

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Benchmarking Authoritative DNS Servers

G. Lencse1
1Department of Networked Systems and Services, Budapest University of Technology and Economics, Magyar tudósok körútja 2, H-1117 Budapest,

Hungary

Corresponding author: G. Lencse (e-mail: lencse@hit.bme.hu).

ABSTRACT In this paper, we examine the performance of four authoritative DNS server implementations

(BIND, NSD, knot DNS, and YADIFA). In our tests, we apply the measurement procedure defined in

Section 9 of RFC 8219. Our aim is threefold: to provide DNS operators with ready to use measurement

results to support their selection of the best fitting authoritative DNS server implementation for their needs,

to assist researchers and DNS64 server developers in finding a suitable authoritative DNS server

implementation for their DNS64 benchmarking measurements, and to advance the theory and practice of

benchmarking DNS servers. We examine how the different conditions such as the number of active CPU

cores, the size of the zone file, the applied timeout, and the type of the processor influence the performance

of the tested authoritative DNS server implementations. The performance of all four tested DNS servers

scales up more or less well with the number of CPU cores, except for YADIFA. The increase of the size of

the zone file causes significant degradation only in the performance of BIND, which shows different

anomalies described in the paper. The change of the timeout from 250ms (required by RFC 8219) to 100ms

usually causes only a small performance degradation. We point out that NSD and Knot DNS can achieve an

order of magnitude higher performance than BIND and YADIFA.

INDEX TERMS Benchmarking, DNS, DNS64, performance.

I. INTRODUCTION

DNS (Domain Name System) is an integral part of all

commonly used Internet services, but it seems to be

inconspicuous, when everything goes smooth. However, a

failure or delay in DNS resolution results in poor QoE

(Quality of Experience) for the users.

Although the performance of different authoritative DNS

server implementations is an important issue, it still lacks of a

standard benchmarking methodology. In this paper, we

propose one. Whereas BIND is considered the de facto

industry standard DNS server, and it was the most widely

used one in 2004 [1], some other DNS implementations (e.g.

NSD or Knot DNS) can provide multiple times higher

authoritative DNS server performance than BIND. For a

DNS server operator, higher performance results in less costs

considering both CAPEX (Capital Expenditures, here: the

price of the hardware) and OPEX (Operating Expenditure,

here: the computing power requirement and thus, also the

electricity bill). High performance can also be a kind of

mitigation against DoS (Denial of Service) attacks [2].

As for a special usage of authoritative DNS servers, they

are needed for benchmarking DNS64 [3] servers. (DNS64 is

an important IPv6 transition technology [4], which is used

together with stateful NAT64 [5] to enable IPv6-only clients

to communicate with IPv4-only servers [6].) In section 9 of

RFC 8219 [7], we defined a benchmarking methodology for

DNS64 servers. This measurement procedure requires the

use of an authoritative DNS server that can provide DNS

resolution at 220% of the maximum testing rate of DNS64

servers. (Please refer to [8] for more details.) Thus, finding a

sufficiently high performance authoritative DNS server is a

prerequisite for performing DNS64 benchmarking tests. In

2017 we benchmarked three different DNS64 servers, and

we had to choose an authoritative DNS server with high

enough performance. Due to time constraint, then we have

selected the first suitable one, which was YADIFA [9].

However, we considered the performance comparison of the

different authoritative DNS servers an interesting research

topic, especially, because we have found that there was a gap

in research papers concerning both a standard methodology

for benchmarking authoritative DNS servers and also

measurement results. Although our original motivation was

to support DNS64 benchmarking, we contend that the

comparison of the performance of various authoritative DNS

VOLUME XX, 2017 9

server implementations is even more important for DNS

server operators due to the before mentioned cost and DoS

mitigation issues. Therefore, we have set a threefold goal.

1. To provide DNS operators with ready to use

measurement results to support their selection of the

most proper authoritative DNS server implementation

for their needs.

2. To assist researchers and DNS64 server developers in

finding a suitable authoritative DNS server

implementation for their DNS64 measurements

depending on their required testing rate and available

hardware resources.

3. To advance the theory and practice of benchmarking

DNS servers.

In this paper, we examine the performance of four

authoritative DNS server implementations (BIND, NSD,

Knot DNS, and YADIFA) under different conditions

including zone files of various sizes and different number of

CPU cores.

The remainder of this paper is organized as follows.

Section II surveys the available methods for benchmarking

authoritative DNS servers and points out that the RFC 8219

compliant one suits better for the needs of DNS server

operators than the other examined ones. Section III gives an

introduction to the used measurement program, discloses our

considerations behind the selection of the DNS server

implementations to be tested, presents the test setups, and

explains the types of measurements as well as their most

important parameters and settings. Section IV discloses and

evaluates our high number of results. Section V contains a

brief discussion and our future plans. Section VI concludes

our paper.

II. METHOD FOR BENCHMARKING AUTHORITATIVE
DNS SERVERS

A. SURVEY OF RELATED WORKS

We were looking for both a standard method for

benchmarking authoritative DNS servers and research

papers with performance measurement results of the major

authoritative DNS server implementations, but we have not

found any of them. The majority of our hits were either

about how to measure the performance of DNS servers

operating at different parts of the world, like Sekiya et al.

[10], or about the performance comparison of the operating

(public) DNS servers, like Kesavan [11]. We have found

only few related research papers. One of them gives a

survey of the related papers, and it shows (in its Section

3.1) that they do not contain usable performance

measurement results of different DNS server

implementations [12]. It also summarizes the then (in

2014) available DNS performance measurement techniques

in three groups: DNS performance testing software tools,

traffic generator hardware appliances, and general purpose

testing software. It mentions three DNS performance

testing software tools: dnsperf and resperf of

Nominum and queryperf of ISC and it also discloses

their limitations as well as the limitations of the two other

types of solutions.

Possible other methods include the use of tcpreplay

for sending DNS queries on the basis of a pcap file and

tcpdump for collecting the replies [13]. Although this

method was actually used for benchmarking DNS resolvers,

it can also be used for benchmarking different authoritative

DNS server implementations.

Several software tools for DNS performance or security

testing and also some benchmarking tests with actual

results are listed at this web page [14].

We have found some technical publications (not peer

reviewed research papers) describing practically usable

methods for benchmarking authoritative DNS servers and

also containing measurement results.

One of them is an NLnet Lab article from 2013 [15].

They used 5 computers to replay DNS queries at predefined

rates and to collect the replies by tcpdump. They

compared the performance of NSD to that of BIND, Knot

DNS and YADIFA, and characterized their performance by

the proportion of the successfully answered queries as a

function of the query rate. As no timeout value was

mentioned, we believe that they were concerned only if a

query was answered or not. Unfortunately, their results are

outdated today.

Another one is a still ongoing project and a still updated

online article of the developers of Knot DNS aimed to

compare the performance of several authoritative DNS

servers [16]. They used the same measurement method as

in [15] thus also lacking of timeout value. They

characterized the performance of the authoritative DNS

servers by their response rate. The results are graphs

showing the number of received answers as a function of

the number of sent queries, as illustrated in Fig. 1.

(Alternatively, the results can also be viewed as response

rate percentage, as in [15].) Whereas we admit that these

FIGURE 1. Response rate of different authoritative DNS servers. [16]

VOLUME XX, 2017 9

graphs can be useful for DNS server developers, we

contend that for a DNS operator, it is redundant, whether a

given DNS server can answer 40% or 80% of the queries at

a given rate: the DNS server is unusable in both cases. We

consider that the lack of timeout value is another serious

problem from the DNS operators’ point of view: a response

is completely useless for the users if it comes more than a

second later than the query was sent: the client software

will timeout and resend the query1. Although we contend

that the results of our measurement method described in

Section II.B are more suitable for DNS operators than that

of the method used in [16], we have found their results

valuable and we used them in Section III.B.

The developers of the YADIFA DNS server

implementation have also published their performance

comparison results of YADIFA 1.0.0, NSD 3.2.10, Knot

DNS 1.0.5, and BIND 9.9.1. [17]. They also used

tcpreplay and no timeout was mentioned. The date of

their measurements has not been disclosed, but their results

are now outdated due to the old software versions and

obsolete hardware.

Section 9 of RFC 8219 [7] defined a benchmarking

methodology for DNS64 servers in 2017. Please refer to [8]

for more details and considerations behind the method

described in the RFC. They both state that during the self-

test of the Tester, the AuthDNS (authoritative DNS server)

subsystem of the Tester should be benchmarked with the

same method as the DNS64 servers, but with a different

timeout value. Thus it can be said that RFC 8219 has

implicitly defined a benchmarking method for authoritative

DNS servers (although it was intended for a special purpose

only). As for tools, none of the before mentioned ones

comply with the requirements of RFC 8219. As far as we

know, the only RFC 8219 compliant DNS/DNS64 tester is

Dániel Bakai’s dns64perf++ [18].

