents the
recommendation for the introduction of multiple IP addresses. Section 4
discloses the design and implementation of the extension of siitperf
to support stateless and stateful benchmarking measurements with
multiple IP addresses. In section 5, the performance limits of the new
functions of siitperf and its performance degradation due to the
more complex operation are determined. The proposed methodology
and its implementation are validated by stateless and stateful bench-
marking measurements in various scenarios in Section 6 and Section 7,
respectively. The findings are discussed in Section 8, and the paper is
concluded in Section 9.

2. Introduction to the benchmarking of network interconnect
devices

2.1. Benchmarking methodology for IPv4 or IPv6 routers

2.1.1. The original methodology
RFC 2544 has defined all the relevant aspects of benchmarking

network interconnect devices including the test and traffic setup, stan-
dard frame sizes, frame formats, and measurement procedures. The primary
recommended test setup is built up by two devices: the Tester and the
DUT. Their corresponding network interfaces are connected and the
Tester sends test frames through the DUT and receives back the frames,
as shown in Fig. 1. It needs to be noted that although the arrows are
unidirectional, bidirectional traffic is required. The essential bench-
marking procedure is the throughput measurement, which determines the
highest constant frame rate at which the DUT is able to forward all
frames sent by the Tester. There are several other benchmarking pro-
cedures that give further insight into the performance of the DUT, like
latency that determines the one way delay caused by the DUT measured
at the frame rate previously determined by the throughput measurement
procedure, or frame loss rate, which is to be determined at various frame
rates. When routers are tested, it is required to perform the tests first,
using a single source and destination IP address pair (as shown in Fig. 1)
and then, using 256 different destination networks. The 198.18.0.0/15
IPv4 address range was reserved for benchmarking. Its first half
(198.18.0.0/16) and its second half (198.19.0.0/16) are intended to be
used on the left side and right side of the devices, respectively. Thus
(numbering the bits from 0) the 16–23 bits ensure the possibility to
describe the required 256 destination networks. As for the transport
layer protocol, UDP was recommended.

It needs to be noted that benchmarking measurements are to be
performed in an isolated laboratory environment and the usage of the
dedicated address space can be a guarantee of preventing the mea-
surement traffic from leaking out to the Internet.

2.1.2. Updates to the methodology
As time passed by, the methodology was updated in multiple ways.
As for router testing, RFC 4814 [3] requires the usage of

pseudorandom source and destination port numbers from their specified
ranges, 1024–65,535 and 1–49,151, respectively. (If there is a require-
ment that either the source or the destination port number needs to have
a specific value, then only the other port number should be pseudo-
random.) However, section 4.4 of RFC 4814 considers the problem of IP
addresses as solved in the general case. It only mentions the
above-mentioned 8 bits (writes them as x.x.R.x/24) to be used as
pseudorandom. However, this solution does not help, when the tests are
done using a single destination network.

RFC 5180 [5] provided an update regarding the usage of IPv6 ad-
dresses. It has reserved a much larger address range for benchmarking:
2001:0:2/48. However, it has explicitly declared IPv6 transition tech-
nologies out of its scope.

2.2. Benchmarking methodology for stateful NAT64 gateways

2.2.1. The method in theory
RFC 8219 [6] has defined a comprehensive benchmarking method-

ology for IPv6 transition technologies. To that end, it classified the high
number of IPv6 transition technologies [7] into a small number of cat-
egories (dual stack, single translation, double translation, and encapsulation
technologies) regarding the solution used for packet traversal across the
access and core network of the Internet Service Provider (ISP) and
defined the test setup for each category. Network Address Translation
from IPv6 Clients to IPv4 Servers (stateful NAT64) [8] belongs to the
category of the single translation technologies. For this category, the
Single DUT test setup, shown in Fig. 2, is recommended. It is similar to the
test setup shown in Fig. 1, but here, different IP versions are used on the
left side and on the right side of both the Tester and the DUT. Of course,
both X and Y in IPvX and IPvY are from the set of {4, 6} and X∕=Y.

As for the benchmarking procedures, RFC 8219 reused the
throughput and the frame loss rate measurement procedures unchanged,
it redefined the latency measurement procedure to provide more accu-
rate results and added further procedures to measure Packet Delay
Variation (PDV) and Inter Packet Delay Variation (IPDV), whereas the
latter was declared optional.

The requirement for benchmarking with bidirectional traffic was
kept and benchmarking with unidirectional traffic was added as an
optional test.

2.2.2. Practical problems
It turned out that benchmarking stateful NAT64 gateways requires

further considerations because the verbatim application of certain re-
quirements would result in various problems:

• The usage of pseudorandom source and destination port numbers in
the IPv6 packets would result in potentially more than 3 billion
connections, thus the test would exhaust the capacity of the
connection tracking table of the stateful NAT64 gateway.

• The usage of pseudorandom port numbers in the IPv4 packets would
result in packets that do not belong to any existing connection and
the stateful NAT64 gateway would simply drop them.

Please refer to Ref. [9] for more details.

Fig. 1. Test setup for an IPv4 router (based on RFC 2544). Fig. 2. Single DUT test setup [6].
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2.2.3. A solution to the problems
A general methodology suitable for the benchmarking of any stateful

NATxy gateways, where x and y are in {4, 6}, using RFC 4814 pseudo-
random port numbers was defined by this Internet Draft [10], which was
adopted by the BMWG of IETF at the IETF 114 meeting on July 26, 2022.

A brief introduction to the benchmarking methodology for the
stateful NAT64 gateways is provided by reusing the text of [9–11].

The test setup is shown in Fig. 3. The DUT is the stateful NAT64
gateway, which has a connection tracking table.

The Initiator can send a test frame using any desired source port
number and destination port number combinations, but it uses limited
ranges to avoid the exhaustion of the capacity of the connection tracking
table of the DUT. (According to the original methodology, only a single
source and destination IP address pair was used [9].) Following the long
established tradition of RFC 2544, RFC 5180, and RFC 8219 the UDP
transport layer protocol is used.

The Responder receives the test frames and extracts the source IP
address, source port number, destination IP address, destination port
number (four tuple) from them then stores the four tuples in its state table.
When it sends a test frame, it takes a four tuple from its state table (swaps
source and destination), thus it creates a valid test frame, which belongs
to an existing connection in the connection tracking table of the DUT.

The methodology uses two test phases. During phase 1 only the
Initiator sends test frames. The DUT registers the new connections into
its connection tracking table, translates the test frames and forwards
them to the Responder. Thus, the connection tracking table of the DUT
and the state table of the Responder are initialized, thus, in phase 2, the
Responder is able to send valid test frames.

To achieve clear and repeatable measurements, two extreme situa-
tions are used:

1. During phase 1, all test frames create a new connection.
2. During phase 2, the test frames never create a new connection.

They can be simply ensured by using:

• a sufficiently large (to be able to store all the connections) and empty
connection tracking table for each test

• pseudorandom enumeration of all possible four tuples in phase 1
• a properly high timeout value in the DUT (higher than the time

duration from the beginning of phase 1 to the end of phase 2).

The maximum connection establishment rate has been introduced as a
new metric to quantify the connection setup performance of the DUT. It
is the highest constant frame rate at which the DUT is able to process all
test frames in phase 1.

All “classic” measurements (throughput, latency, frame loss rate,
etc.) can be performed in phase 2. To that end, first, phase 1 has to be
executed using a frame rate safely lower than the measured connection
establishment rate. Then comes phase 2 with the desired measurement.

The methodology was validated by performing its benchmarking
measurements with three radically different stateful NAT64 gateway
implementations [12].

It should be noted that the terms “stateful” and “stateless” are used
both for the network functions and for their measurements procedures.
IPv4 and IPv6 packet forwarding are stateless, as well as their

measurement procedures. Likewise, stateful NATxy gateways are state-
ful, as well as their measurement procedures.

