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ABSTRACT In this paper, we examine the performance of four authoritative DNS server implementations 

(BIND, NSD, knot DNS, and YADIFA). In our tests, we apply the measurement procedure defined in 

Section 9 of RFC 8219. Our aim is threefold: to provide DNS operators with ready to use measurement 

results to support their selection of the best fitting authoritative DNS server implementation for their needs, 

to assist researchers and DNS64 server developers in finding a suitable authoritative DNS server 

implementation for their DNS64 benchmarking measurements, and to advance the theory and practice of 

benchmarking DNS servers. We examine how the different conditions such as the number of active CPU 

cores, the size of the zone file, the applied timeout, and the type of the processor influence the performance 

of the tested authoritative DNS server implementations. The performance of all four tested DNS servers 

scales up more or less well with the number of CPU cores, except for YADIFA. The increase of the size of 

the zone file causes significant degradation only in the performance of BIND, which shows different 

anomalies described in the paper. The change of the timeout from 250ms (required by RFC 8219) to 100ms 

usually causes only a small performance degradation. We point out that NSD and Knot DNS can achieve an 

order of magnitude higher performance than BIND and YADIFA. 

INDEX TERMS Benchmarking, DNS, DNS64, performance. 

I. INTRODUCTION 

DNS (Domain Name System) is an integral part of all 

commonly used Internet services, but it seems to be 

inconspicuous, when everything goes smooth. However, a 

failure or delay in DNS resolution results in poor QoE 

(Quality of Experience) for the users.  

Although the performance of different authoritative DNS 

server implementations is an important issue, it still lacks of a 

standard benchmarking methodology. In this paper, we 

propose one. Whereas BIND is considered the de facto 

industry standard DNS server, and it was the most widely 

used one in 2004 [1], some other DNS implementations (e.g. 

NSD or Knot DNS) can provide multiple times higher 

authoritative DNS server performance than BIND. For a 

DNS server operator, higher performance results in less costs 

considering both CAPEX (Capital Expenditures, here: the 

price of the hardware) and OPEX (Operating Expenditure, 

here: the computing power requirement and thus, also the 

electricity bill). High performance can also be a kind of 

mitigation against DoS (Denial of Service) attacks [2]. 

As for a special usage of authoritative DNS servers, they 

are needed for benchmarking DNS64 [3] servers. (DNS64 is 

an important IPv6 transition technology [4], which is used 

together with stateful NAT64 [5] to enable IPv6-only clients 

to communicate with IPv4-only servers [6].) In section 9 of 

RFC 8219 [7], we defined a benchmarking methodology for 

DNS64 servers. This measurement procedure requires the 

use of an authoritative DNS server that can provide DNS 

resolution at 220% of the maximum testing rate of DNS64 

servers. (Please refer to [8] for more details.) Thus, finding a 

sufficiently high performance authoritative DNS server is a 

prerequisite for performing DNS64 benchmarking tests. In 

2017 we benchmarked three different DNS64 servers, and 

we had to choose an authoritative DNS server with high 

enough performance. Due to time constraint, then we have 

selected the first suitable one, which was YADIFA [9]. 

However, we considered the performance comparison of the 

different authoritative DNS servers an interesting research 

topic, especially, because we have found that there was a gap 

in research papers concerning both a standard methodology 

for benchmarking authoritative DNS servers and also 

measurement results. Although our original motivation was 

to support DNS64 benchmarking, we contend that the 

comparison of the performance of various authoritative DNS 
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server implementations is even more important for DNS 

server operators due to the before mentioned cost and DoS 

mitigation issues. Therefore, we have set a threefold goal. 

1. To provide DNS operators with ready to use 

measurement results to support their selection of the 

most proper authoritative DNS server implementation 

for their needs.  

2. To assist researchers and DNS64 server developers in 

finding a suitable authoritative DNS server 

implementation for their DNS64 measurements 

depending on their required testing rate and available 

hardware resources. 

3. To advance the theory and practice of benchmarking 

DNS servers.  

In this paper, we examine the performance of four 

authoritative DNS server implementations (BIND, NSD, 

Knot DNS, and YADIFA) under different conditions 

including zone files of various sizes and different number of 

CPU cores. 

The remainder of this paper is organized as follows. 

Section II surveys the available methods for benchmarking 

authoritative DNS servers and points out that the RFC 8219 

compliant one suits better for the needs of DNS server 

operators than the other examined ones. Section III gives an 

introduction to the used measurement program, discloses our 

considerations behind the selection of the DNS server 

implementations to be tested, presents the test setups, and 

explains the types of measurements as well as their most 

important parameters and settings. Section IV discloses and 

evaluates our high number of results. Section V contains a 

brief discussion and our future plans. Section VI concludes 

our paper. 

II.  METHOD FOR BENCHMARKING AUTHORITATIVE 
DNS SERVERS 

A.  SURVEY OF RELATED WORKS 

We were looking for both a standard method for 

benchmarking authoritative DNS servers and research 

papers with performance measurement results of the major 

authoritative DNS server implementations, but we have not 

found any of them. The majority of our hits were either 

about how to measure the performance of DNS servers 

operating at different parts of the world, like Sekiya et al. 

[10], or about the performance comparison of the operating 

(public) DNS servers, like Kesavan [11]. We have found 

only few related research papers. One of them gives a 

survey of the related papers, and it shows (in its Section 

3.1) that they do not contain usable performance 

measurement results of different DNS server 

implementations [12]. It also summarizes the then (in 

2014) available DNS performance measurement techniques 

in three groups: DNS performance testing software tools, 

traffic generator hardware appliances, and general purpose 

testing software. It mentions three DNS performance 

testing software tools: dnsperf and resperf of 

Nominum and queryperf of ISC and it also discloses 

their limitations as well as the limitations of the two other 

types of solutions. 

Possible other methods include the use of tcpreplay 

for sending DNS queries on the basis of a pcap file and 

tcpdump for collecting the replies [13]. Although this 

method was actually used for benchmarking DNS resolvers, 

it can also be used for benchmarking different authoritative 

DNS server implementations. 

Several software tools for DNS performance or security 

testing and also some benchmarking tests with actual 

results are listed at this web page [14].  

We have found some technical publications (not peer 

reviewed research papers) describing practically usable 

methods for benchmarking authoritative DNS servers and 

also containing measurement results.  

One of them is an NLnet Lab article from 2013 [15]. 

They used 5 computers to replay DNS queries at predefined 

rates and to collect the replies by tcpdump. They 

compared the performance of NSD to that of BIND, Knot 

DNS and YADIFA, and characterized their performance by 

the proportion of the successfully answered queries as a 

function of the query rate. As no timeout value was 

mentioned, we believe that they were concerned only if a 

query was answered or not. Unfortunately, their results are 

outdated today. 

Another one is a still ongoing project and a still updated 

online article of the developers of Knot DNS aimed to 

compare the performance of several authoritative DNS 

servers [16]. They used the same measurement method as 

in [15] thus also lacking of timeout value. They 

characterized the performance of the authoritative DNS 

servers by their response rate. The results are graphs 

showing the number of received answers as a function of 

the number of sent queries, as illustrated in Fig. 1. 

(Alternatively, the results can also be viewed as response 

rate percentage, as in [15].) Whereas we admit that these 

 
 

FIGURE 1.   Response rate of different authoritative DNS servers. [16]  
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graphs can be useful for DNS server developers, we 

contend that for a DNS operator, it is redundant, whether a 

given DNS server can answer 40% or 80% of the queries at 

a given rate: the DNS server is unusable in both cases. We 

consider that the lack of timeout value is another serious 

problem from the DNS operators’ point of view: a response 

is completely useless for the users if it comes more than a 

second later than the query was sent: the client software 

will timeout and resend the query1. Although we contend 

that the results of our measurement method described in 

Section II.B are more suitable for DNS operators than that 

of the method used in [16], we have found their results 

valuable and we used them in Section III.B. 