B. SELECTED BENCHMARKING METHOD

To support DNS64 benchmarking with our results, we

had to perform RFC 8219 compliant benchmarking

measurements. We shall examine, whether the conditions of

RFC 8219 are appropriate, when the results are intended to

support DNS operators in their authoritative DNS server

selection.

The measurement procedure of the DNS64

benchmarking test defined in RFC 8219 follows RFC 2544

both in its wording and in its spirit:

 The Tester sends AAAA record requests at a

constant rate for at least 60 seconds, it receives the

replies, and checks if they are valid (they contain an

AAAA record and arrived within timeout time).

1 The one second timeout is our experimental result, measured by using

Firefox under Windows 7 [8] and now confirmed under Windows 10.

Other software may behave somewhat differently, however, “human
timeout” (that is, our patience) does not allow significantly higher timeout

value than a few seconds for the majority of the client software.

o If the number of valid replies is equal with the

number of queries sent, then the query rate is

increased and the test is rerun.

o If the number of valid replies is less than the

number of queries sent, then the query rate is

decreased and the test is rerun.

In practice, a binary search is used to find the highest rate

at, at which the number of valid replies is equal with the

number of queries sent (as it is usually done by RFC 2544

compliant commercial testers, too).

For benchmarking DNS64 servers, the timeout time was

chosen as 1 second, and 0.25s was specified for

benchmarking the authoritative DNS server subsystem

during the self-test of the Tester [8]. Let us consider,

whether this 250ms timeout is a good one, when our results

are intended to support DNS operators. Although, DNS is

used by many types of applications, in a typical case, it is

used for resolving domain names for web browsers. A

typical URL looks like “http://acme.com”, and the resolver

(local caching only DNS server) has already cached the IP

address of the DNS server responsible for the “com”

domain, thus only one request and reply is needed. In this

case, the maximum 250ms response time of the

authoritative DNS server is acceptable. There may be cases,

when multiple subdomains are used (like in the case of the

URL: “http://www.hit.bme.hu”) and thus more requests and

replies are needed, thus a shorter timeout is required,

therefore, we have checked our results using 100ms

timeout, too.

The absolutely 0% loss required by RFC 8219 results is

no problem, when the results are intended to support DNS

operators, but this criterion might be too strict. In some

cases, we also apply other criteria, which allow e.g. 0.01%

or 0.1% packet loss.

As for measurement traffic, RFC 8219 requires all

different queries to eliminate the effect of caching. We

followed this approach, which often required the usage of

huge zone files, see Section III.D.2 for details.

III. MEASUREMENTS

In this section, first, we give an introduction to

dns64per++, the measurement program used for testing,

second, we give our considerations, why the given four

DNS implementations were selected, third, we describe our

different measurement setups, finally, we disclose the

details of our measurements.

A. INTRODUCTION TO DNS64PERF++

A detailed description of the original dns64perf++

measurement program can be found in our open access

paper [18], thus we mention only a few things, which are

necessary to understand the rest of our current paper.

However, we must give somewhat deeper description of its

new properties, which were developed later and have not

been published yet.

VOLUME XX, 2017 9

The dns64perf++ program has been written in C++14

and it is a command line tool running under Linux. It

performs one test: it sends queries at the required rate,

receives and validates the replies. The binary search is done

by a bash shell script, which performs it at least 20 times as

required by RFC 8219.

To be able to send all different queries during a given

test, dns64perf++ uses the following independent

namespace: {000..255}-{000..255}-{000..255}-

{000..255}.dns64perf.test.

When DNS64 testing is done, a subset of this namespace

is used, and it has to be resolved to the corresponding IPv4

addresses by authoritative DNS server. The namespace to

be used by the tester is described by the corresponding IPv4

network using CIDR (Classless Inter-Domain Routing)

notation. For example, 10.0.0.0/8 identifies the following

namespace:

10-{000..255}-{000..255}-{000..255}.dns64perf.test.

As dns64perf++ sends queries for AAAA records,

when an authoritative DNS server is benchmarked (called

the “self-test of the tester” in RFC 8219 terminology), the

authoritative DNS server has to be configured to provide

AAAA records.

In this paper, we refer to the size of the zone file with the

mask of the corresponding IPv4 network, e.g. “/8”.

The original test program used a self-correcting timing

algorithm, which caused significant inaccuracies at higher

than 50,000qps (queries per second) rates. This problem

was investigated and the timing algorithm was replaced by

a simpler one [19], which is now included in its mainline

version [20].

The original test program used only two threads, one for

sending and one for receiving. Now, it can use n times two

threads, providing much higher performance. It is also able

to use a high number of different source ports for sending

the queries, which proved to be a prerequisite of

benchmarking at high query rates, see Section III.E.1.

Originally, it used IPv6 and as transport protocol (for

sending queries and receiving replies), which was

completely adequate for benchmarking DNS64 servers.

Now it can use also IPv4, which permits testing up to

higher rates.

During our preliminary measurements, we have

observed that its threads were moved among the CPU cores

by the scheduler during the execution of the tests.

Therefore, we have added a new feature that sets the

affinity of the threads so that the sender threads and the

receiver threads are pinned to cores 0 – (n-1) and to cores n

– (2n-1), respectively. The modified files are available

from [21].

We note that dns64perf++ was designed to work in

two phases. First, the requests are sent and the replies are

received and the relevant information (e.g. sending and

receiving timestamps) are stored in huge arrays. This is

done by n times two threads. Then, the evaluation is done

as a sequential process. At high rates (e.g. 1-2 million

queries per second), the execution time is dominated by the

second phase. Thus, the execution time highly depends on

the actual rates. For example, when the performance of a

DNS or DNS64 server is a few times 10,000qps, the initial

range can be [0, 50,000]. The execution time of the required

20 repetitions of the binary search consisting of 16 steps

each is typically 6-8 hours. On the other hand, when the

performance of a DNS server is about 3,000,000qps, the

initial range can be [0, 3,300,000]. The execution time of

the required 20 repetition of the binary search consisting of

22 steps each is about a day. (Both, because the binary

search requires more steps, and because the execution of a

60s long test lasts for several minutes due to the sequential

evaluation process.) These numbers are important, when a

high number of measurements are required e.g. due to

testing with all possible parameter combinations.

B. SELECTED AUTHORITATIVE DNS SERVER
IMPLEMENTATIONS

As for authoritative DNS server implementations to be

tested, we have considered only free software [22] (also

called open source [23]) for the same reasons given in [24].

ISC BIND [25] is the de facto industry standard DNS

server, thus even if we knew that other implementations

had higher performance, we considered important to

include it.

NSD [27] was selected because of our good experience

with it: its single core performance was found higher than

the 16-core performance of BIND [9].

Knot DNS [26] was selected on the basis of the

performance measurement results of its developers [16].

YADIFA [28] was included because RFC 8219 mentions

198.18.0.2/24

DUT
Dell PowerEdge
C6620 / R430

(running DNS server)

198.18.0.1/24

Tester
Dell PowerEdge
C6620 / R430

(running dns64perf++)

DHCP

DHCP

10G Ethernet
direct cable /

VLAN

Test Systems

FIGURE 2. Measurement setup for all types of measurements.

VOLUME XX, 2017 9

it, and according to our previous experience it outperformed

BIND [9].

As for further free software DNS implementations, we

have also considered PowerDNS [29], but we did not select

it. The results of the Knot DNS developers showed that

PowerDNS could not comply with the 0% loss criterion of

RFC 8219 even at 100,000qps rate (please see the original,

interactive version of our Fig. 1: it could answer only

99,450 queries per second [16], and it produced 1.7% loss

at 400,000qps rate, which we consider unacceptable for

authoritative DNS server function). Unbound is also a well-

known high performance recursive DNS server, but it does

not have an authoritative DNS server function.

C. TEST SYSTEMS FOR BENCHMARKING

The benchmarking experiments were carried out in the

NICT StarBED, Japan. We used two types of servers (N

nodes and P nodes), because they both had their advantages

over the other one. The N nodes were Dell PowerEdge

C6620 servers with 16 physical cores, and their clock

frequencies could be set to a fixed value, which was an

important advantage [8]. The P nodes were Dell PowerEdge

R430 servers with 32 physical cores, which was also

important, when the performance was examined as a

function of the number of CPU cores.

We used four test systems with the same logical

construction as shown in Fig. 2. The components of the

four test systems are detailed in Table 1.

As we have pointed out performance differences among

our three test systems consisting N nodes during our earlier

tests [9], we performed the same kinds of tests of each

examined DNS implementation using the very same

computers and used the different test systems for different

kinds of tests.