2.3. Stateless measurement tools

Commercial network performance testers follow the requirements of
RFC 2544 and the newer ones usually support the newer RFCs, too. In
addition to this, they sometimes provide further optional features
beyond the requirements of the RFCs. For example, it is quite common
that they support non-zero loss throughput measurements, too. For
example, the Anritsu MP1590B device has a parameter called Loss
Tolerance. (Its value must be set to 0 to perform an RFC 2544 compliant
throughout test.) However, it allows the user to set only a single IP
address at each network port.

The Spirent SPT-N4U Tester also supports RFC 5180 tests for
benchmarking IPv6 routers. With an appropriate trick, it was used for
benchmarking various stateless NAT64 implementations [13]. It has
numerous advanced features, for example, when it is used in stateful
mode, its Avalance Commander is able to generate IP addresses randomly
from a specified range. However, when it is used in stateless mode for
Layer 2–3 tests including the RFC 2544 throughput measurements, it
does not support using multiple IP addresses per its network ports,
either.

Siitperf [4] is the world’s first free software RFC 8219 compliant
Stateless IP/ICMP Translation (SIIT) [14] (also called stateless NAT64)
tester, written in C++ using Intel’s Data Plane Development Kit (DPDK)
[15] available from GitHub [16]. It was designed to be a flexible
research tool and provides several features beyond the requirements of
the RFCs, but it did not support the usage of multiple IP addresses prior
to its current development, either.

2.4. Stateful measurement tool

As far as the author knows, the stateful extension of siitperf [9] is
the only existing implementation of the concept for benchmarking
stateful NATxy gateways using RFC 4814 pseudorandom port numbers
described in Ref. [10]. It supports stateful NAT64 and stateful NAT44
measurements, but stateful NAT66 and stateful NAT46 measurements
were not implemented. Its latest version prior to its current development
only supported the use of a single source and destination IP address pair
as documented in Ref. [9].

3. Recommendation for using multiple IP addresses

The aim of the introduction of multiple IP addresses is the same as
that of multiple port numbers, i.e. to support the even distribution of the
load among multiple processing elements of network interconnect de-
vices. To construct a similar solution to that of RFC 4814 regarding the
port numbers, it was also considered to be desirable to use 16-bit address
space. However, the size of the IPv4 address range reserved for bench-
marking imposes a serious limitation. As for the stateless testing using
IPv4 addresses, the author suggests two major solutions:

1. Only the last 8 bits of the IPv4 addresses are used. (The useable range
is: 2–254, as 1 is used for addressing the DUT and 255 is the
broadcast address.) Thus, it remains possible to use the 16–23 bits to
describe 256 destination networks.

2. The last 16 bits of the IPv4 addresses are used. (The useable range is:
2–65,534.) Thus, the usage of 256 destination networks is sacrificed.
This solution is shown in Fig. 4.

With regard to IPv6, there is no such problem, as the reserved
benchmarking prefix contains an abundant number of bits. It even is
possible to use exactly 65,536 different IPv6 address, as shown in Fig. 5.
For simplicity, bits from 96 to 111 are used to distinguish 64k IPv6
addresses, and their last 16 bits are the same (expressing decimal 2). BitsFig. 3. Test setup for benchmarking stateful NAT64 gateways [9].
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from 56 to 63 can be used to describe the 256 destination networks.
When stateful NAT44/NAT64 testing is designed, it should be

considered that stateful NAT44 or NAT64 gateways that serve a high
number of clients typically use more than a single public IPv4 address.
However, in this case the entire 198.18.0.0/15 network can be used on
the right side of the test setup, as shown in Figs. 6 and 7, because private
IPv4 addresses or IPv6 address are used on the left side of the stateful
NAT44 or stateful NAT64 gateway, respectively. (Due to the /15 mask,
198.18.255.255 and 198.19.0.0 are normal, useable IPv4 addresses.) It
needs to be noted that the usage of 256 destination networks is out of the
scope, because it is recommended by RFC 2544 for router testing.
“Operators usually separate the stateful NAT64 function and the routing
function. Even if the two functions are implemented by the same device,
the proposed methodology deals with the benchmarking of the stateful
NAT64 function.” [12] Thus the performance of the stateful NAT44/-
NAT64 gateway is measured and not the routing performance (even if
the device also implements routing).

4. Design and implementation of testing with multiple IP
addresses

4.1. Design principles

An existing software was to be extended, so the design considerations
were the following:

1. To support flexible and convenient usage of multiple IP address
during both stateless and stateful tests.

2. To fit together with the already existing design.
3. To facilitate a simple and efficient implementation.

4. To keep the performance of the Tester high.
5. To maintain the readability of the source code.

It needs to be noted that an introduction to siitperf is presented in
Appendix A1 for the readers not familiar with it.

4.2. Parameter design

To support flexibility and to follow the existing design, several new
parameters were introduced.

The user should be able to decide if and how the IP addresses on the
left side and right side should vary. The new parameters are: IP-{L,
R}-var, and their possible values and meanings are:

0. use fixed IP addresses (as before)
1. increase the varying part of the IP addresses
2. decrease the varying part of the IP addresses
3. the varying part should be pseudorandom

It needs to be noted that if 0 is specified for both directions, the
further parameters are completely redundant and fixed IP addresses are
used.

As for usage examples, Appendix A2 contains all the setting of the
new parameters to achieve the test setups recommended in Section 3.

The user should be able to specify the minimum and maximum
values for the varying parts of the IPv4 or IPv6 addresses. The new pa-
rameters are: IP-{L|R}-{min,max}.

To support a simple and efficient implementation, the author
decided to allow only 16 bits long varying part of both IPv4 and IPv6
addresses and to use the same parameters for IPv4 and IPv6 and for
“real” and “virtual” addresses. (Please recall that the same code works
with IPv4 and IPv6 when varying port numbers are used.) However, the
offset of the 16-bit varying part (its distance from the beginning of the IP
address) can be specified by the user independently for the two IP ver-
sions and for the left and right side addresses using the IPv{4,6}-{L,
R}-offset parameters. Their valid range for IPv4 and IPv6 are 1–2 and
8–14, respectively. (They were later restricted due to simple imple-
mentation and performance considerations; please refer to Section
4.5.1.)

The enumeration of the IP addresses can be controlled by the
Enumerate-ips parameter. Its possible values and their meanings are:

0. no IP address enumeration
1. enumerate IP addresses in increasing order
2. enumerate IP addresses in decreasing order
3. enumerate IP addresses in pseudorandom order

It needs to be noted that the enumeration of the IP addresses may
happen only in the first phase of stateful tests (similarly to the port
number enumeration).

It also needs to be noted that the parameter design is validated at the
end of Appendix A2, where it is shown that the new parameters are
suitable to express the settings required for the proposed test setups.

Fig. 4. Multiple IP address test setup for benchmarking IPv4 routers.

Fig. 5. Multiple IP address test setup for benchmarking IPv6 routers.

Fig. 6. Multiple IP address test setup for benchmarking stateful
NAT44 gateways.

Fig. 7. Multiple IP address test setup for benchmarking stateful
NAT64 gateways.
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4.3. Implementation of the stateless measurements

Implementing the usage of multiple IP addresses for stateless tests
was straightforward. The only important design decision worth
mentioning was the introduction of a new msend() function to imple-
ment the usage of multiple IP addresses. Its rationale was to avoid the
further increase of the number of sending loops in the send() function
and thus to maintain the readability of the source code. As the support
for multiple destination networks was sacrificed (to have enough bits to
express multiple IP addresses) this new sender function has only two
sending loops: one for using only multiple IP addresses but fixed port
numbers and the other one for using both multiple IP addresses and
multiple port numbers.