The developers of the YADIFA DNS server 

implementation have also published their performance 

comparison results of YADIFA 1.0.0, NSD 3.2.10, Knot 

DNS 1.0.5, and BIND 9.9.1. [17]. They also used 

tcpreplay and no timeout was mentioned. The date of 

their measurements has not been disclosed, but their results 

are now outdated due to the old software versions and 

obsolete hardware. 

Section 9 of RFC 8219 [7] defined a benchmarking 

methodology for DNS64 servers in 2017. Please refer to [8] 

for more details and considerations behind the method 

described in the RFC. They both state that during the self-

test of the Tester, the AuthDNS (authoritative DNS server) 

subsystem of the Tester should be benchmarked with the 

same method as the DNS64 servers, but with a different 

timeout value. Thus it can be said that RFC 8219 has 

implicitly defined a benchmarking method for authoritative 

DNS servers (although it was intended for a special purpose 

only). As for tools, none of the before mentioned ones 

comply with the requirements of RFC 8219. As far as we 

know, the only RFC 8219 compliant DNS/DNS64 tester is 

Dániel Bakai’s dns64perf++ [18]. 

B.  SELECTED BENCHMARKING METHOD 

To support DNS64 benchmarking with our results, we 

had to perform RFC 8219 compliant benchmarking 

measurements. We shall examine, whether the conditions of 

RFC 8219 are appropriate, when the results are intended to 

support DNS operators in their authoritative DNS server 

selection. 

The measurement procedure of the DNS64 

benchmarking test defined in RFC 8219 follows RFC 2544 

both in its wording and in its spirit: 

 The Tester sends AAAA record requests at a 

constant rate for at least 60 seconds, it receives the 

replies, and checks if they are valid (they contain an 

AAAA record and arrived within timeout time).  

                                                 
1 The one second timeout is our experimental result, measured by using 

Firefox under Windows 7 [8] and now confirmed under Windows 10. 

Other software may behave somewhat differently, however, “human 
timeout” (that is, our patience) does not allow significantly higher timeout 

value than a few seconds for the majority of the client software. 

o If the number of valid replies is equal with the 

number of queries sent, then the query rate is 

increased and the test is rerun. 

o If the number of valid replies is less than the 

number of queries sent, then the query rate is 

decreased and the test is rerun. 

In practice, a binary search is used to find the highest rate 

at, at which the number of valid replies is equal with the 

number of queries sent (as it is usually done by RFC 2544 

compliant commercial testers, too). 

For benchmarking DNS64 servers, the timeout time was 

chosen as 1 second, and 0.25s was specified for 

benchmarking the authoritative DNS server subsystem 

during the self-test of the Tester [8]. Let us consider, 

whether this 250ms timeout is a good one, when our results 

are intended to support DNS operators. Although, DNS is 

used by many types of applications, in a typical case, it is 

used for resolving domain names for web browsers. A 

typical URL looks like “http://acme.com”, and the resolver 

(local caching only DNS server) has already cached the IP 

address of the DNS server responsible for the “com” 

domain, thus only one request and reply is needed. In this 

case, the maximum 250ms response time of the 

authoritative DNS server is acceptable. There may be cases, 

when multiple subdomains are used (like in the case of the 

URL: “http://www.hit.bme.hu”) and thus more requests and 

replies are needed, thus a shorter timeout is required, 

therefore, we have checked our results using 100ms 

timeout, too. 

The absolutely 0% loss required by RFC 8219 results is 

no problem, when the results are intended to support DNS 

operators, but this criterion might be too strict. In some 

cases, we also apply other criteria, which allow e.g. 0.01% 

or 0.1% packet loss. 

As for measurement traffic, RFC 8219 requires all 

different queries to eliminate the effect of caching. We 

followed this approach, which often required the usage of 

huge zone files, see Section III.D.2 for details. 

III.  MEASUREMENTS 

In this section, first, we give an introduction to 

dns64per++, the measurement program used for testing, 

second, we give our considerations, why the given four 

DNS implementations were selected, third, we describe our 

different measurement setups, finally, we disclose the 

details of our measurements. 

A.  INTRODUCTION TO DNS64PERF++ 

A detailed description of the original dns64perf++ 

measurement program can be found in our open access 

paper [18], thus we mention only a few things, which are 

necessary to understand the rest of our current paper. 

However, we must give somewhat deeper description of its 

new properties, which were developed later and have not 

been published yet. 
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The dns64perf++ program has been written in C++14 

and it is a command line tool running under Linux. It 

performs one test: it sends queries at the required rate, 

receives and validates the replies. The binary search is done 

by a bash shell script, which performs it at least 20 times as 

required by RFC 8219. 

To be able to send all different queries during a given 

test, dns64perf++ uses the following independent 

namespace: {000..255}-{000..255}-{000..255}-

{000..255}.dns64perf.test. 

When DNS64 testing is done, a subset of this namespace 

is used, and it has to be resolved to the corresponding IPv4 

addresses by authoritative DNS server. The namespace to 

be used by the tester is described by the corresponding IPv4 

network using CIDR (Classless Inter-Domain Routing) 

notation. For example, 10.0.0.0/8 identifies the following 

namespace: 

10-{000..255}-{000..255}-{000..255}.dns64perf.test. 

As dns64perf++ sends queries for AAAA records, 

when an authoritative DNS server is benchmarked (called 

the “self-test of the tester” in RFC 8219 terminology), the 

authoritative DNS server has to be configured to provide 

AAAA records.  

In this paper, we refer to the size of the zone file with the 

mask of the corresponding IPv4 network, e.g. “/8”.  

The original test program used a self-correcting timing 

algorithm, which caused significant inaccuracies at higher 

than 50,000qps (queries per second) rates. This problem 

was investigated and the timing algorithm was replaced by 

a simpler one [19], which is now included in its mainline 

version [20]. 

The original test program used only two threads, one for 

sending and one for receiving. Now, it can use n times two 

threads, providing much higher performance. It is also able 

to use a high number of different source ports for sending 

the queries, which proved to be a prerequisite of 

benchmarking at high query rates, see Section III.E.1. 

Originally, it used IPv6 and as transport protocol (for 

sending queries and receiving replies), which was 

completely adequate for benchmarking DNS64 servers. 

Now it can use also IPv4, which permits testing up to 

higher rates.  

During our preliminary measurements, we have 

observed that its threads were moved among the CPU cores 

by the scheduler during the execution of the tests. 

Therefore, we have added a new feature that sets the 

affinity of the threads so that the sender threads and the 

receiver threads are pinned to cores 0 – (n-1) and to cores n 

– (2n-1), respectively. The modified files are available 

from [21]. 

We note that dns64perf++ was designed to work in 

two phases. First, the requests are sent and the replies are 

received and the relevant information (e.g. sending and 

receiving timestamps) are stored in huge arrays. This is 

done by n times two threads. Then, the evaluation is done 

as a sequential process. At high rates (e.g. 1-2 million 

queries per second), the execution time is dominated by the 

second phase. Thus, the execution time highly depends on 

the actual rates. For example, when the performance of a 

DNS or DNS64 server is a few times 10,000qps, the initial 

range can be [0, 50,000]. The execution time of the required 

20 repetitions of the binary search consisting of 16 steps 

each is typically 6-8 hours. On the other hand, when the 

performance of a DNS server is about 3,000,000qps, the 

initial range can be [0, 3,300,000]. The execution time of 

the required 20 repetition of the binary search consisting of 

22 steps each is about a day. (Both, because the binary 

search requires more steps, and because the execution of a 

60s long test lasts for several minutes due to the sequential 

evaluation process.) These numbers are important, when a 

high number of measurements are required e.g. due to 

testing with all possible parameter combinations.  

B.  SELECTED AUTHORITATIVE DNS SERVER 
IMPLEMENTATIONS 

As for authoritative DNS server implementations to be 

tested, we have considered only free software [22] (also 

called open source [23]) for the same reasons given in [24]. 

ISC BIND [25] is the de facto industry standard DNS 

server, thus even if we knew that other implementations 

had higher performance, we considered important to 

include it.  

NSD [27] was selected because of our good experience 

with it: its single core performance was found higher than 

the 16-core performance of BIND [9]. 

Knot DNS [26] was selected on the basis of the 

performance measurement results of its developers [16]. 