As for the settings of the computers, hyper-threading was

disabled in the BIOS of all computers to ensure stable

results [8]. To make always the DUT (Device Under Test)

the bottleneck, Turbo Mode was disabled in the DUTs and

enabled in the Testers. The clock frequencies of the N

series DUTs (n015 and n018) was set to fixed 2GHz using

the same BIOS setting as in [9]. However, we could not do

the same with the P series DUTs (p102 and p104), finding

no such settings in their BIOS.

TS2 (Test System 2) and TS3 were our primary testbeds,

which we used for the scale-up tests. TS1 and TS4 were

their “back-ups”, they were added to offload some

measurements (e.g. zone file size tests and also scale up

tests of DNS servers with lower performance) from TS2

and TS3 and thus speed up experimentation.

We need to mention another difference between the two

types of nodes: their cores are enumerated differently,

which also influences their apparent NUMA (Non-Uniform

Memory Access) architecture. In the N series nodes, CPU

cores 0-7 (called cpu0 - cpu7 under Linux) belong to the

first physical CPU and NUMA node 0, and cores 8-15

belong to the second physical CPU and NUMA node 1. In

the P series nodes, the even number cores (cores 0, 2, 4, …

28, 30) belong to the first physical CPU and NUMA node

0, and the odd number cores (cores 1, 3, 5, … 29, 31)

belong to the second physical CPU and NUMA node 1.

Thus, in both cases, the first physical CPU is NUMA node

0 and the second physical CPU is NUMA node 1, the only

difference is the order, in which the cores are enumerated

by the Linux kernel. However, this order may make a

difference, when the first n number of cores are enabled

during the tests (see its effect for the scale up tests in

Section IV).

D. TYPES OF TESTS AND THEIR MOST IMPORTANT
PARAMETERS

The performance of the examined four authoritative DNS

server implementations may depend on several factors,

such as the number of active CPU cores of the DUT, the

size of the zone file, the timeout value, and the hardware

type of the DUT. The number of all combinations of their

possible values were too high to use them all. Hence, we

used those combinations, which we found meaningful

during our preliminary tests.

1) SCALE UP TEST

The aim of these tests was to examine, how the

performance of the four tested DNS server implementations

scaled up as the number of CPU cores were increased.

Following our earlier practice, we doubled the number of

active CPU cores starting from one (instead of increasing

them one by one) to reduce the necessary number of tests

[9].

In order to support RFC 8219 compliant DNS64

benchmarking tests, we needed to ensure all different

domain names for a 60s long test at all used query rates. It

means that we had to choose large enough zone files for our

tests. (Table 2 shows the number of entries and the

maximum usable query rate of a 60s long test as a function

of the zone file size.) To fulfill this requirement, we

performed preliminary measurements to assess the

performance of the DNS implementations using various

number of CPU cores in order to be able to determine the

necessary zone file size for the scale up tests. Both Knot

DNS and NSD performed over 1.5Mqps and 2.5Mqps using

TS2 and TS3, respectively. Therefore, we had to use /5 and

/4 size zone files for their scale up tests on TS2 and TS3,

respectively. Our preliminary tests showed that BIND and

YADIFA could not achieve higher performance than

TABLE I
THE BUILDING ELEMENTS OF THE TEST SYSTEMS

Test

System

Tester

node

Tester

speed

DUT

node

DUT

speed

connection

1 n014 2-2.4GHz n015 2GHz direct cable

2 n017 2-2.4GHz n018 2GHz direct cable
3 p101 1.2-2.6GHz p102 1.2-2.1GHz VLAN 3251

4 p103 1.2-2.6GHz p104 1.2-2.1GHz VLAN 3253

VOLUME XX, 2017 9

260,000qps, thus a /8 size zone file was enough for them

and their performance was measured using T1 and TS4.

Generally, the zero loss criterion of RFC 8219 was used,

but in some cases we have experienced that the results of

the 20 measurements were very much scattered, and when

we have examined the measurement log files, we saw that

the tests failed due to a low number of missing replies. In

these cases we also used 99.99% valid answers as

acceptance criterion.

2) ZONE FILE SIZE TEST

The aim of these tests was to examine, how the size of

the used zone file influenced the performance of the four

tested DNS server implementations. We performed these

tests by doubling the size of the zone file (four times) from

/8 to /4. In addition to that, the low performance of BIND

allowed it to be tested with smaller zone files (from /11 to

/9), too. For these tests, we used TS1 and TS4.

Our approach was to execute these tests using only a

single CPU core, to reduce the performance of the tested

DNS servers thus enabling the usage of smaller zone files.

It was successful with both BIND and NSD. However, the

single core results of Knot DNS and YADIFA were too

much scattered, thus they were unsuitable for examining

how the size of the used zone file influenced the

performance of these DNS implementations.

For testing Knot DNS, we used 99.99% and 99.9% valid

answers as acceptance criterion with TS1 and TS4,

respectively.

For testing YADIFA, we used eight CPU cores, as its

performance was still moderate enough allowing the usage

of a “/8” size zone file.

3) TIME-OUT TESTS

The aim of these tests was to examine, how the specified

timeout value influenced the performance of the four tested

DNS server implementations. Our preliminary results

showed that the applied 250ms and 100ms values resulted

in very little differences (please see the actual values later),

thus only a few tests were performed to check the validity

of this observation in various critical working points. (All

four tests systems were used.)

E. OTHER RELEVANT PARAMETERS

1) USAGE OF HIGH NUMBER OF DIFFERENT SOURCE
PORT NUMBERS

When authoritative DNS servers are used in real life, the

requests usually arrive from different source IP addresses

and also from different source ports. (Even if the majority

of the requests comes from a few recursive servers, the

source port numbers used by a given recursive DNS server

must be different to comply with the requirements of the

RFC 5452 [30].)

When authoritative DNS servers are used to support

DNS64 benchmarking, the requests are coming from the

same IP address, but the source ports should be still

different for the same reason as above. (In the case of the

major DNS64 implementations, namely BIND, PowerDNS

and Unbound [31], we have checked that they complied

with this rule [32].)

Neither RFC 8219, nor our paper on the benchmarking

methodology for DNS64 servers [8] mentions the usage of

high number of different source port numbers as

requirement for the Tester, but now we contend that they

should have done so. We consider it important for both

theoretical and practical point of view.

Under “theoretical” we mean that the usage of high

number of different source ports is necessary for proper

testing, because the tested DNS / DNS64 implementations

may use the SO_REUSEPORT socket option for

distributing the traffic among their multiple threads or

processes [33]. (This socket option is supported since Linux

kernel version 3.9.) A Tester without the capability of using

a high number of source ports is simply not suitable for

benchmarking of those DNS / DNS64 implementations that

use the aforementioned socket option.

Under “practical” we mean that multi-core operating

systems may use also source port numbers in the hash

function to distribute the interrupts evenly among the CPU

cores, which is a prerequisite for receiving several millions

of packets per second [34]. We used the following

command to distribute the interrupts evenly among the

CPU cores:
ethtool -N interface rx-flow-hash udp4 sdfn

In this case, the source and destination IP addresses and

port numbers are included in the hash function. As the other

three numbers are constants during the tests, the interrupts

cannot be distributed among the CPU cores without using a

high number of different source port numbers and the

capacity of the single core used by the interrupts becomes a

bottleneck.

In all our measurements, we used the highest possible

number of threads in dns64perf++, it means that 8

thread pairs on n014 and n017, and 16 thread pairs on p101

and p103. We used 4,000 different port numbers by each

sending threads of dns64perf++, thus altogether 32,000

or 64,000 different source ports were used. (We note that

the mainline version of dns64perf++ starts the source

port numbers from 10,000, thus we have changed it to 1024

in the source code.)

TABLE II

THE MAXIMUM QUERY RATE AS A FUNCTION OF THE ZONE FILE SIZE

Size Number of

entries

Maximum

query rate

/11 2097152 34952
/10 4194304 69905

/9 8388608 139810

/8 16777216 279620

/7 33554432 559240

/6 67108864 1118481

/5 134217728 2236962

/4 268435456 4473924

VOLUME XX, 2017 9

2) TO OPTIMIZE OR NOT TO OPTIMIZE?

On the one hand, one can argue that it is fair to consider

the very best results of each tested DNS server

implementations, suggesting that they should be optimized

for benchmarking. This would include their recompilation

and fine tuning.

However, on the other hand, this could be a never ending

game: different tests would require different settings, and

one could never be sure, if the best performance has already

been found or not. Such optimization would also require a

very deep knowledge of all tested implementations, which

we do not have. Our most important argument against such

tuning is that the results would be irrelevant for the

majority of their users because the users usually use them

as they are included in their favorite Linux distribution.

Therefore, we also used them as they were installed

using Debian 9.6.

