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ABSTRACT 

This paper deals with the experimental testing and verifi-

cation of the earlier  proposed load balancing and cou-

pling factor criteria for the conservative parallel discrete 

event simulation in heterogeneous execution environments 

whether they can ensure a good speed-up. The definition 

of the relative speed-up is extended to the heterogeneous 

systems in a natural way. This definition is used to meas-

ure the efficiency of the parallel simulation executed by 

heterogeneous systems. A closed queueing network is used 

as the simulation model, and it is executed on different 

heterogeneous test systems. Among several scenarios, it is 

demonstrated on the example of a heterogeneous system 

containing 87 CPU cores of 5 different types that a good 

speed-up can be achieved using the load balancing and 

coupling factor criteria. It is shown that the extension of 

the definition of the relative speed-up to the heterogeneous 

systems made it easy to judge the speed-up of parallel dis-

crete event simulation in heterogeneous execution envi-

ronments. 

INTRODUCTION 

Event-driven discrete event simulation (DES) is a power-
ful method for the performance analysis of information and 
communication technology (ICT) systems. The detailed 
modelling and simulation of these systems often requires a 
huge amount of computing power and memory. Parallelisa-
tion can be a natural solution. Kunz (Kunz 2010) points 
out that as the ongoing development in the hardware sector 
favours an increasing number of processing units over an 
increasing speed of a single unit thus the parallel simula-
tion will remain an important and active field of research. 

However, because of the algorithm of the event-driven 
DES, parallel discrete event simulation (PDES) it is not 
an easy task and the achievable speed-up is often limited. 
When doing PDES, the model of the system is divided into 

partitions (called Logical Processes), and the partitions are 
assigned to processors that are executing them. To main-
tain causality, the virtual times of the partitions must be 
synchronised. There are different methods for synchronisa-
tion (Kunz 2010). The conservative method ensures that 
causality is never violated. An event can be executed only 
if we are certain that no events with smaller timestamp 
exist (and also will not be generated) anywhere in the 
model. Unless the simulated system has a special property 
that the so called lookahead is large enough, the proces-
sors executing the partitions need to wait for each other in 
the majority of time, so the achievable speed-up is poor.  

In the paper (Varga et al. 2003), the authors proposed a 
method for assessing available parallelism in a simulation 
model for conservative synchronization. The method re-
quires only a small number of parameters that can be easily 
measured on a sequential simulation. In our paper (Lencse 
and Varga 2010), we checked the results of the aforemen-
tioned work for homogeneous clusters up to 24 CPU cores 
and also examined how the different parameters of the 
model influence the achievable speed-up. In our next paper 
(Lencse et al. 2013) we examined the criteria for a good 
speed-up in a heterogeneous execution environment. Our 
criteria were justified by several measurements in a test 
system. However, we could not include all the planned 
experiments, due to space limitations. This paper presents 
our further results on the examinations of different factors 
that influence the achievable speed-up of parallel discrete 
event simulation in a heterogeneous execution environ-
ment. Moreover, the definition of the relative speed-up is 
extended to heterogeneous systems and this extension is 
used in the discussion of the results of our experiments to 
evaluate the efficiency of parallel simulation executed by 
heterogeneous systems. 

The remainder of this paper is organised as follows: first, a 
brief summary of the method for assessing the available 
parallelism is given. Second, our concept of heterogeneous 
execution environment, our criteria for a good speed up 
and our previous results are summarized. Third, the defini-
tion of the relative speed-up is extended to the heterogene-
ous systems to be able to express the efficiency of parallel 
simulation executed by heterogeneous systems. Fourth, our 
heterogeneous test environment and simulation model are 
described. Fifth, our further experiments and result are 
presented and discussed. Finally, our paper is concluded. 



 
This topic was identified as being of importance in the 
parallel simulation of large systems using heterogeneous 
execution environments. 