Otherwise, the same programming style was used as in the original
code; the given fields of pre-generated templates were modified in the
sending loops. To that end, pointers were set to the appropriate fields
and more or less the same code was executed for the IPv4 and IPv6 test
frames with the following two differences:

1. As opposed to IPv4 packets, IPv6 packets do not have header
checksum. (Technically, the value of the field pointed by the corre-
sponding pointer is set only if the IP version for the given side is 4 and
the frame belongs to the foreground traffic.)

2. UDP checksum is mandatory for IPv6 packets, but it is optional for
IPv4 packets. In the case of IPv4 packets, the 0 value of the field
indicates that UDP checksum is not used. Therefore, if the checksum
calculation results in a 0 value, its unary complement (0xffff) has to
be written into the field. (As above, unary complement is used if the
IP version for the given side is 4 and the frame belongs to the fore-
ground traffic.)

4.4. Implementation of the stateful measurements

Whereas the IP addresses and port numbers can be handled inde-
pendently from each other in the case of stateless measurements, the
situation is rather different in the case of stateful measurements. The
purpose of their enumeration is to use up all their possible combinations
in phase 1 one so that no new four tuples (network flows) may appear in
phase 2. To that end, both IP addresses and port numbers must be
enumerated, except for the case when one of them has fixed values. So
far, IP addresses had fixed values and only the port numbers could be
enumerated [9] and under these conditions stateful benchmarking
worked perfectly [12]. Similarly, if the port numbers have fixed values,
it is enough to enumerate only the IP addresses.

The implementation of their enumerations required some careful
considerations because the four possible values of the Enumerate-

ports parameter and the four possible values of the Enumerate-ips
parameter could have potentially 16 combinations. Their handling
could have been implemented, for example, by a C language switch

that has 16 case-es. However, it would have been only the high level
structure of the program as both port numbers and IP addresses may be
varying only partially (either the source or the destination, whereas the
other one is fixed). As the author did not see much point in writing such
a complicated program, the number of combinations to be implemented
was reduced. The author believes that the following rule allows all
practically useful combinations: if any of the two parameters has the

value of 0, then the other one may have any value, but if they both have
non-zero values, then they must have the same value.

As for implementing the Initiator, the original isend() function
was kept to handle the cases when Enumerate-ips has 0 value.
Otherwise, the new imsend() function is used, which can be consid-
ered the Initiator extension of the new msend() function; it implements
IP address enumeration. It has two sending loops: the first one handles the
case when only the IP addresses are enumerated but the port numbers
are not, and the second one handles the case when both the IP addresses
and the port numbers are enumerated. Table 1 shows the summary of
the allowed combinations of IP address and port number enumerations
and how they are handled.

As stated above, the imsend() function was derived from the
msend() function by adding IP address enumeration to it. An alterna-
tive could have been an “misend()” function that could have been
derived from the isend() function by adding the usage of multiple IP
addresses to it. However, that would have involved conflicts e.g.,
regarding the usage of the same bits for multiple destination networks
and multiple IP addresses.

The new imsend() function kept the resilience of the isend()

function in the sense that it supports port number enumeration but does
not mandate it. When linear enumeration of the IP addresses and port
numbers is done, they act as a four times two-byte counter, but the four
two-byte fields of the counter may only take the values allowed by their
specified ranges. (The 16-bit field in the destination IP address is the
most significant one, then comes the 16-bit field in the source IP address,
next the destination port number, and finally, the source port number is
the least significant one.) Pseudorandom enumeration was implemented
in the same way as before by using pre-generated values.

It needs to be noted that no modifications to the rreceive() and
rsend() functions were needed because they both handle the full four
tuple.

4.5. Restrictions due to implementation considerations

Two changes were made to the design at the implementation stage
due to considerations of checksum calculation.

4.5.1. IPv4 and IPv6 offset
Both IPv4 header checksum and UDP checksum are calculated on 16

bits, that is two bytes. Using odd numbers as IPv{4,6}-{L,R}-

offset would complicate the checksum calculation; therefore, the
author decided to allow only even numbers. This constraint is not

Table 1
Allowed combinations of IP Address and port number enumerations and how they are handled.

Enumerate-ports (right) 0 1 2 3

Enumerate-ips (below)

0 These cases have already been implemented by the original isend() function.
1 imsend() loop1 imsend() loop2 – –
2 imsend() loop1 – imsend() loop2 –
3 imsend() loop1 – – imsend() loop2

Fig. 8. Multiple IP address test setup for benchmarking stateful NAT44 gate-
ways (modified version).
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significant in the case of IPv6. As for IPv4, it means that the only allowed
offset is 2. This restriction influences the test setup shown in Fig. 6. It
was modified, as shown in Fig. 8. The loss of a few IP addresses from
65,536 is absolutely negligible.

Thus, the IPv4 offset parameters could have been fully eliminated,
but they were still kept as they might be useful later if an unforeseen
application scenario requires allowing for (and implement) further
offset value(s).

4.5.2. IP address enumeration versus fixed IP addresses
As stated before, when the value of the Enumerate-ports

parameter required port number enumeration, it was done in phase 1,
even if the port numbers did not change in phase 2 due to the values of
the {Fwd,Rev}-var-{s,d}port parameters. This approach could
have been followed with regard to the IP addresses just for consistency.
However, this approach would lead to certain contradiction during the
implementation. To be able to handle the checksums correctly, the
changing parts of the IP addresses are masked to 0, if the values of the
appropriate IP-{L|R}-var parameters are non-zero. (All IP addresses
exist only in a single copy in the Throughput class.) How should they
be handled, if the Enumerate-ips parameter requires IP address
enumeration, but the values of the IP-{L|R}-var parameters are 0?

• If they are not masked to 0, then their checksum will not be correct in
phase 1.

• If they are masked to 0, then those bits are lost and will not be
available in phase 2.

Of course, two copies of the IP addresses could have been used, but it
would require a significant modification of the existing code and the
author considered that it was not worth the effort, as he did not see any
reasonable application scenario of using IP address enumeration in
phase 1 and then using fixed IP addresses in phase 2 of the stateful tests.
Therefore, the author has come to the conclusion that the non-zero value
of the Enumerate-ips parameter requires the IP-{L|R}-var pa-
rameters not to have zero values, either. (The program checks it and
gives an appropriate “Input Error” message if the condition is not met.)

5. Self-test of the tester

5.1. Meaning and purposes of the self-tests

The self-test of the Tester means that its two interfaces are connected
omitting the DUT, and benchmarking measurements are performed. The
achieved frame rate of the throughput test depends on the frame sending
and frame receiving abilities of the Tester. The self-test is a must before
using the Tester for measurements, otherwise, there is no guarantee that
the Tester measures the performance of the DUT; the Tester itself may be
the bottleneck. In addition to this the self-test can be used to measure the
performance penalty of the new functions and it raises the question to
what extent the performance of the Tester decreased due to the new
functions?

5.2. Test system for the self-test of the tester

The topology of Test System for self-test is shown in Fig. 9. The most
important parameters of the used Dell PowerEdge R730 server were: two
3.2 GHz Intel Xeon E5-2667 v3 CPUs having 8 cores each, 8 × 16GB
2133 MHz DDR4 SDRAM (accessed quad channel), and Intel X540-T2
10GbE network adapter. Hyper-threading was switched off and the
CPU clock frequency was set to 3.2 GHz (fixed), the nominal clock fre-
quency of the CPU, to achieve stable measurement results using the tlp
Linux package. Later it was set to 1.2 GHz, the minimum clock frequency
of the CPU, in the same way. Debian Linux 9.13 operating system with
4.9.0–13-amd64 kernel and DPDK 16.11.11–1+deb9u2 amd64 were
used. As siitperf does not have version numbers, its version is
identified by its latest commit 165cb7f on September 6, 2023.