3) CONFIGURATION SETTINGS OF THE DNS SERVERS

In general, we have made only the absolutely necessary

changes to the default configuration files of the DNS

servers, which means the setting of the zone name and zone

file. In the case of NSD, we had to make further changes,

because otherwise it would have used only a single CPU

core. The new settings were:
server:

 server-count: n # = no. of active cores

 reuseport: yes # enable SO_REUSEPORT

The other three DNS implementations automatically used

multiple threads.

4) SETTING THE NUMBER OF ACTIVE CPU CORES AT
THE DUT

The number of active CPU cores at the DUT was set by

using the maxcpus=n kernel parameter.

We note that first, we tried using the method for

switching the CPU cores on and off on the fly described in

[9], but then we have received scattered measurement

results using the N nodes. Then we used the above

mentioned method (with rebooting the operating system),

but there were still problems with the scattered results.

Then our colleague, Gábor Horváth, who teaches Computer

Architecture at the Budapest University of Technology and

Economics, advised us to completely power off the node

(not only reboot it). It was done by using the “Hard Reset

(Restart)” power control action of the “Dell Remote

Manager Controller” of the given N node, which has solved

the issue. We have used this power control action always,

when the number of active CPU cores were changed. We

have not tested whether it was necessary or not, rather we

used its equivalent “Power Cycle System (cold boot)” with

the P nodes. We plan to investigate this phenomenon later

on.

5) HARDWARE PARAMETERS AND SOFTWARE
VERSION NUMBERS

For the repeatability of our results, we give the most

important hardware parameters and software version

numbers.

The N nodes were Dell PowerEdge C6620 servers with

two Intel Xeon E5-2650 2GHz CPUs, having 8 cores each,

and 16x8GB 1333MHz DDR3 RAM. We used one of their

Intel 10G 2P X520 (fiber) network adapters.

The P nodes were Dell PowerEdge R430 servers with

two Intel Xeon E5-2683 v4 2.1GHz CPUs, having 16 cores

each, and 12x32GB 2400MHz DDR4 RAM. We used one

of their Intel 10G 2P X540 (copper) network adapters.

The version numbers of the tested DNS servers were the

following:

 BIND 9.10.3-P4-Debian

 NSD 4.1.14

 Knot DNS 2.4.0

 YADIFA 2.2.3-6237

The earlier installed Debian Linux systems were

upgraded to 9.6 on all nodes. As the update of Debian does

not update the Linux kernel, the kernel release was 4.9.0-4-

amd64 and 4.9.0-8-amd64 on the N nodes and on the P

nodes, respectively.

As for dns64perf++ [20], its multiport branch was

used (commit d6fa119 on Oct 8 2018) with our

aforementioned modifications (adding affinity, and starting

the source ports from 1024). It was compiled by clang

3.8.1-24 enabling packet sending over IPv4 by using the

“IPV4=1” make parameter.

IV. RESULTS AND EVALUATION

During the presentation and discussion of the results,

first, we focus on the behavior each DNS server separately,

and compare them in the end.

We usually begin the discussion of each DNS server with

some general information about it. Next, the scale up test

results are presented and discussed, and we deal with the

zone file size test after them. The timeout test is not

handled separately, it was rather integrated with the scale

up and/or the zone file size tests.

As for summarizing function of the results of the 20

measurements, RFC 8219 requires to use median, and as for

index of dispersion of the results, it requires the

presentation of 1st percentile and 99th percentile, which are

the minimum and maximum values, when we have less

than 100 measurement results. When the given authoritative

DNS implementation is intended to be used to support

DNS64 benchmarking, then the 1st percentile should to be

taken into consideration, so that the insufficient

performance of the authoritative DNS server may not

impact the DNS64 measurement results. When the results

are intended to support DNS server operators, then we

recommend to use the median.

In [9], we have introduced another measure as follows:

%100
median

percentile1percentile99
dispersion

stth




 (1)

VOLUME XX, 2017 9

It can be used to judge the quality of the results. If it is

low (e.g. below 5%) then the results are consistent. Its

higher and higher values indicate more and more scattered

results.

Unfortunately, scattered results may be either an inherent

property of a given DNS server implementation, or they

may come from somewhere else and thus indicate for

example a hardware issue or even a bug or performance

deficiency in the measurement software, dns64perf++.

After the evaluation of the results, we show that the

performance of dns64perf++ is definitely enough up to

3.3 million queries per second rate, when it is executed by a

P node with Turbo Mode enabled.

A. BIND

Before the presentation of the results, we need to touch

an important feature of BIND. When BIND is started, it

provides several pieces of useful information through

syslog. Among others, it writes the following two lines:
found n CPUs, using n worker threads

using m UDP listeners per interface

The number of the worker threads equals the number of

the active CPU cores, but it uses a special heuristic to set

the number of the UDP listeners.

 When there are 1 or 2 active CPU cores, then the

number of the UDP listeners equals the number of

the CPU cores.

 When the number of the active CPU cores is 4 or

higher, then the number of the UDP listeners equals

the half of the number of the CPU cores.

This heuristic has significant consequences on the

performance of BIND.

1) SCALE UP TEST

The authoritative DNS server performance results of

BIND as a function of the number of active CPU cores

using a “/8” size zone file measured by TS1 (Test System 1,

the DUT is an N node) are presented in Table III. The

performance of BIND visibly scales up very well from one

to two cores, but there is conspicuous glitch at four cores.

The bottleneck is deliberately the number of UDP listeners

(two). At higher number of cores, the performance of BIND

scales up well again. The five performance results

measured using 250ms timeout are complemented with two

results measured using 100ms timeout. Let us consider first

the single CPU core result in the last but one column of the

table. Due to the smaller timeout value, the median has

decreased by 12% from 19,792qps to 17,409qps and the

dispersion of the results increased from 1.6% to 5.9%. As

for the result of the 16-core test with 100ms timeout, the

value of the median did not change significantly (the slight

increase must be a measurement error), only the dispersion

increased from 1.78% to 2.78%. The second behavior can

be explained by the fact that with four cores and above, the

TABLE III
AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES, BIND, “/8”, TS1, 0.25S (0.1S)

Num. CPU cores 1 2 4 8 16 1 16

Median (qps) 19792 38928 37596 77244 140372 17409 140720

1st percentile (qps) 19477 37499 37565 76166 138621 16383 137448

99th percentile (qps) 19794 38963 37604 77539 141119 17411 141358
Dispersion (%) 1.60 3.76 0.10 1.78 1.78 5.90 2.78

TABLE IV

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES, BIND, “/8”, TS4, 0.25S (0.1S)

Num. CPU cores 1 2 4 8 16 32 1 32

Median (qps) 28205 44082 47537 85816 153736 259935 28203 259528
1st percentile (qps) 28067 43895 43749 74168 152928 253127 27977 249999

99th percentile (qps) 29688 44269 48597 88090 156311 264362 28640 265747
Dispersion (%) 5.75 0.85 10.20 16.22 2.20 4.32 2.35 6.07

TABLE V

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES, BIND, “/5”, TS2, 0.25S

Num. CPU cores 1 2 4 8 16

Median (qps) 8386 20798 18403 38286 68514
1st percentile (qps) 8383 18733 18067 37505 65624

99th percentile (qps) 8388 20827 18421 38910 68994

Dispersion (%) 0.06 10.07 1.92 3.67 4.92

TABLE VI

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES, BIND, “/4”, TS3, 0.25S

Num. CPU cores 1 2 4 8 16 32

Median (qps) 8325 15424 9342 22455 48728 75654
1st percentile (qps) 8325 12492 9334 21751 47494 75324

99th percentile (qps) 8325 15426 9345 23444 49323 75780

Dispersion (%) 0.00 19.02 0.12 7.54 3.75 0.60

VOLUME XX, 2017 9

bottleneck is the number of receivers, and thus if a request

is successfully received, then it will be replied soon, thus

the smaller timeout does not influence the achievable rate,

which is also confirmed by our TS4 results below. (We

mean it for the median. Of course, random events in the

measurement system may influence the 1st percentile more,

when the timeout is smaller).

The results measured by TS4 (the DUT is a P node) are

presented in Table IV. Similar tendencies can be observed:

BIND scales up well, and there is a glitch at 4 cores.

However, there are significant differences, too. Especially

at 4 and 8 cores, there is high (more than 10%) dispersion,

which is also significant (more than 5%) at 1 core. The high

dispersion could be attributed to the varying CPU clock

frequency of the P nodes, but the dispersion is low (less

than 1%) at two cores. The last two columns of the table

show our results with 100ms timeout using 1 or 32 cores.

The decrease of the medians is negligible in both cases (in

our opinion it is very likely less than the error of the

measurements).