THE METHOD FOR ASSESSING AVAILABLE 

PARALLELISM 

The available parallelism can be assessed using some 
quantities that can be measured during a sequential simula-
tion of the model in question. The following description is 
taken from (Lencse and Varga 2010). 

The paper (Varga et. al. 2003) uses the notations ev for 
events, sec for real world time in seconds and simsec for 
simulated time (model time) in seconds. The paper uses the 
following quantities for the assessing of available parallel-
ism: 

• P performance represents the number of events proc-
essed per second (ev/sec). 

• E event density is the number of events that occur per 
simulated second (ev/simsec).  

• L lookahead is measured in simulated seconds (sim-

sec). 

• τ latency (sec) is the latency of sending a message 
from one Logical Process (LP) to another. 

• λ coupling factor can be calculated as the ratio of LE 
and τP:  

P

EL

⋅

⋅
=

τ
λ  (1) 

In (Lencse and Varga 2010) we have shown that if λ is in 
the order of several hundreds or higher then we may expect 
a good speed-up. It may be nearly linear even for higher 
number of segments (N) if λN is also at least in the order of 
several hundreds, where: 

N
N

λ
λ =  (2) 

MODELLING AND SIMULATION IN HETEROGE-

NEOUS EXECUTION ENVIRONMENTS 

This chapter is a summary of (Lencse et al 2013). 

Our Concept of Heterogeneous Execution Environ-

ments 

We recommended a logical topology of two levels: a star 

shaped network of homogeneous clusters. This model is 
simple enough and can describe a typical heterogeneous 

execution environment. What is logically described as a 
homogeneous cluster, it can be physically, for example, a 
cluster of PCs with identical configuration interconnected 
by a switch or it can be a chassis based computer built up 
by several main boards, etc. The main point is that a ho-
mogeneous cluster is built up by identical configuration 
elements especially concerning CPU type and speed as 

well as memory size and speed. The homogeneous clusters 
are interconnected logically in a star shaped topology. The 
physical connection can be a switch or the topology may 
be different but our model considers it to be a star for sim-
plicity. 

Criteria for Achieving a Good Speed-up 

We set up two criteria. The load balancing criterion re-
quires that all the CPUs (or CPU cores) should get a fair 

share from the execution of the simulation. A fair share is 
proportional to the computing power of the CPU concern-

ing the execution of the given simulation model. (This is 
very important, because, for example, using different 
benchmark programs for the same set of computers one 
can get seriously different performance results.) Thus, for 
the fair division of a given simulation model among the 
CPUs, the CPUs should be benchmarked by the same type 
of simulation model that is to be executed by them (but 
smaller in size, of course). The lookahead or coupling 

factor criterion is the same as presented and tested in 
(Lencse and Varga 2010) up to 24 CPU cores. 

The Most Important Results 

The load balancing criterion was justified by measuring the 
execution time of a model with different partitioning. The 
results of our experiments were quite close to the values 
computed according to the load balancing criterion. (See 
more details later.) The coupling factor criterion was justi-
fied by different scenarios including a simulation executed 
by 64 CPU cores of 4 types resulting in a good speed-up. 

EFFICIENCY OF PARALLEL SIMULATION EXE-

CUTED BY HETEROGENEOUS SYSTEMS 

Relative Speed-up of Program Execution by Heteroge-

neous Systems 

First, the definition of the relative speed-up of parallel 
execution of programs is extended for heterogeneous sys-
tems (in general, not only for simulation). 

The conventional definition of the speed-up (sn) of parallel 
execution is the ratio of the speed of the parallel execution 
by n CPUs and the sequential execution by 1 CPU that is 
equal with the ratio of the execution time of the sequential 
execution (T1) and that of the parallel execution (Tn):  

n

1
n

T

T
s =   (3) 

The relative speed-up (rn) can be calculated as the ratio of 
the speed-up and the number of the CPUs that produced 
the given speed-up: 

n

s
r n
n =   (4) 

The relative speed-up measures the efficiency of parallel 
execution. A relative speed-up value of 1 means that the 



 
speed-up is linear that is the computing power of n CPUs 
can be fully utilized.  