YADIFA [28] was included because RFC 8219 mentions 

198.18.0.2/24

DUT
Dell PowerEdge 
C6620 /  R430 

(running DNS server) 

198.18.0.1/24

Tester
Dell PowerEdge 
C6620 / R430 

(running dns64perf++) 

DHCP

DHCP

10G Ethernet
direct cable /

VLAN  

Test Systems

 
FIGURE 2.   Measurement setup for all types of measurements. 
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it, and according to our previous experience it outperformed 

BIND [9]. 

As for further free software DNS implementations, we 

have also considered PowerDNS [29], but we did not select 

it. The results of the Knot DNS developers showed that 

PowerDNS could not comply with the 0% loss criterion of 

RFC 8219 even at 100,000qps rate (please see the original, 

interactive version of our Fig. 1: it could answer only 

99,450 queries per second [16], and it produced 1.7% loss 

at 400,000qps rate, which we consider unacceptable for 

authoritative DNS server function). Unbound is also a well-

known high performance recursive DNS server, but it does 

not have an authoritative DNS server function.  

C.  TEST SYSTEMS FOR BENCHMARKING 

The benchmarking experiments were carried out in the 

NICT StarBED, Japan. We used two types of servers (N 

nodes and P nodes), because they both had their advantages 

over the other one. The N nodes were Dell PowerEdge 

C6620 servers with 16 physical cores, and their clock 

frequencies could be set to a fixed value, which was an 

important advantage [8]. The P nodes were Dell PowerEdge 

R430 servers with 32 physical cores, which was also 

important, when the performance was examined as a 

function of the number of CPU cores. 

We used four test systems with the same logical 

construction as shown in Fig. 2. The components of the 

four test systems are detailed in Table 1. 

As we have pointed out performance differences among 

our three test systems consisting N nodes during our earlier 

tests [9], we performed the same kinds of tests of each 

examined DNS implementation using the very same 

computers and used the different test systems for different 

kinds of tests.  

As for the settings of the computers, hyper-threading was 

disabled in the BIOS of all computers to ensure stable 

results [8]. To make always the DUT (Device Under Test) 

the bottleneck, Turbo Mode was disabled in the DUTs and 

enabled in the Testers. The clock frequencies of the N 

series DUTs (n015 and n018) was set to fixed 2GHz using 

the same BIOS setting as in [9]. However, we could not do 

the same with the P series DUTs (p102 and p104), finding 

no such settings in their BIOS. 

TS2 (Test System 2) and TS3 were our primary testbeds, 

which we used for the scale-up tests. TS1 and TS4 were 

their “back-ups”, they were added to offload some 

measurements (e.g. zone file size tests and also scale up 

tests of DNS servers with lower performance) from TS2 

and TS3 and thus speed up experimentation.  

We need to mention another difference between the two 

types of nodes: their cores are enumerated differently, 

which also influences their apparent NUMA (Non-Uniform 

Memory Access) architecture. In the N series nodes, CPU 

cores 0-7 (called cpu0 - cpu7 under Linux) belong to the 

first physical CPU and NUMA node 0, and cores 8-15 

belong to the second physical CPU and NUMA node 1. In 

the P series nodes, the even number cores (cores 0, 2, 4, … 

28, 30) belong to the first physical CPU and NUMA node 

0, and the odd number cores (cores 1, 3, 5, … 29, 31) 

belong to the second physical CPU and NUMA node 1. 

Thus, in both cases, the first physical CPU is NUMA node 

0 and the second physical CPU is NUMA node 1, the only 

difference is the order, in which the cores are enumerated 

by the Linux kernel. However, this order may make a 

difference, when the first n number of cores are enabled 

during the tests (see its effect for the scale up tests in 

Section IV). 

D.  TYPES OF TESTS AND THEIR MOST IMPORTANT 
PARAMETERS 

The performance of the examined four authoritative DNS 

server implementations may depend on several factors, 

such as the number of active CPU cores of the DUT, the 

size of the zone file, the timeout value, and the hardware 

type of the DUT. The number of all combinations of their 

possible values were too high to use them all. Hence, we 

used those combinations, which we found meaningful 

during our preliminary tests.  

1)  SCALE UP TEST 

The aim of these tests was to examine, how the 

performance of the four tested DNS server implementations 

scaled up as the number of CPU cores were increased. 

Following our earlier practice, we doubled the number of 

active CPU cores starting from one (instead of increasing 

them one by one) to reduce the necessary number of tests 

[9].  

In order to support RFC 8219 compliant DNS64 

benchmarking tests, we needed to ensure all different 

domain names for a 60s long test at all used query rates. It 

means that we had to choose large enough zone files for our 

tests. (Table 2 shows the number of entries and the 

maximum usable query rate of a 60s long test as a function 

of the zone file size.) To fulfill this requirement, we 

performed preliminary measurements to assess the 

performance of the DNS implementations using various 

number of CPU cores in order to be able to determine the 

necessary zone file size for the scale up tests. Both Knot 

DNS and NSD performed over 1.5Mqps and 2.5Mqps using 

TS2 and TS3, respectively. Therefore, we had to use /5 and 

/4 size zone files for their scale up tests on TS2 and TS3, 

respectively. Our preliminary tests showed that BIND and 

YADIFA could not achieve higher performance than 

TABLE I 
THE BUILDING ELEMENTS OF THE TEST SYSTEMS 

Test 

System 

Tester 

node 

Tester 

speed 

DUT 

node 

DUT 

speed 

connection 

1 n014 2-2.4GHz n015 2GHz direct cable 

2 n017 2-2.4GHz n018 2GHz direct cable 
3 p101 1.2-2.6GHz p102 1.2-2.1GHz VLAN 3251 

4 p103 1.2-2.6GHz p104 1.2-2.1GHz VLAN 3253 
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260,000qps, thus a /8 size zone file was enough for them 

and their performance was measured using T1 and TS4. 

Generally, the zero loss criterion of RFC 8219 was used, 

but in some cases we have experienced that the results of 

the 20 measurements were very much scattered, and when 

we have examined the measurement log files, we saw that 

the tests failed due to a low number of missing replies. In 

these cases we also used 99.99% valid answers as 

acceptance criterion. 

2)  ZONE FILE SIZE TEST 

The aim of these tests was to examine, how the size of 

the used zone file influenced the performance of the four 

tested DNS server implementations. We performed these 

tests by doubling the size of the zone file (four times) from 

/8 to /4. In addition to that, the low performance of BIND 

allowed it to be tested with smaller zone files (from /11 to 

/9), too. For these tests, we used TS1 and TS4.  

Our approach was to execute these tests using only a 

single CPU core, to reduce the performance of the tested 

DNS servers thus enabling the usage of smaller zone files. 

It was successful with both BIND and NSD. However, the 

single core results of Knot DNS and YADIFA were too 

much scattered, thus they were unsuitable for examining 

how the size of the used zone file influenced the 

performance of these DNS implementations. 

For testing Knot DNS, we used 99.99% and 99.9% valid 

answers as acceptance criterion with TS1 and TS4, 

respectively. 

For testing YADIFA, we used eight CPU cores, as its 

performance was still moderate enough allowing the usage 

of a “/8” size zone file. 

3)  TIME-OUT TESTS 

The aim of these tests was to examine, how the specified 

timeout value influenced the performance of the four tested 

DNS server implementations. Our preliminary results 

showed that the applied 250ms and 100ms values resulted 

in very little differences (please see the actual values later), 

thus only a few tests were performed to check the validity 

of this observation in various critical working points. (All 

four tests systems were used.) 

E.  OTHER RELEVANT PARAMETERS 

1)  USAGE OF HIGH NUMBER OF DIFFERENT SOURCE 
PORT NUMBERS 

When authoritative DNS servers are used in real life, the 

requests usually arrive from different source IP addresses 

and also from different source ports. (Even if the majority 

of the requests comes from a few recursive servers, the 

source port numbers used by a given recursive DNS server 

must be different to comply with the requirements of the 

RFC 5452 [30].) 