Comparing the results of TS1 and TS4, we can see that

the performance gain of the newer system highly depend on

the number of CPU cores used. With a single core, the

median performance grows by 42.5% from 19,792qps to

28,205qps, whereas the increase from 140,372qps to

153,736qps is only 9.5% with 16 cores, which we consider

inconsistent.

We have executed the scale up test measurements also

with a “/5” size zone file using TS2. The results are shown

in Table V. The tendencies are very similar to that of the

results produced by TS1, since both DUTs were N nodes.

The results measured by TS3 using a “/4” size zone file

are presented in Table VI. Here, the situation is even worse

than in the case of TS4 in two aspects.

1. There is a high dispersion at 2 cores, which is caused

by a single outlier. We have performed this test 4

times, and always there was a single outlier, which

fell in the 12,300qps – 15,500qps range.

2. The performance sharply falls back at 4 cores.

We attribute this phenomenon to design problems of

BIND and did not invest any more effort into its

investigation for the following reasons:

1. Similar problem is identified in the next subsection.

2. As we have pointed it out in [9], BIND had also a

serious performance problem, when it was used as a

DNS64 server. (Its performance did not scale up

over 4 cores at all. We have reported it to the

developers as [ISC-Bugs #46924] in 2017, but we

have not received any reply so far.)

3. As it is shown later in this paper, BIND was

significantly outperformed by other DNS

implementations.

Thus, we believe that it is not worth the effort to do a

deeper analysis of the anomalies of BIND.

2) ZONE FILE SIZE TEST

The authoritative DNS server performance results of

BIND as a function of the size of the zone file measured by

TS1 using a single CPU core are presented in Table VII.

The overall tendency is exactly, what we expected on the

basis of the previous results: the performance decreases as

the size of the zone file increases. It can be easily explained

by computer architectural causes. Considering, that BIND

uses somewhat more than 4GB memory, when it loads a /8

zone file and the CPU has only 20MB cache, the

explanation has nothing to do with caching but the reason

can be the decreasing TLB (Translation Lookaside Buffer)

coverage.

However, similarly to the scale up test, we can also

observe a glitch: when the size of the zone file is doubled

from “/7” to “/6” the performance shows a significant

increase. We surmise that there can be some kind of

technology change behind, which is somewhat ill

positioned by an inappropriate heuristic. (Such as changing

form a linked list representation to a B-tree representation

at too high number of elements in date storage and retrieval.

But that is intended to be a simile only, nothing more.)

The results measured by TS4 are presented in Table VIII.

Similar tendencies can be observed: the performance

globally decreases as the zone file size increases, but there

is a glitch at the “/4” size zone file. We have also performed

TABLE VII

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF ZONE FILE SIZE, BIND, 1 CPU CORE, TS1, 0.25S

Num. CPU cores /11 /10 /9 /8 /7 /6 /5 /4

Median (qps) 23520 24029 21437 19251 11729 14014 9374 6849

1st percentile (qps) 23484 23436 21406 18749 11729 13961 9370 6849
99th percentile (qps) 23560 24072 21485 19287 11731 14026 9374 6849

Dispersion (%) 0.32 2.65 0.37 2.79 0.02 0.46 0.04 0.00

TABLE VIII

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF ZONE FILE SIZE, BIND, 1CPU CORE, TS4, 0.25S

Num. CPU cores /8 /7 /6 /5 /4 /3

Median (qps) 28645 22286 20450 13267 13809 4300

1st percentile (qps) 28124 22067 20435 13084 12352 4168
99th percentile (qps) 28839 23439 21100 13267 13811 4300

Dispersion (%) 2.50 6.16 3.25 1.38 10.57 3.07

VOLUME XX, 2017 9

a measurement with a “/3” size zone file and its

performance result was about one third of the performance

measured with a “/4” size zone file.

B. NSD

Unlike the other three authoritative DNS server

implementations, NSD does not use multiple threads, it

rather uses multiple processes. We set the server-

count value always to the number of the active CPU

cores. When NSD was started using n number of active

CPU cores, NSD always started n+2 processes listening on

port 53, however, only n of them were taking part in the

service of the DNS queries.

1) SCALE UP TEST

The authoritative DNS server performance results of

NSD as a function of the number of active CPU cores using

a “/5” size zone file measured by TS2 are presented in

Table IX. NSD scales up well up to four CPU cores.

However, significant problems can be observed at 8 cores,

were the dispersion of the results is 15.07%. We have

investigated its cause and found that some of the tests failed

due to very small differences between the number of the

sent requests and the number of the valid answers (less than

0.01%). Therefore, we have repeated our tests with the

99.99% acceptance criterion. The results, which are shown

in Table X, confirmed our hypothesis: the dispersion has

decreased at any number of cores, although in a different

measure. For the results of 1-4 cores, the performance

increase over the results in Table IX is very small (below

3% concerning any of the values). Although the increase of

the 1st percentile is significant at 16 cores, it does not really

matter, because DNS64 benchmarking, for which the 1st

percentile is used, does not tolerate packet loss. The

increase of the median, which we consider important for

DNS operators is only 5.67% (from 1,454,661qps to

1,537,105qps).

The authoritative DNS server performance results of

NSD as a function of the number of active CPU cores using

a “/4” size zone file measured by TS3 are presented in

Table XI. Unfortunately, the results of the newer and higher

performance DUT are lower than that of the older one from

1 to 8 cores, but the situation changes at 16 cores. For an

easier comparison of the performance of the two systems

we have performed our measurements with the 99.99%

acceptance criterion (to reduce the dispersion of the

results). The results are shown in Table XII. Unfortunately

the dispersion remained very high at 2 cores (30.43%),

which was caused by the low 1st percentile value

TABLE IX

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES, NSD, “/5”, TS2, 0.25S (0.1S)

Num. CPU cores 1 2 4 8 16 16

Median (qps) 177432 327260 615192 1062615 1454661 1453490

1st percentile (qps) 176512 324999 599950 999999 1399999 1399974
99th percentile (qps) 178126 328828 619800 1160155 1500001 1500001

Dispersion (%) 0.91 1.17 3.23 15.07 6.87 6.88

TABLE X

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES, NSD, “/5”, TS2, 0.25S (0.1S)

ACCEPTANCE CRITERION: 99.99%, NON-RFC 8219 COMPLIANT!

Num. CPU cores 1 2 4 8 16 16

Median (qps) 177735 327515 617180 1089275 1537105 1538946
1st percentile (qps) 177342 324999 612108 1065220 1523387 1524971

99th percentile (qps) 178130 328321 619674 1168751 1550318 1553129

Dispersion (%) 0.44 1.01 1.23 9.50 1.75 1.83

TABLE XI

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES, NSD, “/4”, TS3, 0.25S

Num. CPU cores 1 2 4 8 16 32

Median (qps) 166715 268721 405410 802359 1552845 2442195
1st percentile (qps) 165226 190624 387499 734374 1413446 2085936

99th percentile (qps) 168909 275079 425001 817398 1665530 2812523

Dispersion (%) 2.21 31.43 9.25 10.35 16.23 29.75

TABLE XII

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES, NSD, “/4”, TS3, 0.25S (0.1S)

ACCEPTANCE CRITERION: 99.99%, NON-RFC 8219 COMPLIANT!

Num. CPU cores 1 2 4 8 16 32 32

Median (qps) 178255 277996 448608 811774 1740020 3099333 2954180
1st percentile (qps) 174999 198338 437499 799950 1656004 3074752 2936185

99th percentile (qps) 181446 282940 457032 818754 1752930 3125013 2966732

Dispersion (%) 3.62 30.43 4.35 2.32 5.57 1.62 1.03

VOLUME XX, 2017 9

(198,338qps). The dispersion was low at any other number

of cores, thus we could check the effect of the timeout

change. When the timeout value was decreased from 250ms

to 100ms, the median changed from 3,099,333qps to

2,954,180qps, which is only a 4.7% decline. Now, let us

return to the performance comparison of the two types of

nodes. We consider the median values of the results of the

99.99% acceptance criterion tests of TS2 and TS3, shown

in Table X and Table XII, respectively. The medians are

approximately the same at a single core (177,735qps and

178,255qps). At two cores, the result of TS2 is 327,515qps,

which is a good scale up (84% growth), whereas the result

of TS3 is 277,996qps, which is a significantly lower scale

up (only 56% growth). We attribute this difference to the

fact that the cores of the two types of CPUs are enumerated

in a different order, as we detailed it at the end of Section

III.C. It means that core 0 and core 1 belong to the same

physical CPU (and NUMA node) in the DUT of TS2,

whereas they belong to two different physical CPUs (and

NUMA nodes) in TS3. Let us check our hypothesis: what

happens, when the CPU (and NUMA) situation changes in

TS2 from homogeneous to heterogeneous and it does not

change in TS3 (as it is already heterogeneous in both

cases). The median grows only by 41% from 8 cores

(1,089,275qps) to 16 cores (1,537,105qps) in TS2. The

increase of the median from 16 cores (1,740,020qps) to 32

cores (3,099,333qps) is still 78% in TS3, which is nearly

the double of the before mentioned 41%. Thus, we consider

our hypothesis as confirmed.