When dealing with heterogeneous systems, not only the 
number of the CPUs but also their performance is to be 
taken into consideration. We were looking for a definition 
of the relative speed-up of heterogeneous systems that can 
be used to measure the efficiency of program execution by 
the heterogeneous systems in the same way: its value of 
one should mean that the computing power of all the CPUs 
(from different types) can be fully utilized. 

Let us denote the number of the CPU types in a heteroge-
neous system by NT, the number and the performance of 
CPUs available from type i by Ni and Pi, respectively. The 
cumulative performance of the heterogeneous system is: 

∑
=

⋅=
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Let us denote the execution time of a given program by a 
single CPU of type i by Ti and let Th denote the execution 

time of the given program by the heterogeneous system. 
The speed-up of the heterogeneous system compared to the 
sequential execution by one CPU of type i is: 

h

i
i/h

T

T
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The relative speed-up of the heterogeneous system against 
the sequential execution by one CPU of type i is now de-
fined as: 

ch

ii
i/h

PT

PT
r

⋅

⋅
=  (7) 

We believe that this definition can be used in general for 
measuring the efficiency of program execution by hetero-
geneous systems. Thus, for simplicity, we used the word 
“CPU” in this section, but the expression “CPU core” 
could be used instead, as it is used everywhere else in this 
paper. 

Measuring the Efficiency of Parallel Simulation Exe-

cuted by Heterogeneous Systems 

If the above definition of relative speed-up of program 
execution by heterogeneous systems is used for measuring 
the efficiency of parallel simulation executed by heteroge-
neous systems and the performance values of the CPU 
cores from different types are measured by benchmarking 
them with the same simulation model (expressing its value 
in events per seconds and the value of execution time in 
seconds) then the numerator of expression (7) gives the 
same values for all the values of i (that is its value is inde-
pendent of the CPU core types): it is equal with the total 
number of events in the sequential simulation. 

Note that the number of events in the parallel version of 
the simulation may be higher (e.g. due to communication 
and synchronization overhead) but only the events of the 

original sequential simulation are the essential part of the 
operation of the original model. Thus efficiency should 
consider the events of the original sequential simulation 
only. 

Denoting the total number of events in the sequential simu-
lation by NE, definition (7) can be rewritten as: 
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Thus, we have shown that the value of relative speed-up 
calculated by (8) does not depend on which CPU core it 
was calculated against, it characterises the parallel simula-
tion itself. Note that this is still true if one uses definition 
(7), thus one can use any of them selecting on the basis of 
which values are easier to measure directly in the given 
simulation. We will do so when calculating the relative 
speed-up for measuring the efficiency of simulation in the 
different experiments presented in this paper. 

HETEROGENEOUS TEST ENVIRONMENT 

Available Hardware Base 

The following servers, workstations and PCs were avail-
able for our experiments at the Info-communications Labo-
ratory of the Department of Telecommunications, Szé-
chenyi István University. Note that this hardware base is 
somewhat larger than that of our previous paper (Lencse et 
al. 2013). 

One Sun Server SunFire X4150 

Two Quad Core Intel Xeon 2.83GHz CPU, 8GB DDR2 
800MHz RAM, 160GB HDD, Gigabit Ethernet NICs  
Altogether it means a homogeneous cluster of 8 nodes. 

Three LS120 Blades form an IBM BladeCenter 

Two Dual Core Opteron 280 2.4GHz CPU, 4GB DDR2 
667MHz RAM, 73GB HDD, Gigabit Ethernet NIC  
Altogether it means a homogeneous cluster of 12 nodes. 

One Itanium Server HP Server RX2600 

Two Intel Mckinley IA-64 900MHz CPU, 8GB RAM 
DDR 266MHz RAM, 36.4GB HDD, Gigabit Ethernet NIC  
Although it has no serious computing power but it was 
found interesting because of its non-x86 architecture CPU. 