When authoritative DNS servers are used to support 

DNS64 benchmarking, the requests are coming from the 

same IP address, but the source ports should be still 

different for the same reason as above. (In the case of the 

major DNS64 implementations, namely BIND, PowerDNS 

and Unbound [31], we have checked that they complied 

with this rule [32].) 

Neither RFC 8219, nor our paper on the benchmarking 

methodology for DNS64 servers [8] mentions the usage of 

high number of different source port numbers as 

requirement for the Tester, but now we contend that they 

should have done so. We consider it important for both 

theoretical and practical point of view. 

Under “theoretical” we mean that the usage of high 

number of different source ports is necessary for proper 

testing, because the tested DNS / DNS64 implementations 

may use the SO_REUSEPORT socket option for 

distributing the traffic among their multiple threads or 

processes [33]. (This socket option is supported since Linux 

kernel version 3.9.) A Tester without the capability of using 

a high number of source ports is simply not suitable for 

benchmarking of those DNS / DNS64 implementations that 

use the aforementioned socket option. 

Under “practical” we mean that multi-core operating 

systems may use also source port numbers in the hash 

function to distribute the interrupts evenly among the CPU 

cores, which is a prerequisite for receiving several millions 

of packets per second [34]. We used the following 

command to distribute the interrupts evenly among the 

CPU cores: 
ethtool -N interface rx-flow-hash udp4 sdfn 

In this case, the source and destination IP addresses and 

port numbers are included in the hash function. As the other 

three numbers are constants during the tests, the interrupts 

cannot be distributed among the CPU cores without using a 

high number of different source port numbers and the 

capacity of the single core used by the interrupts becomes a 

bottleneck. 

In all our measurements, we used the highest possible 

number of threads in dns64perf++, it means that 8 

thread pairs on n014 and n017, and 16 thread pairs on p101 

and p103. We used 4,000 different port numbers by each 

sending threads of dns64perf++, thus altogether 32,000 

or 64,000 different source ports were used. (We note that 

the mainline version of dns64perf++ starts the source 

port numbers from 10,000, thus we have changed it to 1024 

in the source code.)  

TABLE II 

THE MAXIMUM QUERY RATE AS A FUNCTION OF THE ZONE FILE SIZE 

Size Number of 

entries 

Maximum 

query rate 

/11 2097152 34952 
/10 4194304 69905 

/9 8388608 139810 

/8 16777216 279620 

/7 33554432 559240 

/6 67108864 1118481 

/5 134217728 2236962 

/4 268435456 4473924 
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2)  TO OPTIMIZE OR NOT TO OPTIMIZE? 

On the one hand, one can argue that it is fair to consider 

the very best results of each tested DNS server 

implementations, suggesting that they should be optimized 

for benchmarking. This would include their recompilation 

and fine tuning.  

However, on the other hand, this could be a never ending 

game: different tests would require different settings, and 

one could never be sure, if the best performance has already 

been found or not. Such optimization would also require a 

very deep knowledge of all tested implementations, which 

we do not have. Our most important argument against such 

tuning is that the results would be irrelevant for the 

majority of their users because the users usually use them 

as they are included in their favorite Linux distribution. 

Therefore, we also used them as they were installed 

using Debian 9.6.  

3)  CONFIGURATION SETTINGS OF THE DNS SERVERS 

In general, we have made only the absolutely necessary 

changes to the default configuration files of the DNS 

servers, which means the setting of the zone name and zone 

file. In the case of NSD, we had to make further changes, 

because otherwise it would have used only a single CPU 

core. The new settings were: 
server: 

  server-count: n # = no. of active cores 

  reuseport: yes  # enable SO_REUSEPORT 

The other three DNS implementations automatically used 

multiple threads.  

4)  SETTING THE NUMBER OF ACTIVE CPU CORES AT 
THE DUT 

The number of active CPU cores at the DUT was set by 

using the maxcpus=n kernel parameter. 

We note that first, we tried using the method for 

switching the CPU cores on and off on the fly described in 

[9], but then we have received scattered measurement 

results using the N nodes. Then we used the above 

mentioned method (with rebooting the operating system), 

but there were still problems with the scattered results. 

Then our colleague, Gábor Horváth, who teaches Computer 

Architecture at the Budapest University of Technology and 

Economics, advised us to completely power off the node 

(not only reboot it). It was done by using the “Hard Reset 

(Restart)” power control action of the “Dell Remote 

Manager Controller” of the given N node, which has solved 

the issue. We have used this power control action always, 

when the number of active CPU cores were changed. We 

have not tested whether it was necessary or not, rather we 

used its equivalent “Power Cycle System (cold boot)” with 

the P nodes. We plan to investigate this phenomenon later 

on.  

5)  HARDWARE PARAMETERS AND SOFTWARE 
VERSION NUMBERS 

For the repeatability of our results, we give the most 

important hardware parameters and software version 

numbers. 

The N nodes were Dell PowerEdge C6620 servers with 

two Intel Xeon E5-2650 2GHz CPUs, having 8 cores each, 

and 16x8GB 1333MHz DDR3 RAM. We used one of their 

Intel 10G 2P X520 (fiber) network adapters. 

The P nodes were Dell PowerEdge R430 servers with 

two Intel Xeon E5-2683 v4 2.1GHz CPUs, having 16 cores 

each, and 12x32GB 2400MHz DDR4 RAM. We used one 

of their Intel 10G 2P X540 (copper) network adapters. 

The version numbers of the tested DNS servers were the 

following: 

 BIND 9.10.3-P4-Debian 

 NSD 4.1.14 

 Knot DNS 2.4.0 

 YADIFA 2.2.3-6237 

The earlier installed Debian Linux systems were 

upgraded to 9.6 on all nodes. As the update of Debian does 

not update the Linux kernel, the kernel release was 4.9.0-4-

amd64 and 4.9.0-8-amd64 on the N nodes and on the P 

nodes, respectively. 

As for dns64perf++ [20], its multiport branch was 

used (commit d6fa119 on Oct 8 2018) with our 

aforementioned modifications (adding affinity, and starting 

the source ports from 1024). It was compiled by clang 

3.8.1-24 enabling packet sending over IPv4 by using the 

“IPV4=1” make parameter. 

IV.  RESULTS AND EVALUATION 

During the presentation and discussion of the results, 

first, we focus on the behavior each DNS server separately, 

and compare them in the end.  

We usually begin the discussion of each DNS server with 

some general information about it. Next, the scale up test 

results are presented and discussed, and we deal with the 

zone file size test after them. The timeout test is not 

handled separately, it was rather integrated with the scale 

up and/or the zone file size tests. 

As for summarizing function of the results of the 20 

measurements, RFC 8219 requires to use median, and as for 

index of dispersion of the results, it requires the 

presentation of 1st percentile and 99th percentile, which are 

the minimum and maximum values, when we have less 

than 100 measurement results. When the given authoritative 

DNS implementation is intended to be used to support 

DNS64 benchmarking, then the 1st percentile should to be 

taken into consideration, so that the insufficient 

performance of the authoritative DNS server may not 

impact the DNS64 measurement results. When the results 

are intended to support DNS server operators, then we 

recommend to use the median.  

In [9], we have introduced another measure as follows: 

%100
median

percentile1percentile99
dispersion

stth




  (1) 



 

VOLUME XX, 2017 9 

It can be used to judge the quality of the results. If it is 

low (e.g. below 5%) then the results are consistent. Its 

higher and higher values indicate more and more scattered 

results.  

Unfortunately, scattered results may be either an inherent 

property of a given DNS server implementation, or they 

may come from somewhere else and thus indicate for 

example a hardware issue or even a bug or performance 

deficiency in the measurement software, dns64perf++. 

After the evaluation of the results, we show that the 

performance of dns64perf++ is definitely enough up to 

3.3 million queries per second rate, when it is executed by a 

P node with Turbo Mode enabled. 

A.  BIND 

Before the presentation of the results, we need to touch 

an important feature of BIND. When BIND is started, it 

provides several pieces of useful information through 

syslog. Among others, it writes the following two lines: 
found n CPUs, using n worker threads 

using m UDP listeners per interface 

The number of the worker threads equals the number of 

the active CPU cores, but it uses a special heuristic to set 

the number of the UDP listeners. 