2) ZONE FILE SIZE TEST

The authoritative DNS server performance results of

NSD as a function of the size of the zone file using a single

CPU core measured by TS1 and TS4 are presented in Table

XIII and Table XIV, respectively. They are in a complete

agreement that the performance of NSD shows no

significant decrease as the size of the zone file increases.

They both confirm that the 100ms timeout value caused no

change in the measured performance comparing to

measurements with 250ms timeout value.

C. KNOT DNS

According to the Knot DNS server documentation, the

udp-workers directive, which should be placed into the

server section of the configuration file, can be used to set

the number of UDP workers (threads). In accordance with

our approach disclosed in Section III.E.2, we did not set it,

thus its default value was used, which is an “auto-estimated

optimal value based on the number of online CPUs” [26].

1) SCALE UP TEST

The authoritative DNS server performance results of

Knot DNS as a function of the number of active CPU cores

using a “/5” size zone file measured by TS2 are presented

in Table XV. Unfortunately, the performance of the Tester

was unsatisfactory for the tests with 16 cores (high number

of received packets were reported to be lost by the Ethernet

interface). For this reason, the values in this column of the

table do not reflect the true performance of Knot DNS. We

exclude them from the detailed analysis, but we still present

them to show that they are higher than the results of NSD.

The performance of Knot DNS scales up well up to 8 cores

(and very likely up to 16 cores, too) considering both the

median and the 1st percentile, but the results are very

scattered from 1 to 4 CPU cores, which was caused by a

small number of lost replies, as confirmed by our

measurements using 99.99% acceptance criterion, shown in

Table XVI. In the last column of this table, we included the

100ms timeout values measured with 8 cores (as the results

with 16 cores are limited by the performance of the Tester).

The lower timeout value does not have a significant

influence on the performance of Knot DNS (the very small

increase from 1,167,716qps to 1,168,724qps is deliberately

a measurement error).

The authoritative DNS server performance results of

Knot DNS as a function of the number of active CPU cores

using a “/4” size zone file measured by TS3 are presented

in Table XVII. The most salient problem is the 99,999qps

1st percentile value at 2 cores. This test was executed three

times and this value occurred each time, thus it is not a once

TABLE XIII

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF ZONE FILE SIZE, NSD, 1 CPU CORE, TS1, 0.25S (0.1S)

Num. CPU cores /8 /7 /6 /5 /4 /8

Median (qps) 184468 178115 178905 184019 181240 184498
1st percentile (qps) 184031 176951 177733 182420 179686 184288

99th percentile (qps) 184772 178517 179701 184571 181604 184741

Dispersion (%) 0.40 0.88 1.10 1.17 1.06 0.25

TABLE XIV

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF ZONE FILE SIZE, NSD, 1CPU CORE, TS4, 0.25S (0.1S)

Num. CPU cores /8 /7 /6 /5 /4 /8

Median (qps) 165594 166067 167712 162409 163195 167873

1st percentile (qps) 163929 162495 165526 160440 161692 149999
99th percentile (qps) 169006 171924 169647 164941 165747 170568

Dispersion (%) 3.07 5.68 2.46 2.77 2.48 12.25

VOLUME XX, 2017 9

happened random event, but an inherent property of Knot

DNS, which we must count on if Knot DNS is used for

DNS64 benchmarking. However, it is caused by a few

missing answers, and thus it is absent from Table XVIII,

which shows the result with 99.99% acceptance criterion

measurements. Otherwise Knot DNS scaled up well. We

would like to point out that although Knot DNS produced

highly scattered results with TS2 from 1 to 4 cores, and its

results with TS3 are extremely scattered at 2 cores, they are

much better with higher numbers of cores. Considering

TS3, the dispersion is under 10% from 4 to 32 cores and it

is quite low at 4 and 32 cores. We note that its excellent

TABLE XV

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES, KNOT DNS, “/5”, TS2, 0.25S

(THE RESULTS WITH 16 CPU CORES WERE LIMITED BY THE PERFORMANCE OF THE TESTER!)

Num. CPU cores 1 2 4 8 (16)

Median (qps) 163170 300454 594585 1164253 (1678872)
1st percentile (qps) 137495 224999 449999 1099884 (1562491)

99th percentile (qps) 163901 300977 596876 1166016 (1750001)

Dispersion (%) 16.18 25.29 24.70 5.68 (11.17)

TABLE XVI

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES, KNOT DNS, “/5”, TS2, 0.25S (0.1S)

ACCEPTANCE CRITERION: 99.99%, NON-RFC 8219 COMPLIANT!

(THE RESULTS WITH 16 CPU CORES WERE LIMITED BY THE PERFORMANCE OF THE TESTER!)

Num. CPU cores 1 2 4 8 (16) 8

Median (qps) 166514 301323 596910 1167716 (1630054) 1168724

1st percentile (qps) 162492 299999 549999 1162495 (1550780) 1162499

99th percentile (qps) 167242 301758 598047 1169532 (1750977) 1171045
Dispersion (%) 2.85 0.58 8.05 0.60 (12.28) 0.73

TABLE XVII
AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES, KNOT DNS, “/4”, TS3, 0.25S

Num. CPU cores 1 2 4 8 16 32

Median (qps) 119039 202235 355285 761424 1500439 2923327

1st percentile (qps) 112474 99999 348411 699999 1484312 2894053

99th percentile (qps) 125049 204369 358319 766632 1633057 2983339
Dispersion (%) 10.56 51.61 2.79 8.75 9.91 3.05

TABLE XVIII
AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES, KNOT DNS, “/4”, TS3, 0.25S (0.1S)

ACCEPTANCE CRITERION: 99.99%, NON-RFC 8219 COMPLIANT!

Num. CPU cores 1 2 4 8 16 32 32

Median (qps) 142197 235694 444991 839760 1773973 3233456 3230968

1st percentile (qps) 124999 228124 437499 835541 1749999 3196773 3196773
99th percentile (qps) 144262 238874 453209 845800 1812501 3238372 3238800

Dispersion (%) 13.55 4.56 3.53 1.22 3.52 1.29 1.30

TABLE XIX
AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF ZONE FILE SIZE, KNOT DNS, 1 CPU CORE, TS1, 0.25S (0.1S)

ACCEPTANCE CRITERION: 99.99%, NON-RFC 8219 COMPLIANT!

Num. CPU cores /8 /7 /6 /5 /4 /8

Median (qps) 162577 164552 156941 164549 161519 161967

1st percentile (qps) 157811 163267 149997 149999 159374 149999
99th percentile (qps) 162939 164868 157422 164848 161914 162262

Dispersion (%) 3.15 0.97 4.73 9.02 1.57 7.57

TABLE XX

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF ZONE FILE SIZE, KNOT DNS, 1CPU CORE, TS4, 0.25S (0.1S)

ACCEPTANCE CRITERION: 99.9%, NON-RFC 8219 COMPLIANT!

Num. CPU cores /8 /7 /6 /5 /4 /8

Median (qps) 191877 186085 191420 190843 184676 191754
1st percentile (qps) 191014 185532 190624 187499 184227 190624

99th percentile (qps) 192578 186816 191845 191407 185022 192969

Dispersion (%) 0.82 0.69 0.64 2.05 0.43 1.22

VOLUME XX, 2017 9

results at 32 cores made it possible for us to check the

performance of dns64perf++, please refer to Section

IV.F for more details.

2) ZONE FILE SIZE TEST

Due to the high dispersion of the results of Knot DNS at

any number of CPU cores, the zone file size test was

executed with the 99.99% acceptance criterion using Test

System 1. The bar was lowered to 99.9% with Test System

4 to produce non-scattered results. By doing so we do not

state that the 99.9% reply rate would be acceptable for

anyone, we used this value to be able to produce non-

scattered results for the comparison.

The authoritative DNS server performance results of

Knot DNS as a function of the size of the zone file using a

single CPU core measured by TS1 and TS4 are presented in

Table XIX and Table XX, respectively. Although there are

some fluctuations, both tables show that neither the size of

the zone file nor the timeout value have significant effect

on the performance of Knot DNS.

D. YADIFA

1) SCALE-UP TESTS

The authoritative DNS server performance results of

YADIFA as a function of the number of active CPU cores

using a “/8” size zone file measured by TS2 are presented

in Table XXI. At 1 and 2 cores, the results are very much

scattered (dispersion is more than 20%). They improve at 4

cores (dispersion is 4.4%), and the dispersion is only 0.44 at

8 cores, where YADIFA reaches its highest performance.