5.3. Stateless tests and results

5.3.1. Tests for guaranteeing the performance of the Tester
To support stateless tests, IPv4 and IPv6 throughput tests were per-

formed as self-test. The applied frame size was 64 bytes and 84 bytes for
IPv4 and IPv6, respectively. As for the further parameters, all the four
combinations of fixed and pseudorandom port numbers and IP addresses
were used. The ranges for pseudorandom port numbers were those
recommended by RFC 4814. The ranges for the varying part of the IPv4
and IPv6 addresses were 2–65,534 and 0–65,535, respectively. The
parameters complied with the test cases are shown in Figs. 4 and 5. As
required by RFC 2544 and its successors, bidirectional traffic was used.
It needs to be noted that siitperf reports the results as frames/second
per direction. It means that in all, siitperf sent and received twice as
many frames as reported due to the bidirectional traffic.

The clock frequency of the Tester was set to fixed 3.2 GHz, the
nominal clock frequency of the CPU, to achieve a high performance. The
results of the IPv4 and IPv6 throughput tests are shown in Table 2 and
Table 3, respectively. All measurements were executed 10 times and
median was used as summarizing function and the minimum and
maximum values were also included. The dispersion in the last line of the
tables was calculated as follows:

dispersion =
maximum − minimum

median
⋅100% (1)

Regarding the guaranteed performance of the tester, the minimum
values should be considered. In all cases, more than 7.1Mfps per direc-
tion frame rate was achieved. The bottleneck was always the X540 NIC
as it is proven by the next series of measurements.

It can be observed that the dispersion of the results is always in the
order of 1 % magnitude. (It is used as a basis for comparison below.)

5.3.2. Tests for checking the performance costs of operation
To make the CPU performance the bottleneck, the clock frequency of

the Tester was set to 1.2 GHz, its lowest possible value. Otherwise, the
same parameters were used as before. The results of the IPv4 and IPv6
throughput tests are shown in Table 4 and Table 5, respectively. The last
rows of the tables show the relative performance of the given cases
compared to the case when fixed IP addresses and fixed port numbers
were used; the figures clearly show the performance penalty of gener-
ating pseudorandom port numbers or IP address or both. The IP version

Fig. 9. Test system for the self-test of the Tester.

Table 2
Stateless self-tests: IPv4 throughput of the Tester @ 3.2 GHz.

IP addresses fixed fixed random random

port numbers fixed random fixed random

Median (fps) 7,161,269 7,184,723 7,175,444 7,161,422
Minimum (fps) 7,124,510 7,122,922 7,116,697 7,108,397
Maximum (fps) 7,226,746 7,214,859 7,219,178 7,203,141
Dispersion (%) 1.43 1.28 1.43 1.32
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does not count for much, all four performance results are very similar to
one another both in the case of IPv4 and IPv6. Their performance is
somewhat higher when only the port numbers are pseudorandom rather
than in the case when only the IP addresses are pseudorandom. The
explanation for this phenomenon is that varying IP addresses also in-
fluence the UDP checksum through the pseudo-header, but varying port
numbers do not influence the IP header checksum. When fixed port
numbers but pseudorandom IP addresses are used, the median IPv6
throughput (4,138,784fps) is somewhat higher than the median IPv4
throughput (4,089,050fps). The root cause for this is an extra condi-
tional instruction in the source code handling IPv4 test frames: if the
computed value of the UDP checksum happens to be 0, then 0xffff has to
be stored.

It can be observed that the results using fixed frame format are still
around 7Mfps and the dispersion of these results is also in the order of 1
% magnitude. The dispersion of all the other results is at most 0.25 %.
The author assumes that the relatively higher dispersion of the results
close to 7Mfps was caused by the race condition of the two senders that
were competing for the limited resources of the same NIC. (The mea-
surement log files show that the tests failed because one of the senders
was not able to complete the sending of the required number of frames
within 60.0006s.)

5.4. Stateful tests and results

As siitperf implements only stateful NAT64/NAT44 tests and
stateful NAT66/NAT46 are out of its scope, its Receiver can handle only
IPv4 packets. Therefore, when stateful self-tests are performed, the
Initiator must send IPv4 packets (as the loopback wire does not do the
stateful NAT64 translation, which is normally done by the omitted

DUT).
However, considering that practically the same code modifies the

IPv6 and IPv4 packet templates2 and also the self-test results of the
stateless test, one can easily infer that the results of the stateful NAT44
self-tests provide good guidelines for the stateful NAT64 benchmarking
performance of the Tester, too.

First, it is considered, what kinds of measurements are needed to
guarantee the performance of the Tester for stateful measurements.

In phase 1, four different cases are possible regarding the fixed or
varying nature of the IP addresses and port numbers:

1. Only a single test frame is sent.
2. A single IP address pair and multiple port number combinations are

used.
3. Fixed port numbers and multiple IP addresses are used.
4. Multiple IP addresses and multiple port numbers are used.

Based on the above four cases, the relevant benchmarking method-
ology [10] uses no. 2 and no. 4 with the conditions that in case 2, all
possible source port number and destination port number combination
must be enumerated in pseudorandom order, and in case 4, all the
possible four tuples must be enumerated in pseudorandom order. As for
case 1, although it is supported by siitperf, and the situation that all
frames belonging to a single connection can be used as a reference
measurement in phase 2, but there is no point in measuring the frame
sending performance of siitperf when it sends only a single test
frame in phase 1 as there is a gap between the two phases. Case 3 was
considered interesting and it was included in the tests. (This case may be
relevant when only a low number of connections are needed, but the aim
is to have as many different IP addresses as possible.)

In phase 2, the Initiator uses the same sending functions (send()
and msend()) as for stateless test, thus they require no further testing.
And the Responder does not need testing either as it is implemented by
the old rsend() function, which handles the full four tuple.

For the actual tests, 4 million connections were used as recom-
mended by Gapon for a highly loaded NAT server [17]. In case 2, they
are generated by using source port numbers 1–40,000 and destination
port numbers 1–100, in case 3, using the 16-bit source address parts
from 2 to 4001, and the 16-bit destination address parts from 2 to 1001,
finally in case 4, the 16-bit source address parts from 2 to 11, the 16-bit
destination address parts from 2 to 11, source port numbers 1–400 and
destination port numbers 1–100.

The results are shown in Table 6. The results in the first three col-
umns show the maximum connection establishment rates. They can be
significantly higher than those in Table 2 because they were measured
with unidirectional traffic; only the Initiator sent test frames to the

Table 3
Stateless self-tests: IPv6 throughput of the Tester @ 3.2 GHz.

IP addresses fixed fixed random random

port numbers fixed random fixed random

Median (fps) 7,168,274 7,193,027 7,189,696 7,122,892
Minimum (fps) 7,139,500 7,181,418 7,150,621 7,108,885
Maximum (fps) 7,208,871 7,257,874 7,250,252 7,207,073
Dispersion (%) 0.97 1.06 1.39 1.38

Table 4
Stateless self-tests: IPv4 throughput of the Tester @ 1.2 GHz.

IP addresses fixed fixed random random

port numbers fixed random fixed random

Median (fps) 7,026,719 4,293,187 4,089,050 2,828,910
Minimum (fps) 6,995,938 4,284,162 4,088,918 2,827,513
Maximum (fps) 7,062,523 4,294,927 4,089,133 2,830,567
Dispersion 0.95 0.25 0.01 0.11
Rel. perf. (%) reference 61.10 58.19 40.26

Table 5
Stateless self-tests: IPv6 throughput of the Tester @ 1.2 GHz.

IP addresses fixed fixed random random

port numbers fixed random fixed random

Median (fps) 7,049,596 4,297,380 4,138,784 2,863,442
Minimum (fps) 6,998,045 4,295,897 4,138,173 2,862,604
Maximum (fps) 7,078,370 4,297,495 4,140,626 2,864,345
Dispersion 1.14 0.04 0.06 0.06
Rel. perf. (%) reference 60.96 58.71 40.62

Table 6
Stateful self-tests: maximum connection establishment rate tests, 4 M connec-
tions; unidirectional throughput in the forward direction using fixed frame
format as reference, Tester @ 3.2 GHz.