 When there are 1 or 2 active CPU cores, then the 

number of the UDP listeners equals the number of 

the CPU cores. 

 When the number of the active CPU cores is 4 or 

higher, then the number of the UDP listeners equals 

the half of the number of the CPU cores. 

This heuristic has significant consequences on the 

performance of BIND. 

1)  SCALE UP TEST 

The authoritative DNS server performance results of 

BIND as a function of the number of active CPU cores 

using a “/8” size zone file measured by TS1 (Test System 1, 

the DUT is an N node) are presented in Table III. The 

performance of BIND visibly scales up very well from one 

to two cores, but there is conspicuous glitch at four cores. 

The bottleneck is deliberately the number of UDP listeners 

(two). At higher number of cores, the performance of BIND 

scales up well again. The five performance results 

measured using 250ms timeout are complemented with two 

results measured using 100ms timeout.  Let us consider first 

the single CPU core result in the last but one column of the 

table. Due to the smaller timeout value, the median has 

decreased by 12% from 19,792qps to 17,409qps and the 

dispersion of the results increased from 1.6% to 5.9%.  As 

for the result of the 16-core test with 100ms timeout, the 

value of the median did not change significantly (the slight 

increase must be a measurement error), only the dispersion 

increased from 1.78% to 2.78%. The second behavior can 

be explained by the fact that with four cores and above, the 

TABLE III 
AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES, BIND, “/8”, TS1, 0.25S (0.1S) 

Num. CPU cores 1 2 4 8 16 1 16 

Median (qps) 19792 38928 37596 77244 140372 17409 140720 

1st percentile (qps) 19477 37499 37565 76166 138621 16383 137448 

99th percentile (qps) 19794 38963 37604 77539 141119 17411 141358 
Dispersion (%) 1.60 3.76 0.10 1.78 1.78 5.90 2.78 

 
 

TABLE IV 

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES, BIND, “/8”, TS4, 0.25S (0.1S) 

Num. CPU cores 1 2 4 8 16 32 1 32 

Median (qps) 28205 44082 47537 85816 153736 259935 28203 259528 
1st percentile (qps) 28067 43895 43749 74168 152928 253127 27977 249999 

99th percentile (qps) 29688 44269 48597 88090 156311 264362 28640 265747 
Dispersion (%) 5.75 0.85 10.20 16.22 2.20 4.32 2.35 6.07 

 
 

TABLE V 

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES, BIND, “/5”, TS2, 0.25S  

Num. CPU cores 1 2 4 8 16 

Median (qps) 8386 20798 18403 38286 68514 
1st percentile (qps) 8383 18733 18067 37505 65624 

99th percentile (qps) 8388 20827 18421 38910 68994 

Dispersion (%) 0.06 10.07 1.92 3.67 4.92 

 
 

TABLE VI 

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES, BIND, “/4”, TS3, 0.25S  

Num. CPU cores 1 2 4 8 16 32 

Median (qps) 8325 15424 9342 22455 48728 75654 
1st percentile (qps) 8325 12492 9334 21751 47494 75324 

99th percentile (qps) 8325 15426 9345 23444 49323 75780 

Dispersion (%) 0.00 19.02 0.12 7.54 3.75 0.60 

 

 



 

VOLUME XX, 2017 9 

bottleneck is the number of receivers, and thus if a request 

is successfully received, then it will be replied soon, thus 

the smaller timeout does not influence the achievable rate, 

which is also confirmed by our TS4 results below. (We 

mean it for the median. Of course, random events in the 

measurement system may influence the 1st percentile more, 

when the timeout is smaller). 

The results measured by TS4 (the DUT is a P node) are 

presented in Table IV. Similar tendencies can be observed: 

BIND scales up well, and there is a glitch at 4 cores. 

However, there are significant differences, too. Especially 

at 4 and 8 cores, there is high (more than 10%) dispersion, 

which is also significant (more than 5%) at 1 core. The high 

dispersion could be attributed to the varying CPU clock 

frequency of the P nodes, but the dispersion is low (less 

than 1%) at two cores. The last two columns of the table 

show our results with 100ms timeout using 1 or 32 cores. 

The decrease of the medians is negligible in both cases (in 

our opinion it is very likely less than the error of the 

measurements). 

Comparing the results of TS1 and TS4, we can see that 

the performance gain of the newer system highly depend on 

the number of CPU cores used. With a single core, the 

median performance grows by 42.5% from 19,792qps to 

28,205qps, whereas the increase from 140,372qps to 

153,736qps is only 9.5% with 16 cores, which we consider 

inconsistent. 

We have executed the scale up test measurements also 

with a “/5” size zone file using TS2. The results are shown 

in Table V. The tendencies are very similar to that of the 

results produced by TS1, since both DUTs were N nodes. 

The results measured by TS3 using a “/4” size zone file 

are presented in Table VI. Here, the situation is even worse 

than in the case of TS4 in two aspects.  

1. There is a high dispersion at 2 cores, which is caused 

by a single outlier. We have performed this test 4 

times, and always there was a single outlier, which 

fell in the 12,300qps – 15,500qps range. 

2. The performance sharply falls back at 4 cores.  

We attribute this phenomenon to design problems of 

BIND and did not invest any more effort into its 

investigation for the following reasons: 

1. Similar problem is identified in the next subsection. 

2. As we have pointed it out in [9], BIND had also a 

serious performance problem, when it was used as a 

DNS64 server. (Its performance did not scale up 

over 4 cores at all. We have reported it to the 

developers as [ISC-Bugs #46924] in 2017, but we 

have not received any reply so far.) 

3. As it is shown later in this paper, BIND was 

significantly outperformed by other DNS 

implementations. 

Thus, we believe that it is not worth the effort to do a 

deeper analysis of the anomalies of BIND. 

2)  ZONE FILE SIZE TEST 

The authoritative DNS server performance results of 

BIND as a function of the size of the zone file measured by 

TS1 using a single CPU core are presented in Table VII. 

The overall tendency is exactly, what we expected on the 

basis of the previous results: the performance decreases as 

the size of the zone file increases. It can be easily explained 

by computer architectural causes. Considering, that BIND 

uses somewhat more than 4GB memory, when it loads a /8 

zone file and the CPU has only 20MB cache, the 

explanation has nothing to do with caching but the reason 

can be the decreasing TLB (Translation Lookaside Buffer) 

coverage. 

However, similarly to the scale up test, we can also 

observe a glitch: when the size of the zone file is doubled 

from “/7” to “/6” the performance shows a significant 

increase. We surmise that there can be some kind of 

technology change behind, which is somewhat ill 

positioned by an inappropriate heuristic. (Such as changing 

form a linked list representation to a B-tree representation 

at too high number of elements in date storage and retrieval. 

But that is intended to be a simile only, nothing more.) 

The results measured by TS4 are presented in Table VIII. 

Similar tendencies can be observed: the performance 

globally decreases as the zone file size increases, but there 

is a glitch at the “/4” size zone file. We have also performed 

TABLE VII 

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF ZONE FILE SIZE, BIND, 1 CPU CORE, TS1, 0.25S 

Num. CPU cores /11 /10 /9 /8 /7 /6 /5 /4 

Median (qps) 23520 24029 21437 19251 11729 14014 9374 6849 

1st percentile (qps) 23484 23436 21406 18749 11729 13961 9370 6849 
99th percentile (qps) 23560 24072 21485 19287 11731 14026 9374 6849 

Dispersion (%) 0.32 2.65 0.37 2.79 0.02 0.46 0.04 0.00 

 

 
TABLE VIII 

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF ZONE FILE SIZE, BIND, 1CPU CORE, TS4, 0.25S 

Num. CPU cores /8 /7 /6 /5 /4 /3 

Median (qps) 28645 22286 20450 13267 13809 4300 

1st percentile (qps) 28124 22067 20435 13084 12352 4168 
99th percentile (qps) 28839 23439 21100 13267 13811 4300 

Dispersion (%) 2.50 6.16 3.25 1.38 10.57 3.07 
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a measurement with a “/3” size zone file and its 

performance result was about one third of the performance 

measured with a “/4” size zone file. 