Eleven Dell Precision 490 Workstations 

Two Intel Xeon 5140 Dual Core 2.33GHz CPU, 4x1GB 
DDR2 533MHz RAM (quad channel), 80GB HDD, Giga-
bit Ethernet NICs 
Altogether it means a homogeneous cluster of 44 nodes. 

Eleven AMD PCs 

AMD Athlon 64 X2 Dual Core 4200+ 2200MHz CPU, 
2GB DDR2 667MHz RAM, 320 GB HDD, Gb. Eth. NIC 
Altogether it means a homogeneous cluster of 22 nodes. 



 
Four Old Intel PCs (P4) 

Intel Pentium 4 HT 3GHz CPU, 512 DDR 400MHz RAM, 
80 GB HDD, Fast Ethernet NIC. 
Note that they use 32 bits CPUs. 

Switches for Interconnection 

• 3Com Baseline Switch 2948 SFP Plus (3CBLSG48) 
• Cisco Intelligent Gigabit Ethernet Switch Module, 4 

ports (Part Number 32R1894) in the BladeCenter 
• D-Link EasySmart Switch DGS-1100-24 
 
Software Environment 

Operating Systems 

Linux was used on all the computers. Sun Server and LS21 
Blades: Ubuntu 12.04 LTS x86-64; Dell Precision 490 
Workstations and AMD PCs: Debian Squeeze (x86_64); 
old Intel PC-s: Debian Squeeze (i386); 

Cluster Software 

OpenMPI 1.6.2 (x86_64 if not stated otherwise; i386 in 
some cases) 

Discrete-Event Simulation Software 

The widely used, open source OMNeT++ 4.2.2 discrete-
event simulation environment (Varga and Hornig 2008) 
was chosen. It supports the conservative synchronization 
method (the Null Message Algorithm) since 2003 (Seker-
ciouglu et al. 2003). We also expect that because of the 
modularity, extensibility and clean internal architecture of 
the parallel simulation subsystem, the OMNeT++ frame-
work has the potential to become a preferred platform for 
PDES research.  

The Simulation Model 

Bagrodia and Takai proposed the Closed Queueing Net-
work for testing the performance of conservative parallel 
discrete-event simulation (Bagrodia and Takai 2000). 
OMNeT++ has a CQN implementation among its simula-
tion sample programs. We have found this model perfect 
for our purposes thus it was used in our current paper as 
well as in our previous ones (Lencse and Varga 2010) and 
(Lencse et al. 2013). The below description of the model is 
taken from (Lencse and Varga 2010).  

This model consists of M tandem queues where each tan-
dem consists of a switch and k single-server queues with 
exponential service times (Figure 1, left).  
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Figure 1.  M=3 Tandem Queues with k=6 Single Server 
Queues in Each Tandem Queue – And its Partitioning 

The last queues are looped back to their switches. Each 
switch randomly chooses the first queue of one of the tan-
dems as destination, using uniform distribution. The 
queues and switches are connected with links that have 
nonzero propagation delays. The OMNeT++ model for 
CQN wraps tandems into compound modules. 

To run the model in parallel, we assign tandems to differ-
ent LPs (Figure 1, right). Lookahead is provided by delays 
on the marked links. 

As for the parameters of the model, the preset values 
shipped with the model were used unless it is stated other-
wise. Configuration B was chosen, the one that promised 
good speed-up.  The main parameters of the CQN model 
were: M=24 tandem queues, k=50 queues in each tandem 
queue, exponential service time of the queues with ex-
pected value of 10 seconds, the delay between the tandem 
queues L=100 seconds and the length of the simulation 
was 106 seconds (in model time). 

EXPERIMENTS AND RESULTS 

Figure 2 shows the interconnection of the elements of our 
heterogeneous environment. Note that our experiments 
used different subsets of the elements. 