In phase 1: pseudorandom enumeration of Forward
throughput
fixed fr.IP addresses – 4,000*1,000 10*10*

port numbers 40,000*100 – *400*100

Median (fps) 10,069,082 9,944,307 9,936,514 11,878,250
Minimum (fps) 10,066,405 9,944,090 9,933,592 11,878,111
Maximum (fps) 10,069,227 9,944,347 9,937,012 11,878,925
Dispersion 0.03 0.00 0.03 0.01
Rel. perf. (%) 84.77 83.72 83.65 reference

2 With two exceptions: in the case of IPv4 test frames the IPv4 header
checksum has to be set and the value of the UDP checksum has to be examined
if it is 0 and if so, then 0xffff has to be used instead.
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Responder in phase 1. The last column shows throughput results
measured with unidirectional traffic in the forward direction using fixed
IP addresses and port numbers. It was added as reference to be able to
see the cost of the pseudorandom enumeration of port numbers, IP ad-
dresses, or both. As the pseudorandom numbers are pre-generated, and
they are read linearly from array(s) during the tests, there is much less
performance penalty than in the case of the stateless tests when the
pseudorandom numbers are generated during the test. As experienced
with the stateless tests, the modification of the IP address is more
“expensive” than that of the port numbers.

6. Stateless benchmarking measurements

6.1. Aim and test system

The aim of the stateless benchmarking tests was to examine if the
usage of multiple IP addresses makes any difference in the throughput of
IPv4 and IPv6 packet forwarding. To that end, the corresponding
network interfaces of the Tester and that of the DUT were connected
with direct cables, as shown in Fig. 10. The DUT had exactly the same
hardware parameters as the Tester. The same test system was used for
stateless and stateful measurements and the DUT was used with both
Debian Linux 11.7 (with 5.10.0–23-amd64 kernel) and OpenBSD 7.3
(with GENERIC.MP #1125 kernel) operating systems. The CPU clock
frequency was always set to fixed 3.2 GHz under Linux, but the author
could not set the CPU clock frequency to a fixed value under OpenBSD.

As for the choice of the two operating systems for the DUT, it should
be noted that Linux is commonly used for building routers from general
purpose servers. OpenBSD is much less common, and its focus is on se-
curity and not performance. It was chosen because of the experience of
the author with it when benchmarking measurements were performed
for [12]. It was found that the RSS implementation of OpenBSD required
the usage of multiple IP addresses, which was not supported by
siitperf at that time. As a result, it was decided to seek a remedy for
the issue.

6.2. Packet forwarding performance under Linux

Basically, the same four types of tests were performed as in the case
of the self-test: fixed frame format, only pseudorandom port numbers,
only pseudorandom IP addresses, pseudorandom IP addresses and
pseudorandom port numbers. However, it was experienced during the
preliminary tests that using a high number of IP addresses significantly
deteriorated the performance of the system. Therefore, only 1000

different IP addresses were used on each side. Regarding IPv4, it meant
that the last two bytes of the IP addresses had the values from 2 to 1001.
Regarding IPv6, the 12–13 bytes had the values from 0 to 999. The
Address Resolution Protocol (ARP) and Neighbor Discovery Protocol (NDP)
table entries were set manually in the DUT as siitperfwas not able to
answer ARP or NDP requests. When pseudorandom port numbers were
used, Receive Side Scaling (RSS) was set in such a way that also port
numbers may take part in the hash function using one of the four
possible commands that can be expressed by the brace expansions
below:

When fixed port numbers were used, only the source and destination
IP addresses took part in the hash function. To that end, only “sd” was
used instead of “sdfn” in the commands above.

The results of the IPv4 throughput tests are shown in Table 7. When
fixed frame format was used, the median frame forwarding rate was
963,365fps per direction. In this case only two CPU cores handled all
interrupts (one CPU core per direction). In the other three cases the
interrupts were distributed among all CPU cores. The results of the three
cases were similar, but the difference was noticeable, when only the port
numbers were pseudorandom, the median was 4,276,009fps, but when
only the IP addresses were pseudorandom, the median was only
4,250,979fps. When the IP addresses were pseudorandom, then the
usage of fixed or pseudorandom port numbers caused no significant
difference (4,250,979fps vs. 4,249,162fps).

In addition to the above measurements, the test with fixed port
numbers and pseudorandom IP addresses was also performed using 100
different IP addresses at each side. The median value of the throughput
was 4,261,588fps per direction, which is still significantly lower than
that with fixed IP addresses and pseudorandom port numbers. This
difference shows that the usage of multiple ARP table entries has its
performance costs.

The results of the IPv6 throughput tests are shown in Table 8. Exactly
the same tendencies can be observed as with IPv4 in Table 7. (The values
themselves are slightly lower.)

6.3. Packet forwarding performance under OpenBSD

As the Packet Filter (PF) is enabled under OpenBSD 7.3 by default
and its state handling has a significant impact on the performance of
packet forwarding, PF was disabled manually using the pfctl -d

command.
The same four types of tests were performed as in the case of Linux,

and–as far as it was possible–the same parameters were used. However,
OpenBSD does not support the setting of the parameters of RSS [18], and
thus only the source and destination IP addresses took part in the hash
function, the source and destination port numbers were ignored
throughout the measurement process in each case.

The results of the IPv4 throughput tests are shown in Table 9. As
expected, the usage of pseudorandom port numbers caused no signifi-
cant performance difference compared to the cases when fixed port
numbers were used; however, the usage of pseudorandom IP addresses
resulted in a highly significant (more than 3-fold) performance increase

Fig. 10. Test system for the stateless and stateful tests both under Linux and
under OpenBSD.

Table 7
IPv4 packet forwarding performance of the DUT under Linux.

IP addresses fixed fixed random random

port numbers fixed random fixed random

Median (fps) 963,365 4,276,009 4,250,979 4,249,162
Minimum (fps) 959,051 4,275,288 4,249,983 4,248,696
Maximum (fps) 964,912 4,277,649 4,251,957 4,250,490
Dispersion (%) 0.61 0.06 0.05 0.04
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compared to the cases when fixed IP addresses were used. The load
conditions of the CPU cores were checked and it was found that the
usage of pseudorandom IP addresses distributed the interrupts of packet
arrivals more or less equally to each of the 16 CPU cores. However,
significant systems load could be observed only on five of the CPU cores
(numbered by OpenBSD as CPU01 to CPU05). The high dispersion of the
results in the cases when fixed IP addresses were used may be explained
by the fact that the interrupts were hashed to one of the CPU cores that
was also used by the packet forwarding process; they competed for the
usage of the CPU core, and their load was also changing with time.

The results of the IPv6 throughput tests are shown in Table 10. The
same tendencies can be observed in the case of IPv4, but in this case, the
increase caused by the usage of multiple IP addresses was much lower.

7. Stateful benchmarking measurements

7.1. Aim and test system

As in the stateless case, the aim of the stateful tests was to examine if
the usage of multiple IP addresses makes any difference in stateful
NAT64 benchmarking results.

7.2. Stateful NAT64 tests under Linux using Jool

The version of Jool was 4.1.7, the most mature version of Jool. As far as
the details of the measurements are concerned, the same method and
even the same scripts were used as described in the Appendix of [12].

For all the three types of measurements, 4,000,000 connections were
used, but they were achieved in three different ways:

1. Only the port numbers varied, the source port number range was:
1–40,000; the destination port number range was: 1–100.

2. Only the IP addresses varied, and the varying part of the IPv6 ad-
dresses took the values 0–3999, the varying part of the IPv4 ad-
dresses took the values 2–1001.