Its performance not only scales up poorly, but it also

significantly degrades at 16 cores, which we consider a

fundamental problem.

Table XXII shows the results of YADIFA produced by

TS4. They are even worse in the sense that they are always

very scattered. We have included them only to show their

quality and the performance degradation of YADIFA at 32

cores.

We have also executed the benchmarking tests with TS2

and TS3, using “/5” and “/4” size zone files, respectively,

but we do not include their results because they are very

similar to that of TS1 and TS4 and thus they would not lead

to any further conclusion.

Because of the poor scale up of YADIFA, we did not see

any point in producing more non-RFC 8219 compliant

results, thus we did not test it with non-zero frame loss

criterion.

2) ZONE FILE SIZE TEST

The authoritative DNS server performance results of

YADIFA as a function of the size of the zone file using 8

CPU cores measured by TS1 are presented in Table XXIII.

They show that neither the increase of the size of the zone

file, nor the decrease of the timeout value from 250ms to

100ms causes a significant change in the performance a

YADIFA.

E. COMPARISON

As for their performance, the examined four authoritative

DNS server implementations evidently fall into two

categories. BIND and YADIFA have shown moderate

performance (less than 300,000qps), whereas NSD and

Knot DNS gave an excellent performance, reaching 2-3

million qps depending on the given conditions. Thus we

concentrate on the latter two.

 TABLE XXI

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES, YADIFA, “/8”, TS1, 0.25S

Num. CPU cores 1 2 4 8 16

Median (qps) 133492 176214 195494 209600 147353
1st percentile (qps) 96874 149901 187499 209251 146874

99 percentile (qps) 133930 190872 196094 210181 147852

Dispersion (%) 27.76 23.25 4.40 0.44 0.66

TABLE XXII

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES, YADIFA, “/8”, TS4, 0.25S

Num. CPU cores 1 2 4 8 16 32

Median (qps) 118366 129681 150536 166416 186528 168315
1st percentile (qps) 95304 85529 85874 149217 149217 149999

99 percentile (qps) 131251 131695 156251 175001 197729 171948

Dispersion (%) 30.37 35.60 46.75 15.49 26.01 13.04

TABLE XXIII

AUTHORITATIVE DNS SERVER PERFORMANCE AS A FUNCTION OF ZONE FILE SIZE, YADIFA, 8 CPU CORES, TS1, 0.25S (0.1S)

Num. CPU cores /8 /7 /6 /5 /4 /3 /8

Median (qps) 209596 209383 197134 194700 196673 192876 208538
1st percentile (qps) 209325 208585 196776 193700 196287 192176 207615

99 percentile (qps) 210059 209766 197754 195340 196924 193214 209376

Dispersion (%) 0.35 0.56 0.50 0.84 0.32 0.54 0.84

VOLUME XX, 2017 9

1) OUR RECOMMENDATION FOR AUTHORITATIVE DNS
SERVER OPERATION

We contend that a DNS service may be acceptable for

many ISPs and their users if a single query is lost from

10,000 queries, therefore, we used the median values from

Table X (NSD, TS2), Table XVI (Knot DNS, TS2), Table

XII (NSD, TS3), and Table XVIII (Knot DNS, TS3) for

comparison. (For those DNS operators, who prefer higher

standards, we recommend the usage of our comparison in

the next subsection.) Our final results are shown in Fig. 3.

Both implementations performed excellently, whereas NSD

was somewhat better at low number of cores (1-4), Knot

DNS was somewhat better at high number of cores (8-32).

As for their performance, we recommend the usage of both

servers.

When selecting a DNS server implementation, operators

need to consider several factors, including the following

ones:

 Functionality (e.g. authoritative, recursive,

DNSSEC, DNS64)

 Performance

 Security, reliability, maturity of the code

 Documentation and support

 Experience with the software

As both NSD and Knot DNS are used with some root

DNS servers, we believe that they are both suitable for

DNS server operators, too. We hope that our results will

encourage DNS server operators to upgrade from BIND

and thus achieve higher performance and/or save costs.

2) OUR RECOMMENDATION FOR DNS64
BENCHMARKING

To support DNS64 benchmarking, only the results of

RFC 8219 compliant measurements can be used and the 1st

percentiles should be taken into consideration, therefore, we

used the 1st percentile values from Table IX (NSD, TS2),

Table XV (Knot DNS, TS2), Table XI (NSD, TS3), and

Table XVII (Knot DNS, TS3) for comparison. Our final

results are shown in Fig. 4. Both implementations

performed excellently. As for TS2 (DUT: Dell PowerEdge

C6620), NSD performed significantly better with 1-4 cores,

and Knot DNS produced higher results with 8-16 cores. On

TS3 (DUT: Dell PowerEdge R430) NSD performed

significantly better on 1-2 number of cores, their

performance was similar on 4-16 number of cores, and

Knot DNS performed significantly better on 32 cores.

Considering the actual performance of existing DNS64

servers [9], any of them and even BIND or YADIFA would

do, but when high performance is needed (e.g. when testing

a new, high performance DNS64 implementation), then it is

worth selecting either NSD or Knot DNS, depending on the

actual hardware environment. We also note that NSD

requires a significant amount of time for starting as it builds

its own database, for which it needs large amount of disk

space, e.g. nearly 200GB for a “/4” size zone file.

F. CHECKING THE PERFORMANCE OF DNS64PERF++

The excellent performance of Knot DNS (using all 32

cores of a P node) made it possible for us to check the

performance of dns64perf++. TS4 was used, however,

Turbo Mode was enabled in the DUT, too. We found that

dns64perf++ could send and receive packets reliably at

3.3 million qps rate.

Without this test we could not be sure that the results in

the last column of Table XVII and in the last two columns

of Table XVIII reflect the performance of Knot DNS or that

of our tester program dns64perf++.

FIGURE 3. Comparison of NSD and Knot DNS for DNS server

operation. (The N node result of Knot DNS at 16 cores are limited by
Tester performance.)

FIGURE 4. Comparison of NSD and Knot DNS for DNS64
benchmarking. (The N node result of Knot DNS at 16 cores are limited

by Tester performance.)

VOLUME XX, 2017 9

V. DISCUSSION AND FUTURE WORK

On the one hand, the number of processes of NSD were

set exactly to the number of active CPU cores. Whereas it

worked well with low number of active CPU cores, the

situation was different with higher number of cores. On the

other hand, Knot DNS used an auto-estimated optimal

number of threads. Although it did not seem to work well at

a low number of active CPU cores, it was excellent at 32

cores. As the number of CPU cores is continuously

growing, it seems that the developers of Knot DNS follow a

good approach.

We note that the selected RFC 8219 compliant

benchmarking method using the latest version of

dns64perf++ is not only the most suitable one for

benchmarking DNS servers for DNS operators, but it is also

the most economic one. Whereas the other solutions used

five additional computers for testing a single server (please

refer to [15] and [16]), we needed only a single computer as

Tester, though we admit that Turbo Mode was enabled on

the Tester and it was disabled on the DUT to make it the

bottleneck. Disabling Turbo Mode was important also from

analytical point of view. We mean it as follows. When

Turbo Mode is enabled, a few number of cores may operate

at the maximum turbo frequency, however, when all cores

are enabled and have high load, their clock frequency is

limited by the power budget determined by TDP (Thermal

Design Power). Thus, when Turbo Mode is enabled, the

doubling of the number of online CPUs does not always

double the available computing power.

We contend that the usage of high number of different

source ports is a very important condition for a proper

testing of DNS or DNS64 servers, thus we are considering

to initiate an update to RFC 8219. We are also examining

the possibility of writing and Internet Draft on

benchmarking methodology for DNS servers (possibly

including both authoritative and recursive ones).

We are also considering to examine the computing power

relative performance of the best performing DNS servers

according to the methodology defined in [9] to assist energy

efficiency aware DNS server administrators with another

important factor for their DNS implementation selection.

To make dns64perf++ even better, we plan the

following improvements:

 Enable it for using different local IP addresses for

each thread pairs, thus provide each thread pair

with 64,000 source ports (potentially).

 Test different placements using CPU affinity. (E.g.

to place the sender and corresponding receiver on

neighboring cores.)

 Parallelize the processing of the information in the

second phase, which may significantly decrease

execution time at high rates (e.g. over 1 million

qps).

We also plan to test and document the new features of

dns64perf++ in a research paper.

VI. CONCLUSION

We have surveyed the available methods for

benchmarking authoritative DNS servers, and found that

the one we defined in RFC 8219 for a special purpose (to

support DNS64 benchmarking) is the most appropriate one

also for examining the performance of the authoritative

DNS servers for real authoritative DNS server usage (with

some additions or modifications, such testing also with

100ms timeout and allowing a small non-zero loss rate, like

0.01%).