 

Figure 2.  The elements of the Heterogeneous Execution 
Environment with their Interconnections 

Further Validation of the Load Balancing Criterion 

The load balancing criterion requires the benchmarking of 
the different CPU cores with the simulation model. The 
benchmarking was done using the CQN OMNeT++ sam-
ple model. All the experiments were performed 11 times 
and average and standard deviation was calculated. Unless 
stated otherwise, it was done so with all the following ex-
periments, too. Table 1 shows the performance of the dif-
ferent CPU core types. 

Table 1.  The Performance of the Different 64-bit CPU 
Core Types (events/second) 

Core Type Sun IBM Dell AMD Itanium 
Average 468 192 238 174 373 787 235 861 61 509 
Std. Dev. 5 581 6 049 4 908 2 726 117 



 
The load balancing was tested on the example of a minimal 
size heterogeneous system built up by one Sun core and 
one IBM core in (Lencse et al. 2013). Now it is validated 
on a similar system built up by one Dell core and one 
AMD core. The following series of experiments were per-
formed: the CQN model built up by 24 tandem queues was 
cut into two segments: N and 24-N tandem queues were 
put into the segment executed by the AMD core and the 
Dell core, respectively, where N took its values form 1 to 
23. The execution time was measured in all cases and the 
value of the relative speed up was calculated according to 
(8). Figure 3 shows the results. It can be seen that the parti-
tioning was the best when 10 and 14 tandem queues were 
put into the segments executed by the AMD and the Dell 
computers, respectively. The exactly performance propor-

tional partitioning would result in the assignment of 9.29 
and 14.71 tandem queues. Thus the results of our experi-
ments are in a good agreement with the computed “optimal 
partitioning”. 

 

Figure 3.  The Relative Speed-up of the Execution of the 
CQN Model in the Function of the Partitioning  

A Test Including the Itanium Server 

As the performance of the Itanium server is much less then 
that of all the others, it seems to be a reasonable question if 
it is worth using it at all? The following two experiments 
were conducted: 

1. A cluster of one IBM and one AMD cores was used 
and 12 tandem queues were put on each of them. 

2. The Itanium server was added to the above cluster. 
The number of the tandem queues was decreased by 
one both on the IBM and on the AMD cores and the 
two tandem queues were assigned to the Itanium 
server. 

Note that the above partitioning in both cases was the best 
possible approximation of the performance proportional 
one. 

Table 2 shows the parameters and the results of the ex-
periments. The use of the Itanium server resulted in a 
9.45% speed-up according to the conventional interpreta-
tion of speed-up. Is it a good result? To be able to judge 
the efficiency of the parallel simulation in the second ex-
periment we calculated the relative speed-up according to 

(7) using the results of the first experiment as reference. 
We are really satisfied with the 0.9688 relative speed-up. 

Table 2.  The Parameters and the Results of the Experi-
ments for the Itanium Server 

Elements of the System IBM+AMD IBM+AMD+Itanium 
Cumulated Performance (ev/sec) 474 035 535 544 
Average Execution Time (sec) 335.97 306.96 
Std. Dev. of Exec. Time 2.43 3.17 
Speed-Up (Conventional) (reference) 1.0945 
Relative Speed-up (reference) 0.9688 

 

A Test Including the Old 32-bit Intel PC-s 

Unfortunately, it is a feature of the OpenMPI, that if 32-bit 
libraries are used in one of the computers then they should 
be used on all the other ones so that the computers can 
communicate with each other. Thus we had to recompile 
everything in 32-bit mode for the 64 bit computers and 
benchmark them again in 32-bit mode. Table 2 shows the 
performance of the different CPU core types in 32-bit 
modes. The configuration script of OMNeT++ did not find 
the 32-bit MPI libraries under Debian, thus we could not 
test the Dell and AMD platforms. As we could not fix the 
problem due to lack of time, they were omitted from the 
32-bit experiments. 