3. Both IP addresses and port numbers varied, and the varying part of
the IPv6 address took the values 0–9, the varying part of the IPv4
address took the values 2–11, the source port number range was
1–400, and destination port number range was 1–100.

It needs to be noted that “source” and “destination” port numbers, as
well as their ranges should always be interpreted in the traffic from the
Initiator to the DUT. The stateful NAT64 gateway may change the source
port numbers, and the Responder stores the four tuples received into its
state table and it generates traffic only in phase 2, using the four tuples
stored. The “IPv6 addresses” should be interpreted as the source ad-
dresses in the traffic from the Initiator to the DUT. In the IPv4 traffic,
they are replaced by the public IPv4 address of the DUT. In the traffic
from the Initiator to the DUT, the destination IPv6 addresses are actually
IPv4-embedded IPv6 addresses, where the above-mentioned “IPv4 ad-
dresses” were appended to the 64:ff9b::/96 NAT64 Well-Known Prefix
(WKP).

The results of the maximum connection establishment rate and
throughput measurements are shown in Table 11 and Table 12,
respectively. It can be stated that the usage of multiple IP addresses
caused no significant difference in the performance of the Jool stateful
NAT64 implementation compared to the case where fix IP addresses
were used. (The small performance decrease can be attributed to the
higher number of elements in the ARP or NDP tables.)

7.3. Stateful NAT64 tests under OpenBSD using PF

The measurement method described in Ref. [12] was reused with an
important difference. Instead of deleting the connections with the
pfctl -F states command, the DUT was rebooted after every single
step of the binary search algorithm. It was done so to ensure a
completely empty connection tracking table for each step because the
above-mentioned command does not delete the complete content of the
connection tracking table of PF, but it only “marks the states as expired,
and then the purge scan is able to take them and actually free them”
[19].

The same types of measurements using the same parameters were
executed as with Jool.

The results of the maximum connection establishment rate mea-
surements are shown in Table 13. The usage of pseudorandom IP ad-
dresses and fixed port numbers resulted in a slight (11.7 %) increase of
the maximum connection establishment rate compared to the case when
fixed IP addresses and pseudorandom port numbers were used. When
both the IP addresses and the port numbers were pseudorandom, the
performance increase was only 7.24 %. (The author assumes that the
usage of 10 IP addresses on each side was probably not enough to
achieve an even distribution of the interrupts on the CPU cores, but the
investigation of this question is beyond the scope of the current paper.)

As far as the throughput tests are concerned, during the preliminary
tests the author experienced that the steps of the binary search failed due
to a very low number of missing frames in the reverse direction even at
rather low frame rates. To handle this issue, a Loss Tolerance of 0.01 %
was used. It means that the given step of the binary search was

Table 8
IPv6 packet forwarding performance of the DUT under Linux.

IP addresses fixed fixed random random

port numbers fixed random fixed random

Median (fps) 920,647 4,246,709 4,217,141 4,215,284
Minimum (fps) 919,785 4,245,603 4,216,513 4,213,819
Maximum (fps) 922,157 4,250,001 4,218,788 4,217,775
Dispersion (%) 0.26 0.10 0.05 0.09

Table 9
IPv4 packet forwarding performance of the DUT under OpenBSD.

IP addresses fixed fixed random random

port numbers fixed random fixed random

Median (fps) 390,125 384,596 1,277,414 1,283,352
Minimum (fps) 367,116 374,872 1,249,999 1,276,078
Maximum (fps) 437,745 441,549 1,296,876 1,297,120
Dispersion (%) 18.10 17.34 3.67 1.64

Table 10
IPv6 packet forwarding performance of the DUT under OpenBSD.

IP addresses fixed fixed random random

port numbers fixed random fixed random

Median (fps) 384,970 384,859 582,165 580,394
Minimum (fps) 351,553 382,807 577,024 562,499
Maximum (fps) 385,749 385,391 597,657 602,539
Dispersion (%) 8.88 0.67 3.54 6.90

Table 11
Maximum connection establishment of the Jool stateful NAT64 implementation,
4 M connections.

In phase 1: pseudorandom enumeration of

IP addresses – 4,000*1,000 10*10*

port numbers 40,000*100 – *400*100

Median (fps) 577,879 542,059 559,947
Minimum (fps) 576,150 539,061 557,613
Maximum (fps) 578,614 543,504 562,531
Dispersion 0.43 0.82 0.88
Rel. perf. (%) reference 93.80 96.90
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considered “passed” if at least 99.99 % of the frames arrived back to the
Tester. (It was checked individually for each direction, and the condition
had to be satisfied for both directions for passing the test.)

The results of the throughput measurements are shown in Table 14.
It is highly important that the usage of pseudorandom IP addresses
resulted in significantly higher throughput then with fixed IP addresses.
Unfortunately, the results show a rather high dispersion in all cases. For
this reason, the author refrains from drawing conclusion from the fact
that the combination of pseudorandom IP addresses and port numbers
seem to result in a somewhat higher throughput than throughput of the
case when only IP addresses were pseudorandom.

8. Discussion and future research

OpenBSD 7.3 IPv4 packet forwarding throughput results in Table 9
show that the usage of pseudorandom IP addresses caused a more than
3-fold performance increase compared to the cases when fixed IP ad-
dresses were used. This is a highly significant difference. As Internet
traffic has multiple IP addresses, it means that in this case the RFC 2544/
RFC 4814 compliant laboratory test results did not reflect well the IPv4
packet forwarding performance of OpenBSD 7.3; as a result, they should
be updated.

OpenBSD 7.3 IPv6 packet forwarding throughput results in Table 10
and OpenBSD 7.3 PF stateful NAT64 packet forwarding results in
Table 14 also show more than 50 percent difference, which is significant
as well.

OpenBSD was used only as an example, several other various

network interconnect devices may exist that do not support the setting of
RSS, so that also the port numbers may be taken into consideration and
thus their packet forwarding performance can show a rather significant
difference when fixed IP addresses are used during laboratory testing
and for forwarding Internet traffic. This methodological gap should be
closed so that the results of the laboratory test may be more useful for
both the manufactures and the users of network interconnect devices. To
that end, the author discussed the issue with the chairs of the IETF
BMWG and submitted the following Internet Draft [20] prior to the
submission of the current paper for review.

The appropriate ranges for IP addresses to reflect the nature of the
Internet traffic is beyond the scope of the current paper and it is
considered an open question and an important topic for future research.

It should be noted that the Dell PowerEdge R730 servers used for
experimenting were equipped with powerful CPUs and thus the usage of
both pseudorandom port numbers and pseudorandom IP addresses did
not decrease the performance of the Tester when the nominal clock
frequency of the CPU (3.2 GHz) was used. In this case, the NIC continued
to be the bottleneck. (The author had to decrease the clock frequency of
the CPU to be able to measure the performance penalty of the usage of
multiple IP addresses.) However, in a general case, when the perfor-
mance of the Tester is not NIC bound but CPU bound, the performance
penalty may be significant. (As was the case, when 1.2 GHz CPU clock
frequency was used.) The author recommends the usage of pseudo-
random IP addresses and fixed port numbers in those cases when
pseudorandom IP addresses make a difference; otherwise fixed IP ad-
dresses with pseudorandom port numbers should be used.

9. Conclusion

It was pointed out that IETF BMWG documents lack guidelines for
how to use pseudorandom IP addresses in stateless or stateful bench-
marking. A solution was proposed to fill this methodological gap while
honoring the constraints of the IPv4 and IPv6 address ranges reserved
for benchmarking.

The siitperf free software stateless and stateful network perfor-
mance tester program was extended to support the proposed solution.
The performance penalty of the usage of pseudorandom IP addresses
was measured and it was shown that the design goal of maintaining the
high performance of siitperf was achieved.