B.  NSD 

Unlike the other three authoritative DNS server 

implementations, NSD does not use multiple threads, it 

rather uses multiple processes. We set the server-

count value always to the number of the active CPU 

cores. When NSD was started using n number of active 

CPU cores, NSD always started n+2 processes listening on 

port 53, however, only n of them were taking part in the 

service of the DNS queries.  

1)  SCALE UP TEST 

The authoritative DNS server performance results of 

NSD as a function of the number of active CPU cores using 

a “/5” size zone file measured by TS2 are presented in 

Table IX. NSD scales up well up to four CPU cores. 

However, significant problems can be observed at 8 cores, 

were the dispersion of the results is 15.07%. We have 

investigated its cause and found that some of the tests failed 

due to very small differences between the number of the 

sent requests and the number of the valid answers (less than 

0.01%). Therefore, we have repeated our tests with the 

99.99% acceptance criterion. The results, which are shown 

in Table X, confirmed our hypothesis: the dispersion has 

decreased at any number of cores, although in a different 

measure. For the results of 1-4 cores, the performance 

increase over the results in Table IX is very small (below 

3% concerning any of the values). Although the increase of 

the 1st percentile is significant at 16 cores, it does not really 

matter, because DNS64 benchmarking, for which the 1st 

percentile is used, does not tolerate packet loss. The 

increase of the median, which we consider important for 

DNS operators is only 5.67% (from 1,454,661qps to 

1,537,105qps). 

The authoritative DNS server performance results of 

NSD as a function of the number of active CPU cores using 

a “/4” size zone file measured by TS3 are presented in 

Table XI. Unfortunately, the results of the newer and higher 

performance DUT are lower than that of the older one from 

1 to 8 cores, but the situation changes at 16 cores. For an 

easier comparison of the performance of the two systems 

we have performed our measurements with the 99.99% 

acceptance criterion (to reduce the dispersion of the 

results). The results are shown in Table XII. Unfortunately 

the dispersion remained very high at 2 cores (30.43%), 

which was caused by the low 1st percentile value 

TABLE IX 

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES, NSD, “/5”, TS2, 0.25S (0.1S) 

Num. CPU cores 1 2 4 8 16 16 

Median (qps) 177432 327260 615192 1062615 1454661 1453490 

1st percentile (qps) 176512 324999 599950 999999 1399999 1399974 
99th percentile (qps) 178126 328828 619800 1160155 1500001 1500001 

Dispersion (%) 0.91 1.17 3.23 15.07 6.87 6.88 

 

 
TABLE X 

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES, NSD, “/5”, TS2, 0.25S (0.1S) 

ACCEPTANCE CRITERION: 99.99%, NON-RFC 8219 COMPLIANT! 

Num. CPU cores 1 2 4 8 16 16 

Median (qps) 177735 327515 617180 1089275 1537105 1538946 
1st percentile (qps) 177342 324999 612108 1065220 1523387 1524971 

99th percentile (qps) 178130 328321 619674 1168751 1550318 1553129 

Dispersion (%) 0.44 1.01 1.23 9.50 1.75 1.83 

 
 

TABLE XI 

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES, NSD, “/4”, TS3, 0.25S 

Num. CPU cores 1 2 4 8 16 32 

Median (qps) 166715 268721 405410 802359 1552845 2442195 
1st percentile (qps) 165226 190624 387499 734374 1413446 2085936 

99th percentile (qps) 168909 275079 425001 817398 1665530 2812523 

Dispersion (%) 2.21 31.43 9.25 10.35 16.23 29.75 

 

 
TABLE XII 

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES, NSD, “/4”, TS3, 0.25S (0.1S) 

ACCEPTANCE CRITERION: 99.99%, NON-RFC 8219 COMPLIANT! 

Num. CPU cores 1 2 4 8 16 32 32 

Median (qps) 178255 277996 448608 811774 1740020 3099333 2954180 
1st percentile (qps) 174999 198338 437499 799950 1656004 3074752 2936185 

99th percentile (qps) 181446 282940 457032 818754 1752930 3125013 2966732 

Dispersion (%) 3.62 30.43 4.35 2.32 5.57 1.62 1.03 
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(198,338qps). The dispersion was low at any other number 

of cores, thus we could check the effect of the timeout 

change. When the timeout value was decreased from 250ms 

to 100ms, the median changed from 3,099,333qps to 

2,954,180qps, which is only a 4.7% decline. Now, let us 

return to the performance comparison of the two types of 

nodes. We consider the median values of the results of the 

99.99% acceptance criterion tests of TS2 and TS3, shown 

in Table X and Table XII, respectively. The medians are 

approximately the same at a single core (177,735qps and 

178,255qps). At two cores, the result of TS2 is 327,515qps, 

which is a good scale up (84% growth), whereas the result 

of TS3 is 277,996qps, which is a significantly lower scale 

up (only 56% growth). We attribute this difference to the 

fact that the cores of the two types of CPUs are enumerated 

in a different order, as we detailed it at the end of Section 

III.C. It means that core 0 and core 1 belong to the same 

physical CPU (and NUMA node) in the DUT of TS2, 

whereas they belong to two different physical CPUs (and 

NUMA nodes) in TS3. Let us check our hypothesis: what 

happens, when the CPU (and NUMA) situation changes in 

TS2 from homogeneous to heterogeneous and it does not 

change in TS3 (as it is already heterogeneous in both 

cases). The median grows only by 41% from 8 cores 

(1,089,275qps) to 16 cores (1,537,105qps) in TS2. The 

increase of the median from 16 cores (1,740,020qps) to 32 

cores (3,099,333qps) is still 78% in TS3, which is nearly 

the double of the before mentioned 41%. Thus, we consider 

our hypothesis as confirmed. 

2)  ZONE FILE SIZE TEST 

The authoritative DNS server performance results of 

NSD as a function of the size of the zone file using a single 

CPU core measured by TS1 and TS4 are presented in Table 

XIII and Table XIV, respectively. They are in a complete 

agreement that the performance of NSD shows no 

significant decrease as the size of the zone file increases. 

They both confirm that the 100ms timeout value caused no 

change in the measured performance comparing to 

measurements with 250ms timeout value. 

C.  KNOT DNS 

According to the Knot DNS server documentation, the 

udp-workers directive, which should be placed into the 

server section of the configuration file, can be used to set 

the number of UDP workers (threads). In accordance with 

our approach disclosed in Section III.E.2, we did not set it, 

thus its default value was used, which is an “auto-estimated 

optimal value based on the number of online CPUs” [26]. 

1)  SCALE UP TEST 

The authoritative DNS server performance results of 

Knot DNS as a function of the number of active CPU cores 

using a “/5” size zone file measured by TS2 are presented 

in Table XV. Unfortunately, the performance of the Tester 

was unsatisfactory for the tests with 16 cores (high number 

of received packets were reported to be lost by the Ethernet 

interface). For this reason, the values in this column of the 

table do not reflect the true performance of Knot DNS. We 

exclude them from the detailed analysis, but we still present 

them to show that they are higher than the results of NSD. 

The performance of Knot DNS scales up well up to 8 cores 

(and very likely up to 16 cores, too) considering both the 

median and the 1st percentile, but the results are very 

scattered from 1 to 4 CPU cores, which was caused by a 

small number of lost replies, as confirmed by our 

measurements using 99.99% acceptance criterion, shown in 

Table XVI. In the last column of this table, we included the 

100ms timeout values measured with 8 cores (as the results 

with 16 cores are limited by the performance of the Tester). 

The lower timeout value does not have a significant 

influence on the performance of Knot DNS (the very small 

increase from 1,167,716qps to 1,168,724qps is deliberately 

a measurement error). 