Table 3.  The Performance of the Different CPU Core 
Types in 32-bit mode (events/second) 

Core Type Sun IBM P4 

Average 593 340 334 516 218 014 
Std. Dev. 9 989 7 467 1 362 

 

Note that the performance results of the Sun and IBM 
servers are significantly higher in 32-bit mode than in 64-
bit mode. It is probably due to the fact that the integers and 
the pointers use twice as much memory space in 64-bit 
mode than in 32-bit mode and the longer programs can be 
less effectively cached. 

The following two experiments were conducted: 

1. The 8 cores of the Sun server and the 4 cores of one 
IBM Blade were used. 

2. The four old Intel P4 computers were added to the 
above system. 

The number of the tandem queues was increased in the 
CQN model from 24 to 240 to be able to utilize all the 
CPU cores. The value of the lookahead was increased from 
100s to 1000s see its justification in (Lencse et al. 2013). 
The tandem queues were divided as close to the perform-
ance proportional partitioning as it was possible. 

According to (Lencse et al. 2013), if the number of the 
CPU core types is denoted by NCT, the number and the 
performance of the CPU cores available from core type i 



 
are denoted by Ni and Pi, respectively then the ni number 
of the queues to be put into a segment executed by a core 
from type i should be: 

∑
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⋅

⋅
=

NCT
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ii

i
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NP

P240
n  (9) 

However, the number of the tandem queues per segments 
must be an integer, thus the division of the tandems could 
not be fully precise, some “roundings” and adjustments 
were done manually and there were differences made even 
between the load of the cores from the same core type so 
that the number all the tandems be exactly 240. Table 4 
and 5 show the division of the tandems among the cores 
for the first and the second experiments.  

Table 4.  The Division of the 240 Tandem Queues among 
the Sun and IBM cores 

Core 
type 

Pi (ev/sec) Ni ni 
no. of 
cores 

tandems 
/core 

cumulated 
tandems 

Sun 593 340   8 23.40 4 23   92 
    4 24   96 

IBM 334 516   4 13.19 4 13   52 

No. of all the cores: 12 Number of all the tandems: 240 

 

Table 5.  The Division of the 240 Tandem Queues among 
the Sun, IBM and P4 cores 

Core 
type 

Pi (ev/sec) Ni ni 
no. of 
cores 

tandems 
/core 

cumulated 
tandems 

Sun 593 340   8 20.47 8 20 160 

IBM 334 516   4 11.54 4 12   48 

P4 218 014   4   7.52 4   8   32 

No. of all the cores:  16 Number of all the tandems: 240 

 

Table 6 shows the parameters and the results of the ex-
periments. The use of the four old Intel P4 PCs resulted in 
a 9.47% speed-up according to the conventional interpreta-
tion of speed-up. Again, as with the Itanium server, we 
calculated the relative speed-up according to (7) using the 
results of the first experiment as reference to be able to 
judge if the efficiency of the parallel simulation in the sec-
ond experiment compared to the first one. We can be satis-
fied with the 0.9575 relative speed-up and mention just for 
comparison that even the speed-up caused be the P4 PCs 
was a little bit higher than the speed-up caused be the Ita-
nium server, this a is bit less good result, as the efficiency 
is somewhat smaller now. 

Table 6.  The Parameters and the Results of the Experi-
ments for the Old Intel P4 PCs 

Elements Sun+IBM Sun+IBM+4xP4 
Cumulated Performance (ev/sec) 6 084 784 6 956 480 
Average Execution Time (sec) 1 327.31 1 212.51 
Std. Dev. of Exec. Time 34.91 47.15 
Speed-Up (Conventional) (reference) 1.0947 
Relative Speed-up (reference) 0.9575 

Note that we calculated the relative efficiency in both cases 
because we tested if it was worth using the Itanium server 
or the old Intel P4 PCs. It will be done differently in the 
test of the largest available system. 