The proposed solution was validated by performing both stateless
and stateful benchmarking measurements. It was found that the pro-
posed solution can give definitely different results than those produced
using fixed IP addresses. With the help of the proposed method and the
new version of siitperf, the laboratory benchmarking results of IPv4
and IPv6 routers, as well as those of stateful NAT64 gateways much
better reflect the performance of the tested devices when they are used
in production systems for forwarding Internet traffic.

CRediT authorship contribution statement

G. Lencse: Conceptualization, Investigation, Methodology, Project
administration, Resources, Software, Validation, Visualization, Writing
– original draft, Writing – review & editing.

Declaration of competing interest

The author declares that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

No data was used for the research described in the article.

Table 12
Throughput of the Jool stateful NAT64 implementation, 4 M connections,
bidirectional traffic, per direction rates.

In phase 1: pseudorandom enumeration of

IP addresses – 4,000*1,000 10*10*

port numbers 40,000*100 – *400*100

Median (fps) 302,557 289,338 295,007
Minimum (fps) 301,170 289,015 294,332
Maximum (fps) 303,516 289,907 295,703
Dispersion 0.78 0.31 0.46
Rel. perf. (%) reference 95.63 97.50

Table 13
Maximum connection establishment of the PF stateful NAT64 implementation,
4 M connections.

In phase 1: pseudorandom enumeration of

IP addresses – 4,000*1,000 10*10*

port numbers 40,000*100 – *400*100

Median (fps) 98,540 110,069 105,675
Minimum (fps) 97,532 108,791 104,701
Maximum (fps) 100,601 111,359 109,376
Dispersion 3.11 2.33 4.42
Rel. perf. (%) reference 111.70 107.24

Table 14
Throughput of the PF stateful NAT64 implementation, 4 M connections, bidi-
rectional traffic, per direction rates, Beware: Loss Tolerance: 0.01 %.

In phase 1: pseudorandom enumeration of

IP addresses – 4,000*1,000 10*10*

port number 40,000*100 – *400*100

Median (fps) 174,457 272,768 295,648
Minimum (fps) 129,279 238,616 246,676
Maximum (fps) 206,372 355,361 364,066
Dispersion 44.19 42.80 39.71
Rel. perf. (%) reference 156.35 169.47
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Appendix

A1. Introduction to Siitperf

A brief introduction to siitperf is given to provide the reader with the essential information necessary to understand its extension to support
multiple IP addresses. The following sections are based on author’s open access papers [9,11,21], and [22] in which all the details can be found. Some
of their text is reused.

A1.1. The Stateless Version of Siitperf
The aim of the author was to design and implement a high performance and also flexible research tool. To that end, siitperf is a collection of

binaries and shell scripts. The core measurements can be performed by one of three binaries, which are executed multiple times by one of four shell
scripts. The binaries perform the sending and receiving of certain Ethernet test frames containing IPv4 or IPv6 datagrams (in short: IPv4 or IPv6 test frames)
at a pre-defined constant frame rate according to the test setup shown in Fig. 2. As siitperf allows X = Y, it can also be used for benchmarking an
IPv4 or an IPv6 router. The shell scripts call the binaries supplying them with the proper command line parameters for the given core measurement.

The first two of the supported benchmarking procedures (throughput and frame loss rate) require only the above-mentioned sending of test frames at
a constant rate and counting the received test frames, thus the core measurement of both procedures is the same. The difference is that the throughput
measurement requires finding the highest rate at which the DUT can forward all test frames without loss, whereas the frame loss rate measurement
requires performing the core measurement at various frame rates to determine the frame loss rate at those specific frame rates. The core measurement
of both tests was implemented in the siitperf-tp binary and the two different benchmarking procedures were performed by two different bash
shell scripts. The one used for determining the throughput uses a binary search to find the highest lossless frame rate with the predefined error, which
expresses the stopping criterion for the binary search. It stops, when:

higher_limit – lower_limit ≤ error.
The core measurements of the latency and PDV benchmarking procedures were implemented by the siitperf-lat and siitperf-pdv bi-

naries, respectively. They are different extensions of siitperf-tp.
Input parameters that are unchanged during the consecutive executions of the binaries are read from the siitperf.conf file, whereas those that

are changed are supplied by the shell scripts as command line parameters.

Fig. 11. Operation of the sender and receiver functions of siitperf during stateless testing [9].

The binaries were implemented in C++ using DPDK to achieve a high enough performance. An object oriented design was followed: the
Throughput class served as a base class for the Latency and Pdv classes. The program structure of each C++ program is very simple: the main
program reads the parameters first from the configuration file and then from the command line. Next, it calls the init() function of the required
measurement, which initializes the Environment Abstraction Layer (EAL) of the DPDK, resets and starts the network interfaces, and performs a few
sanity checks. Finally, the main program executes the proper measurement procedure. The measurement procedure prepares the parameters for the
senders and receivers, and starts one sender and one receiver for each active direction (as separate threads). They are executed by their exclusively
used CPU cores to ensure guaranteed performance. (The used CPU cores should be excluded from the scheduler of the Linux kernel using the
isolcpus kernel command line parameter.) After the sender and receiver threads have finished, the main thread collects and evaluates their results.
In a general case, when frame sending and receiving is active in both directions, two senders and two receivers are used, which are executed by their
respective CPU cores, as shown in Fig. 11. (Packets traversing through the DUT in the left to right direction are called forward traffic and the packets
sent in the opposite direction are called reverse traffic.)
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The send() and receive() functions are started by the rte_eal_remote_launch() function of DPDK, which does not allow the execution of
non-static member functions. It was a serious limitation, thus the author could not carry out a fully object oriented design. The remotely executed
functions can exchange data through a data structure, the address of which is provided to the functions as a pointer.

Table 15
Specification of which parameters are used as source and destination IP addresses for foreground test frames on each side. (L/R means: Left/Right, the Virt(ual) value is
used to represent an IP address from a different address family than used on the given side) [9].

Case IP version Type of the DUT IP addresses used by the Left Sender IP addresses used by the Right Sender

No. Left Right source destination source destination

1. 6 4 stateless NAT64 gw. IPv6-L-Real IPv6-R-Virt IPv4-R-Real IPv4-L-Virt

2. 4 6 stateless NAT46 gw. IPv4-L-Real IPv4-R-Virt IPv6-R-Real IPv6-L-Virt

3. 4 4 IPv4 router IPv4-L-Real IPv4-R-Real IPv4-R-Real IPv4-L-Real

4. 6 6 IPv6 router IPv6-L-Real IPv6-R-Real IPv6-R-Real IPv6-L-Real

The first version of siitperf [4] used a high number of parameters in its configuration file to support flexibility. Its IP version could be set
independently on its left and right sides using the two parameters that can be generated by the following brace expansion: IP-{L,R}-Vers. For each
side (left and right) and both IP versions (4 and 6) the user could set two IP addresses: real and virtual. (The latter was used to represent an IP address
from the other address family than that was actually used on the given side.) Table 15 gives a short summary of how the eight potential IP addresses
were used.

RFC 8219 also requires that besides the traffic that is translated (called “foreground traffic”), SIIT tests should also use non-translated native IPv6
traffic (called “background traffic”), and different proportions of the two types of traffic have to be used. Background traffic is normal IPv6 test frames
and they are always sent from the “real” IPv6 address of the given side to the “real” IPv6 address of the other side. Background traffic is indistin-
guishable from the foreground test frames if the IP version of both sides is 6 (case no. 4).