The authoritative DNS server performance results of 

Knot DNS as a function of the number of active CPU cores 

using a “/4” size zone file measured by TS3 are presented 

in Table XVII. The most salient problem is the 99,999qps 

1st percentile value at 2 cores. This test was executed three 

times and this value occurred each time, thus it is not a once 

 

TABLE XIII 

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF ZONE FILE SIZE, NSD, 1 CPU CORE, TS1, 0.25S (0.1S) 

Num. CPU cores /8 /7 /6 /5 /4 /8 

Median (qps) 184468 178115 178905 184019 181240 184498 
1st percentile (qps) 184031 176951 177733 182420 179686 184288 

99th percentile (qps) 184772 178517 179701 184571 181604 184741 

Dispersion (%) 0.40 0.88 1.10 1.17 1.06 0.25 

 

 
TABLE XIV 

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF ZONE FILE SIZE, NSD, 1CPU CORE, TS4, 0.25S (0.1S) 

Num. CPU cores /8 /7 /6 /5 /4 /8 

Median (qps) 165594 166067 167712 162409 163195 167873 

1st percentile (qps) 163929 162495 165526 160440 161692 149999 
99th percentile (qps) 169006 171924 169647 164941 165747 170568 

Dispersion (%) 3.07 5.68 2.46 2.77 2.48 12.25 
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happened random event, but an inherent property of Knot 

DNS, which we must count on if Knot DNS is used for 

DNS64 benchmarking. However, it is caused by a few 

missing answers, and thus it is absent from Table XVIII, 

which shows the result with 99.99% acceptance criterion 

measurements. Otherwise Knot DNS scaled up well. We 

would like to point out that although Knot DNS produced 

highly scattered results with TS2 from 1 to 4 cores, and its 

results with TS3 are extremely scattered at 2 cores, they are 

much better with higher numbers of cores. Considering 

TS3, the dispersion is under 10% from 4 to 32 cores and it 

is quite low at 4 and 32 cores. We note that its excellent 

 
TABLE XV 

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES, KNOT DNS, “/5”, TS2, 0.25S 

(THE RESULTS WITH 16 CPU CORES WERE LIMITED BY THE PERFORMANCE OF THE TESTER!) 

Num. CPU cores 1 2 4 8 (16) 

Median (qps) 163170 300454 594585 1164253 (1678872) 
1st percentile (qps) 137495 224999 449999 1099884 (1562491) 

99th percentile (qps) 163901 300977 596876 1166016 (1750001) 

Dispersion (%) 16.18 25.29 24.70 5.68 (11.17) 

 

 
TABLE XVI 

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES, KNOT DNS, “/5”, TS2, 0.25S (0.1S) 

ACCEPTANCE CRITERION: 99.99%, NON-RFC 8219 COMPLIANT! 

(THE RESULTS WITH 16 CPU CORES WERE LIMITED BY THE PERFORMANCE OF THE TESTER!) 

Num. CPU cores 1 2 4 8 (16) 8 

Median (qps) 166514 301323 596910 1167716 (1630054) 1168724 

1st percentile (qps) 162492 299999 549999 1162495 (1550780) 1162499 

99th percentile (qps) 167242 301758 598047 1169532 (1750977) 1171045 
Dispersion (%) 2.85 0.58 8.05 0.60 (12.28) 0.73 

 

 

TABLE XVII 
AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES, KNOT DNS, “/4”, TS3, 0.25S 

Num. CPU cores 1 2 4 8 16 32 

Median (qps) 119039 202235 355285 761424 1500439 2923327 

1st percentile (qps) 112474 99999 348411 699999 1484312 2894053 

99th percentile (qps) 125049 204369 358319 766632 1633057 2983339 
Dispersion (%) 10.56 51.61 2.79 8.75 9.91 3.05 

 

 

TABLE XVIII 
AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES, KNOT DNS, “/4”, TS3, 0.25S (0.1S) 

ACCEPTANCE CRITERION: 99.99%, NON-RFC 8219 COMPLIANT! 

Num. CPU cores 1 2 4 8 16 32 32 

Median (qps) 142197 235694 444991 839760 1773973 3233456 3230968 

1st percentile (qps) 124999 228124 437499 835541 1749999 3196773 3196773 
99th percentile (qps) 144262 238874 453209 845800 1812501 3238372 3238800 

Dispersion (%) 13.55 4.56 3.53 1.22 3.52 1.29 1.30 

 

 

TABLE XIX 
AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF ZONE FILE SIZE, KNOT DNS, 1 CPU CORE, TS1, 0.25S (0.1S) 

ACCEPTANCE CRITERION: 99.99%, NON-RFC 8219 COMPLIANT! 

Num. CPU cores /8 /7 /6 /5 /4 /8 

Median (qps) 162577 164552 156941 164549 161519 161967 

1st percentile (qps) 157811 163267 149997 149999 159374 149999 
99th percentile (qps) 162939 164868 157422 164848 161914 162262 

Dispersion (%) 3.15 0.97 4.73 9.02 1.57 7.57 

 

 
TABLE XX 

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF ZONE FILE SIZE, KNOT DNS, 1CPU CORE, TS4, 0.25S (0.1S) 

ACCEPTANCE CRITERION: 99.9%, NON-RFC 8219 COMPLIANT! 

Num. CPU cores /8 /7 /6 /5 /4 /8 

Median (qps) 191877 186085 191420 190843 184676 191754 
1st percentile (qps) 191014 185532 190624 187499 184227 190624 

99th percentile (qps) 192578 186816 191845 191407 185022 192969 

Dispersion (%) 0.82 0.69 0.64 2.05 0.43 1.22 
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results at 32 cores made it possible for us to check the 

performance of dns64perf++, please refer to Section 

IV.F for more details. 

2)  ZONE FILE SIZE TEST 

Due to the high dispersion of the results of Knot DNS at 

any number of CPU cores, the zone file size test was 

executed with the 99.99% acceptance criterion using Test 

System 1. The bar was lowered to 99.9% with Test System 

4 to produce non-scattered results. By doing so we do not 

state that the 99.9% reply rate would be acceptable for 

anyone, we used this value to be able to produce non-

scattered results for the comparison. 

The authoritative DNS server performance results of 

Knot DNS as a function of the size of the zone file using a 

single CPU core measured by TS1 and TS4 are presented in 

Table XIX and Table XX, respectively. Although there are 

some fluctuations, both tables show that neither the size of 

the zone file nor the timeout value have significant effect 

on the performance of Knot DNS.  

D. YADIFA 

1)  SCALE-UP TESTS 

The authoritative DNS server performance results of 

YADIFA as a function of the number of active CPU cores 

using a “/8” size zone file measured by TS2 are presented 

in Table XXI. At 1 and 2 cores, the results are very much 

scattered (dispersion is more than 20%). They improve at 4 

cores (dispersion is 4.4%), and the dispersion is only 0.44 at 

8 cores, where YADIFA reaches its highest performance.  

Its performance not only scales up poorly, but it also 

significantly degrades at 16 cores, which we consider a 

fundamental problem.  

Table XXII shows the results of YADIFA produced by 

TS4. They are even worse in the sense that they are always 

very scattered. We have included them only to show their 

quality and the performance degradation of YADIFA at 32 

cores. 

We have also executed the benchmarking tests with TS2 

and TS3, using “/5” and “/4” size zone files, respectively, 

but we do not include their results because they are very 

similar to that of TS1 and TS4 and thus they would not lead 

to any further conclusion. 

Because of the poor scale up of YADIFA, we did not see 

any point in producing more non-RFC 8219 compliant 

results, thus we did not test it with non-zero frame loss 

criterion. 

2)  ZONE FILE SIZE TEST 

The authoritative DNS server performance results of 

YADIFA as a function of the size of the zone file using 8 

CPU cores measured by TS1 are presented in Table XXIII. 

They show that neither the increase of the size of the zone 

file, nor the decrease of the timeout value from 250ms to 

100ms causes a significant change in the performance a 

YADIFA. 

E.  COMPARISON 

As for their performance, the examined four authoritative 

DNS server implementations evidently fall into two 

categories. BIND and YADIFA have shown moderate 

performance (less than 300,000qps), whereas NSD and 

Knot DNS gave an excellent performance, reaching 2-3 

million qps depending on the given conditions. Thus we 

concentrate on the latter two. 