A Test of the Largest Available System 

The maximum possible number of 64-bit cores were in-
cluded into the heterogeneous system. The number of the 
tandem queues and the lookahead were increased to 480 
and 2000s, respectively. First, the partitioning was done 
according to the old performance values that were meas-
ured during the simulation of the system built up by 24 
tandem queues and using 100s lookahead. Table 7. shows 
the partitioning. 

Table 7.  The Division of the 480 Tandem Queues Among 
the 64-bit Cores Using the Old Pi Values from Table 1. 

Core 
type 

Pi (ev/sec) Ni ni 
no. of 
cores 

tandems 
/core 

cumulated 
tandems 

Sun 468 192   8 7.94   8 8   64 

IBM 238 174 12 4.04 12 4   48 

Dell 373 787 44 6.34 29 6 174 
    15 7 105 

AMD 235 861 22 4.00 22 4   88 

Itanium   61 509   1 1.04   1 1     1 

No. of all the cores:  87 Number of all the tandems: 480 

 

The execution time of the parallel simulation was 159.80 
seconds with 2.84 standard deviation. To be able to deter-
mine its efficiency, we needed either a sequential execu-
tion time produced by any of the CPU cores or the total 
number of events in the sequential simulation. As the 
model was large we executed the sequential simulation 
only for a 105 seconds long model time interval that is only 
one tenth of the 106 model time simulated by the parallel 
execution. (The execution time and event number values 
for 106 seconds model time sequential simulation can be 
easily extrapolated the by multiplying the results with 10.) 
We executed the sequential simulation on all the CPU 
types 11 times except for Itanium, where it was executed 
only once. The number of all the events was approximately 
170.34 million in all cases (that means 1,703.4 million 
events for 106 model time seconds). The execution time 
values are shown in table 8. This table also shows the 
speed-up values (calculated by multiplying the sequential 
execution time values by 10) against the sequential execu-
tion by the given CPU core types. The next line of the ta-
ble shows the recalculated Pi performance values. They are 
much smaller than those in table 1 due to the effect called 
“vacationing jobs” in (Lencse and Varga 2010). Shortly 
summarized the effect: the long delay lines are “storing” 
some jobs (events) that are missing from the elementary 
queues of the tandem queues thus the number of events per 
real-time seconds is significantly decreased. The new Pi 
values are not even proportional with the old ones. The 
next line of the table shows the quotient of the new and the 
old Pi values for the different CPU core types: they are 
really different. (For this reason, we tested also another 



 
partitioning using the new Pi values.) For computing the 
relative speed-up, the cumulative performance was com-
puted from the new Pi values and we got: Pc=17 929 579 
ev/sec.  

The relative speed-up was calculated according to (8) as: 

5945.0
sec/ev17929579sec8.159

ev107034.1
r

9

h ≈
⋅

⋅
=   (10) 

This value is not at all bad for such a big and inhomogene-
ous cluster. 

Table 8.  Execution Time of the 105s (model time) Long 
Sequential Simulation and Other Derived Values 

Core Type Sun IBM Dell AMD Itanium 
Avg. Ex. time (s) 593.20 960.03 778.65 972.69 6837.44 
Std. Dev. of E. T. 5.38 31.40 3.87 7.49 - 
Speed-up 37.1 60.1 38.7 60.9 427.9 
new Pi (ev/sec) 287 154 177 432 218 763 175 122 24 907 
new Pi / old Pi 0.6133 0.7450 0.5853 0.7425 0.4049 

 

The system was repartitioned according to the new Pi val-
ues, see table 9. Note that even though the number of 
available cores was 87, only 86 of them were actually used 
as no tandem queues were put to the Itanium server. 

Table 9.  The Division of the 480 Tandem Queues Among 
the 64-bit Cores Using the New Pi Values from Table 8. 