We have carefully examined how the performance of

BIND, NSD, Knot DNS, and YADIFA depends on

different factors, such as the number of active CPU cores,

the size of the zone file, the CPU architecture, and the

timeout value.

We have provided ready to use measurement results for

selecting the most suitable DNS implementation both for

authoritative DNS server usage and for DNS64

benchmarking.

ACKNOWLEDGMENT

The experiments were carried out by remotely using the

resources of NICT StarBED, 2-12 Asahidai, Nomi-City,

Ishikawa 923-1211, Japan.

The author would like to thank Shuuhei Takimoto for the

possibility to use StarBED, as well as to Masatoshi

Enomoto, and Satoru Gonno for their help and advice in

StarBED usage related issues.

The author thanks Gábor Horváth, Budapest University

of Technology and Economics, Budapest, Hungary for

advising to completely power off the N nodes (not only

reboot them) in order to bring them into a “clear” state.

The author thanks Dániel Bakai, Budapest University of

Technology and Economics, Budapest, Hungary for the

additional developments of dns64perf++ in his free

time.

The author thanks Attila Pivoda, Széchenyi István

University, Győr, Hungary for recommending the usage of

ethtool to distribute the interrupts evenly among the

CPU cores.

REFERENCES

[1] D. Moore “DNS server survey”, May 23, 2004.

[Online]. Available: http://mydns.bboy.net/survey/

[2] G. Lencse and Y. Kadobayashi, “Methodology for the
identification of potential security issues of different

IPv6 transition technologies: Threat analysis of DNS64

and stateful NAT64”, Computers & Security, vol. 77,
no. 1, pp. 397-411, Aug. 2018, DOI:

10.1016/j.cose.2018.04.012

[3] M. Bagnulo, A Sullivan, P. Matthews and I. Beijnum,
“DNS64: DNS extensions for network address

translation from IPv6 clients to IPv4 servers”, IETF

RFC 6147, Apr. 2011. DOI: 10.17487/RFC6147

VOLUME XX, 2017 9

[4] G. Lencse and Y. Kadobayashi, “Comprehensive survey
of IPv6 transition technologies: A subjective

classification for security analysis”, IEICE Transactions

on Communications, vol. E102-B, no. 10, pp. 2021–
2035. Oct. 2019, DOI: 10.1587/transcom.2018EBR0002

[5] M. Bagnulo, P. Matthews and I. Beijnum, “Stateful

NAT64: Network address and protocol translation from
IPv6 clients to IPv4 servers”, IETF RFC 6146, Apr.

2011. DOI: 10.17487/RFC6146

[6] M. Bagnulo, A. Garcia-Martinez and I. Van Beijnum,
“The NAT64/DNS64 tool suite for IPv6 transition”,

IEEE Commun. Magazine, vol. 50, no. 7, pp. 177–183,

Jul. 2012. DOI: 10.1109/MCOM.2012.6231295
[7] M. Georgescu, L. Pislaru and G. Lencse,

“Benchmarking methodology for IPv6 transition

technologies”, IETF RFC 8219, Aug. 2017. DOI:
10.17487/RFC8219

[8] G. Lencse, M. Georgescu, and Y. Kadobayashi,

“Benchmarking methodology for DNS64 servers”,
Computer Communications, vol. 109, no. 1, pp. 162–

175, Sep. 2017, DOI: 10.1016/j.comcom.2017.06.004

[9] G. Lencse and Y. Kadobayashi, “Benchmarking DNS64
implementations: Theory and practice”, Computer

Communications, vol. 127, no. 1, pp. 61–74, Sep. 2018,

DOI: 10.1016/j.comcom.2018.05.005
[10] Y. Sekiya, K. Cho, A. Kato, and J. Murai, “Research of

method for DNS performance measurement and
evaluation based on benchmark DNS servers”,

Electronics and Communications in Japan, Part I:

Communications, vol. 89, no. 10, pp. 66–75. Oct. 2006,
DOI: 10.1002/ecja.20211

[11] A. Kesavan, “Comparing the performance of popular

public DNS providers”, Network World, May, 2017.

[Online]. Available:

https://www.networkworld.com/article/3194890/compar

ing-the-performance-of-popular-public-dns-
providers.html

[12] E. Ahmad, K. Sarwar, “A comparative analysis on

existing DNS performance measurement mechanisms”,
Int. J. of Computer Networks and Communications

Security, vol. 2, no. 5, pp. 158–167. May 2014.

[13] H. Boulakhrif, “Analysis of DNS resolver performance
measurements”, MSc thesis, University of Amsterdam,

Jul. 2015. [Online]. Available:

https://www.nlnetlabs.nl/downloads/publications/os3-
2015-rp2-hamza-boulakhrif.pdf

[14] B. R. Greene, “DNS latency and performance test

tools”, [Online]. Available:
http://www.senki.org/network-operations-scaling/dns-

latency-and-performance-test-tools/

[15] NLnet Labs, “NSD4 performance measurements”, Jul.
2013, [Online]. Available:

https://medium.com/nlnetlabs/nsd4-performance-

measurements-9e224bc4fa0f
[16] Knot DNS, “Benchmarking”, [Online]. Available:

https://www.knot-dns.cz/benchmark/

[17] EURid, “Benchmark”, [Online]. Available:
https://www.yadifa.eu/benchmark/

[18] G. Lencse, D. Bakai, “Design and implementation of a

test program for benchmarking DNS64 servers”, IEICE
Transactions on Communications, vol. E100-B, no. 6.

pp. 948–954, Jun. 2017. DOI:

10.1587/transcom.2016EBN0007
[19] G. Lencse and A. Pivoda, "Checking and increasing the

accuracy of the dns64perf++ measurement tool for

benchmarking DNS64 servers”, Int. J. of Advances in
Telecommunications, Electrotechnics, Signals and

Systems, vol. 7. no. 1. pp. 10–16. (2018.) DOI:

10.11601/ijates.v7i1.255
[20] D. Bakai, “A C++14 DNS64 performance tester”, source

code, [Online]. Available:

https://github.com/bakaid/dns64perfpp

[21] G. Lencse, Modified source files of dns64perf++,
[Online]. Available:

http://www.hit.bme.hu/~lencse/dns64perfpp/

[22] Free Software Foundation, “The free software
definition”, [Online]. Available:

http://www.gnu.org/philosophy/free-sw.en.html

[23] Open Source Initiative, “The open source definition”,
[Online]. Available: http://opensource.org/docs/osd

[24] G. Lencse and S. Répás, “Performance analysis and

comparison of four DNS64 implementations under
different free operating systems”, Telecommunication

Systems, vol. 63, no. 4, pp. 557–577, Nov. 2016, DOI:

10.1007/s11235-016-0142-x
[25] Internet Systems Consortium, “BIND: Versatile, classic,

complete name server software”, [Online]. Available:

https://www.isc.org/downloads/bind
[26] Cz Nic, “Knot DNS: High-performance authoritative-

only DNS server”, [Online]. Available:

https://www.knot-dns.cz/
[27] NLnet Labs, “NSD: Name Server Daemon”, [Online].

Available: https://www.nlnetlabs.nl/projects/nsd/

[28] EURid, “YADIFA”, [Online]. Available:
https://www.yadifa.eu

[29] Powerdns.com BV, “PowerDNS”, [Online]. Available:

http://www.powerdns.com
[30] A. Hubert, R. van Mook, Measures for making DNS

more resilient against forged answers, IETF RFC 5452
(2009). doi:10.17487/RFC5452

[31] NLnet Labs, “Unbound”, [Online]. Available:

http://unbound.net
[32] G. Lencse and Y. Kadobayashi, “Methodology for DNS

cache poisoning vulnerability analysis of DNS64

implementations”, Infocommunications Journal, vol. 10,

no. 2, pp. 13–25. (2018.)

[33] A. Kleen, M, Wilcox, “SOCKET(7)” in Linux

Programmer's Manual, [Online]. Available:
http://man7.org/linux/man-pages/man7/socket.7.html

[34] M. Majkowski, “How to receive a million packets per

second”, Cloudflare Blog, Jun. 2015. [Online].
Available: https://blog.cloudflare.com/how-to-receive-a-

million-packets/

Gábor Lencse received his MSc and PhD in
computer science from the Budapest University

of Technology and Economics, Budapest,

Hungary in 1994 and 2001, respectively.
 He has been working full time for the

Department of Telecommunications, Széchenyi

István University, Győr, Hungary since 1997.
Now, he is a Professor. He has been working

part time for the Department of Networked

Systems and Services, Budapest University of
Technology and Economics as a Senior

Research Fellow since 2005. His research

interests include the performance and security analysis of IPv6 transition
technologies. He is a co-author of RFC 8219.