 TABLE XXI 

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES, YADIFA, “/8”, TS1, 0.25S 

Num. CPU cores 1 2 4 8 16 

Median (qps) 133492 176214 195494 209600 147353 
1st percentile (qps) 96874 149901 187499 209251 146874 

99 percentile (qps) 133930 190872 196094 210181 147852 

Dispersion (%) 27.76 23.25 4.40 0.44 0.66 

 
 

TABLE XXII 

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES, YADIFA, “/8”, TS4, 0.25S 

Num. CPU cores 1 2 4 8 16 32 

Median (qps) 118366 129681 150536 166416 186528 168315 
1st percentile (qps) 95304 85529 85874 149217 149217 149999 

99 percentile (qps) 131251 131695 156251 175001 197729 171948 

Dispersion (%) 30.37 35.60 46.75 15.49 26.01 13.04 

 
 

TABLE XXIII 

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF ZONE FILE SIZE, YADIFA, 8 CPU CORES, TS1, 0.25S (0.1S) 

Num. CPU cores /8 /7 /6 /5 /4 /3 /8 

Median (qps) 209596 209383 197134 194700 196673 192876 208538 
1st percentile (qps) 209325 208585 196776 193700 196287 192176 207615 

99 percentile (qps) 210059 209766 197754 195340 196924 193214 209376 

Dispersion (%) 0.35 0.56 0.50 0.84 0.32 0.54 0.84 
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1)  OUR RECOMMENDATION FOR AUTHORITATIVE DNS 
SERVER OPERATION 

We contend that a DNS service may be acceptable for 

many ISPs and their users if a single query is lost from 

10,000 queries, therefore, we used the median values from 

Table X (NSD, TS2), Table XVI (Knot DNS, TS2), Table 

XII (NSD, TS3),  and Table XVIII (Knot DNS, TS3) for 

comparison. (For those DNS operators, who prefer higher 

standards, we recommend the usage of our comparison in 

the next subsection.) Our final results are shown in Fig. 3. 

Both implementations performed excellently, whereas NSD 

was somewhat better at low number of cores (1-4), Knot 

DNS was somewhat better at high number of cores (8-32). 

As for their performance, we recommend the usage of both 

servers.  

When selecting a DNS server implementation, operators 

need to consider several factors, including the following 

ones: 

 Functionality (e.g. authoritative, recursive, 

DNSSEC, DNS64) 

 Performance 

 Security, reliability, maturity of the code 

 Documentation and support 

 Experience with the software 

As both NSD and Knot DNS are used with some root 

DNS servers, we believe that they are both suitable for 

DNS server operators, too. We hope that our results will 

encourage DNS server operators to upgrade from BIND 

and thus achieve higher performance and/or save costs. 

2)  OUR RECOMMENDATION FOR DNS64 
BENCHMARKING 

To support DNS64 benchmarking, only the results of 

RFC 8219 compliant measurements can be used and the 1st 

percentiles should be taken into consideration, therefore, we 

used the 1st percentile values from Table IX (NSD, TS2), 

Table XV (Knot DNS, TS2), Table XI (NSD, TS3), and 

Table XVII (Knot DNS, TS3) for comparison. Our final 

results are shown in Fig. 4. Both implementations 

performed excellently. As for TS2 (DUT: Dell PowerEdge 

C6620), NSD performed significantly better with 1-4 cores, 

and Knot DNS produced higher results with 8-16 cores. On 

TS3 (DUT: Dell PowerEdge R430) NSD performed 

significantly better on 1-2 number of cores, their 

performance was similar on 4-16 number of cores, and 

Knot DNS performed significantly better on 32 cores. 

Considering the actual performance of existing DNS64 

servers [9], any of them and even BIND or YADIFA would 

do, but when high performance is needed (e.g. when testing 

a new, high performance DNS64 implementation), then it is 

worth selecting either NSD or Knot DNS, depending on the 

actual hardware environment. We also note that NSD 

requires a significant amount of time for starting as it builds 

its own database, for which it needs large amount of disk 

space, e.g. nearly 200GB for a “/4” size zone file. 

F.  CHECKING THE PERFORMANCE OF DNS64PERF++ 

The excellent performance of Knot DNS (using all 32 

cores of a P node) made it possible for us to check the 

performance of dns64perf++. TS4 was used, however, 

Turbo Mode was enabled in the DUT, too. We found that 

dns64perf++ could send and receive packets reliably at 

3.3 million qps rate. 

Without this test we could not be sure that the results in 

the last column of Table XVII and in the last two columns 

of Table XVIII reflect the performance of Knot DNS or that 

of our tester program dns64perf++.  

 

 
FIGURE 3.   Comparison of NSD and Knot DNS for DNS server 

operation. (The N node result of Knot DNS at 16 cores are limited by 
Tester performance.) 

 
FIGURE 4.  Comparison of NSD and Knot DNS for DNS64 
benchmarking. (The N node result of Knot DNS at 16 cores are limited 

by Tester performance.) 
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V.  DISCUSSION AND FUTURE WORK 

On the one hand, the number of processes of NSD were 

set exactly to the number of active CPU cores. Whereas it 

worked well with low number of active CPU cores, the 

situation was different with higher number of cores. On the 

other hand, Knot DNS used an auto-estimated optimal 

number of threads. Although it did not seem to work well at 

a low number of active CPU cores, it was excellent at 32 

cores. As the number of CPU cores is continuously 

growing, it seems that the developers of Knot DNS follow a 

good approach. 

We note that the selected RFC 8219 compliant 

benchmarking method using the latest version of 

dns64perf++ is not only the most suitable one for 

benchmarking DNS servers for DNS operators, but it is also 

the most economic one. Whereas the other solutions used 

five additional computers for testing a single server (please 

refer to [15] and [16]), we needed only a single computer as 

Tester, though we admit that Turbo Mode was enabled on 

the Tester and it was disabled on the DUT to make it the 

bottleneck. Disabling Turbo Mode was important also from 

analytical point of view. We mean it as follows. When 

Turbo Mode is enabled, a few number of cores may operate 

at the maximum turbo frequency, however, when all cores 

are enabled and have high load, their clock frequency is 

limited by the power budget determined by TDP (Thermal 

Design Power). Thus, when Turbo Mode is enabled, the 

doubling of the number of online CPUs does not always 

double the available computing power. 

We contend that the usage of high number of different 

source ports is a very important condition for a proper 

testing of DNS or DNS64 servers, thus we are considering 

to initiate an update to RFC 8219. We are also examining 

the possibility of writing and Internet Draft on 

benchmarking methodology for DNS servers (possibly 

including both authoritative and recursive ones). 

We are also considering to examine the computing power 

relative performance of the best performing DNS servers 

according to the methodology defined in [9] to assist energy 

efficiency aware DNS server administrators with another 

important factor for their DNS implementation selection. 

To make dns64perf++ even better, we plan the 

following improvements: 

 Enable it for using different local IP addresses for 

each thread pairs, thus provide each thread pair 

with 64,000 source ports (potentially).  

 Test different placements using CPU affinity. (E.g. 

to place the sender and corresponding receiver on 

neighboring cores.) 

 Parallelize the processing of the information in the 

second phase, which may significantly decrease 

execution time at high rates (e.g. over 1 million 

qps). 

We also plan to test and document the new features of 

dns64perf++ in a research paper. 

VI.  CONCLUSION 

We have surveyed the available methods for 

benchmarking authoritative DNS servers, and found that 

the one we defined in RFC 8219 for a special purpose (to 

support DNS64 benchmarking) is the most appropriate one 

also for examining the performance of the authoritative 

DNS servers for real authoritative DNS server usage (with 

some additions or modifications, such testing also with 

100ms timeout and allowing a small non-zero loss rate, like 

0.01%). 

We have carefully examined how the performance of 

BIND, NSD, Knot DNS, and YADIFA depends on 

different factors, such as the number of active CPU cores, 

the size of the zone file, the CPU architecture, and the 

timeout value. 

We have provided ready to use measurement results for 

selecting the most suitable DNS implementation both for 

authoritative DNS server usage and for DNS64 

benchmarking. 
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