Core 
type 

Pi (ev/sec) Ni ni 
no. of 
cores 

tandems 
/core 

cumulated 
tandems 

Sun 287 154   8 7.69   8 8   64 

IBM 177 432 12 4.75 12 5   60 

Dell 218 763 44 5.85 44 6 264 

AMD 175 122 22 4.68 18 4   72 

      4 5   20 

Itanium   24 907   1 0.67   1 0     0 

No. of all the cores:  87 Number of all the tandems: 480 

 

The execution of the simulation gave excellent results. The 
average execution time was 108.12 seconds with 2.34 
standard deviation. The speed-up values calculated against 
the four actually used CPU core types are shown in table 
10. 

Table 10.  Speed-up of the Second Heterogeneous System 

Core Type Sun IBM Dell AMD 
Speed-up 54.9 88.8 72.0 90.0 

 

As the Itanium server was not used, its performance was 
left out from the cumulative performance: Pc=17 904 672 
ev/sec. For relative speed-up, we got: 

8799.0
sec/ev17904672sec12.108

ev107034.1
r

9

h ≈
⋅

⋅
=   (11) 

This is excellent for such a big and inhomogeneous cluster. 

CONCLUSIONS 

Some of our earlier defined criteria (load balancing and 
coupling factor) for the possible good speed-up of parallel 
discrete event simulation in heterogeneous execution envi-
ronments were summarized. A novel extension of the rela-
tive speed-up for heterogeneous systems was introduced. 

The operation of the criteria was justified by several ex-
periments with different size and type of heterogeneous 
systems.  

The extension of the definition of the relative speed-up to 
heterogeneous systems proved to be an appropriate tool for 
the evaluation of the speed-up of parallel discrete event 
simulation in heterogeneous execution environments. 

We conclude that the recommended methods are worth 
using and further studying. 

ACKNOWLEDGEMENT 

This research was supported by the TÁMOP-4.2.2/B-
10/1-2010-0010 project and by the Széchenyi István Uni-
versity (15-3202-08). 

REFERENCES 

Bagrodia, R. L. and M. Takai. 2000. "Performance evaluation of 
conservative algorithms in parallel simulation languages" 
IEEE Transactions on Parallel and Distributed Systems, 
Vol. 11. No 4. 395-411. 

Kunz, G. 2010. "Parallel Discrete Event Simulation" In Model-

ing and Tools for Network Simulation K. Wehrle, M. Günes 
and J. Gross (Eds.). Springer-Verlag, Berlin 2010. ISBN 
978-3-642-12330-6 

Lencse, G. and A. Varga. 2010. "Performance Prediction of Con-
servative Parallel Discrete Event Simulation". Proceedings of 

the 2010 Industrial Simulation Conference (ISC'2010) (Bu-
dapest, Hungary, 2010. June 7-9.) EUROSIS-ETI, 214-219. 

Lencse, G., I. Derka and L. Muka. 2013. "Towards the efficient 
simulation of telecommunication systems in heterogeneous 
execution environments", accepted for the 36th International 

Conference on Telecommunications and Signal Processing 

(TSP), July 2-4, 2013, Rome, Italy. 
Sekercioglu, Y. A., Varga, A. and Egan, G. K. Egan. 2003. "Par-

allel Simulation Made Easy with OMNeT++". Proceedings 

of the European Simulation Symposium (ESS 2003), Oct. 26-
29, 2003, Delft, The Netherlands.  

Varga, A., Y. A. Sekercioglu and G. K. Egan. 2003. "A practical 
efficiency criterion for the null message algorithm". Proceed-

ings of the European Simulation Symposium (ESS 2003), 
(Oct. 26-29, 2003, Delft, The Netherlands.) SCS Interna-
tional, 81-92. 

Varga, A. and Hornig, R. 2008. "An overview of the OMNeT++ 
simulation environment", Simutools '08: Proceedings of the 

1st international conference on Simulation tools and tech-

niques for communications, networks and systems & work-

shops. March 7, 2008, Marseille, France. 