As for the receive() function, it was written to be resilient. It does not take care of the IP version of the given side, but it checks the EtherType
field of the frame to determine its IP version. It also checks if the received frame is a test frame. (To that end, siitperf writes the bytes of the
“IDENTIFY” string as the first eight bytes of the UDP data field. It is not handled as a string, but as a 64-bit integer for performance considerations. [4])

Originally, siitperf literally followed the test frame format with fixed IP addresses and port numbers specified in Appendix C.2.6.4 of RFC 2544.
When the support for RFC 4814 pseudorandom port numbers was added [21], the flexible design of siitperf was kept; the user can specify the
source and destination port number ranges for each direction separately and if the source and destination port numbers should have a fixed value, they
should increase, decrease, or be pseudorandom. (Only the last one complies with RFC 4814.) These details are important regarding the design of the
extension to support multiple IP addresses, as they should fit together. There are four parameters that describe the behavior of the port numbers. Their
names can be obtained by the following brace expansion: {Fwd,Rev}-var-{s,d}port. The values of the parameters can be 0–3 with the following
meanings: 0: fixed; 1: increasing; 2: decreasing; 3: pseudorandom. The ranges for the port numbers can be specified using 8 parameters: {Fwd,
Rev}-{s,d}port-{min,max}. In all, there are 12 parameters used.

It is an important implementation detail that siitperf uses packet templates in which it modifies source and destination port numbers, as well as
the appropriate 8-bit part of the IPv4 or IPv6 addresses, when multiple destination networks are used. IPv4 and UDP checksums are pre-calculated
when the packet templates are generated (using 0 values for the fields to be modified) and they are modified according to the checksum of the
modified fields. Depending on the IP version, pointers are set to the fields to be manipulated, and then the same code works for both IPv4 and IPv6 test
frames.

Another important implementation detail was that only a single send() function was written and originally it had two sending loops: one for
sending the same test frame using fixed IP addresses and port numbers, and another one for preparing several (up to 256) test frames the destination IP
address of which belonged to different destination networks. When support for RFC 4814 pseudorandom port numbers was added, then the number of
sending loops was doubled to support the original operation mode with fixed port numbers besides the new one with varying port numbers.

The following command line parameters are used for the throughput test:

• IPv6 frames size (in bytes), IPv4 frames are automatically 20 bytes shorter
• frame rate (in frames per second)
• duration of testing (in seconds)
• global timeout (in milliseconds), the tester stops receiving, when this global timeout elapsed after frame sending finished
• n and m: they are two relative prime numbers for specifying the proportion of foreground and background traffic: m packets form every n packets

belong to the foreground traffic and the rest (n-m) packets belong to the background traffic.

Besides the parameters above, which are common for all the three binary programs, siitperf-lat and siitperf-pdv use various further ones,
but they are not relevant to the current paper.

When the send() function finishes frame sending, it checks the duration of the frame sending. If it exceeds the desired duration by a factor higher
than the predefined constant called “TOLERANCE” (the value of which is defined as 1.00001), it reports an error, and then bash shell script considers
the test as failed. The aim of this checking is to avoid the kind of error situation that the test is performed at a longer time and thus at a lower frame rate
then required due to the insufficient performance of the Tester.

A1.2. Extension for Stateful Tests
The extension of siitperf for stateful NAT64/NAT44 measurements is documented in Ref. [9].
The phase 1 operation of the Initiator is implemented by the new isend() function, which is able to provide the pseudorandom enumeration of all

possible source port number and destination port number combinations required by the benchmarking methodology [10]. They are pre-generated
before phase 1 using Durstenfeld’s random shuffle algorithm [23]. Following the traditions of siitperf, the user has several factors of freedom;
the port number enumeration is optional, and if it is used, increasing or decreasing order can also be used (besides pseudorandom), where the source
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port number is the low order counter and destination port number is the high order counter.

Fig. 12. Operation of the sender and receiver functions of siitperf during phase 1 of stateful testing [9].

The operation of the sender and receiver functions of siitperf in stateful mode during phase 1 and phase 2 are shown in Figs. 12 and 13,
respectively. In phase 1, the Initiator only sends packets using the isend() function, and it does not receive any packets. In phase 2, it sends and
receives packets using the legacy send() and receive() functions.

It needs to be noted that the isend() function is much more general than required by the Internet Draft [10]. It is an extended version of the
original send() function, keeping its all four packet sending loops and adding the optional functionality of port number enumeration. The only
restriction is that port number enumeration may not be used together with multiple destination networks.

As for the Receiver, its implementation required two new functions: rreceive()and rsend(); and a new data structure: state table. The latter is
implemented by an array of size M (specified by the user as command line parameter), the elements of which are atomic four tuples because it is
concurrently read and written during phase 2. The rreceive() function extracts the source and destination IPv4 addresses and port numbers from
the received IPv4 test frames and stores them in the state table. (The writing order is always increasing and its index is increased modulo M) The
rsend() function prepares IPv4 test frames based on the four tuples taken from the state table (source and destination is swapped). The reading order
can be increasing, decreasing and pseudorandom. (The latter is recommended.)

Fig. 13. Operation of the sender and receiver functions of siitperf during phase 2 of stateful testing [9].

The stateful extension introduced only 3 new configuration file parameters. The name of the first one is Stateful, and its possible values and their
meanings are: 0: perform stateless test; 1: perform stateful test, the Initiator is on the left side and the Responder is on the right side; 2: same as 1, but
the Initiator and the Responder are on the opposite sides.

The second new parameter is Enumerate-ports, and its possible values and their meanings are: 0: no port number enumeration; 1 or 2: port
numbers are enumerated in increasing or decreasing order; 3: port numbers are enumerated in pseudorandom order.

Notes regarding the values of the Enumerate-ports parameter:

• The value of 3 must be used to comply with the requirements of the Internet Draft [10]. The other values facilitate further opportunities for testing
(e.g., to examine if the order of enumeration matters or not).

• Any non-zero value of the Enumerate-ports parameter overrides the values of the {Fwd,Rev}-var-{s,d}port parameters for phase 1.
• The zero value of the Enumerate-ports parameter results in the usage of the values of the Fwd-var-{s,d}port or Rev-var-{s,d}port

parameters also in phase 1, depending on the 1 or 2 value of the Stateful parameter.

It is very important to note that port number enumeration applies only to the foreground traffic (traffic to be translated). The frames that belong to
the background traffic (native IPv6 traffic) do not take part in the port number enumeration.

The third new parameter is Responder-ports, and its possible values and their meanings are: 0: a single fixed four tuple is used (like when a
single test frame is always used); 1 or 2: the four tuples are taken from the state table in increasing or decreasing order; 3: the four tuples are selected
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from the state table in a pseudorandom way. Although the latter is recommended by the Internet Draft [10], reading the state table in increasing order
provides a higher Tester performance due to less computation and caching [9].

The new command line parameters are to be interpreted as follows:

• N: the number of test frames to send in phase 1
• M: the number of entries in the state table of the Tester
• R: the frame rate, at which the test frames are sent during phase 1 (in frames per second)
• T: the global timeout for phase 1 frames (in milliseconds)
• D: the overall delay caused by phase 1 (in milliseconds)

It needs to be noted that phase 1 and phase 2 were originally called “preliminary phase” and “real test phase” [9]. This approach explains why those
parameters were defined when siitperf supported only stateless tests, which were then applied to “the real test phase” (now referred to as phase 2),
and when different parameters were needed, new ones were defined for the “preliminary phase” (now referred to as phase 1).

A2. Validation of the parameters

The parameter design is partially validated by setting the parameters to reflect the test setups mentioned in the previous sections of this paper.
Parameters for the traditional IPv4 routing tests with fixed IP addresses according to Fig. 1 and for the stateful NAT64 tests according to Fig. 3 are

as follows:

Moreover, the values of the further new parameters are redundant and everything works as before.
For all the following test cases, they are to be set as follows (they are not repeated below):

Parameters for IPv4 router testing according to Fig. 4:

Parameters for IPv6 router testing according to Fig. 5:

Parameters for stateful NAT44 testing according to Fig. 6:

Parameters for stateful NAT64 testing according to Fig. 7:
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Parameters for stateful NAT44 testing according to Fig. 8:

And for all stateful tests:

Thus it was shown that the new parameters are suitable to express the settings required for the proposed test setups.
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