
Checking the Accuracy of Siitperf

JUNE 2021 • VOLUME XIII • NUMBER 22

INFOCOMMUNICATIONS JOURNAL

Submitted: March 21, 2021, revised April 15.
G. Lencse is with the Department of Telecommunications, Széchenyi István

University, Győr, Hungary.
(e-mail: lencse@sze.hu)

Checking the Accuracy of Siitperf
Gábor Lencse

DOI: 10.36244/ICJ.2021.2.1

2
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Both the latency and the packet delay variation

measurements are to be performed at the frame rate determined
by the throughput test. The latency measurement has to tag at
least 500 frames, the latencies of which are measured using
sending and receiving timestamps, and the final results are the
typical latency (the median of the latency values) and the worst
case latency (the 99.9th percentile of the latency values). Packet
delay variation measurement first determines the one way delay
of every single frame, then it calculates the 99.9th percentile
and the minimum of the one way delay values, and finally, their
difference is the packet delay variation.

For an easy to follow introduction to RFC 8219, please refer
to the slides of our IIJ Lab seminar presentation in Tokyo in
2017 [7].

On the one hand, we are not aware of any other RFC 8219
compliant benchmarking tools for network interconnect devices
than our siitperf. On the other hand, RFC 8219 has taken
several benchmarking procedures from the more than 20 years
old RFC 2544 [8]. Several RFC 2544 compliant hardware and
software Testers are listed in [9]. Further network
benchmarking tools are collected and compared in [10].

B. Summary of siitperf in a Nutshell
We give a short overview of siitperf on the basis of our

open access paper [3], in which all the details can be found. Our
aim was to design and implement a high performance and also
flexible research tool. To that end, siitperf is a collection
of binaries and shell scripts. The core measurements are
performed by one of three binaries, which are executed multiple
times by one of four shell scripts. The binaries perform the
sending and receiving of certain IPv4 or IPv6 frames1 at a pre-
defined constant frame rate according to the test setup shown in
Fig. 1. We note that siitperf allows X=Y, that is, it can also
be used for benchmarking an IPv4 or IPv6 router. The shell
scripts call the binaries supplying them with the proper
command line parameters for the given core measurement.

The first two of the supported benchmarking procedures
(throughput and frame loss rate) require only the above
mentioned sending of test frames at a constant rate and counting
of the received test frames, thus the core measurement of both
procedures is the same. The difference is that throughput
measurement requires to find the highest rate at which the DUT
can forward all the frames without loss, whereas the frame loss
rate measurement requires to perform the core measurement at
various frame rates to determine the frame loss rate at those
specific frame rates. The core measurement of both tests is
implemented in the siitperf-tp binary and the two
different benchmarking procedures are performed by two
different shell scripts.

The latency benchmarking procedure requires that
timestamps are stored immediately after sending and receiving
of tagged frames. The latency for each tagged frame is
calculated as the difference of the receiving and sending

1 more precisely: Ethernet frames containing IPv4 or IPv6 packets

timestamps of the given frame. The latency benchmarking
procedure is implemented by siitperf-lat, which is an
extension of siitperf-tp.

From our point of view, the packet delay variation
benchmarking procedure is similar to the latency benchmarking
procedure, but it requires timestamping of every single frame.
The packet delay variation benchmarking procedure is
implemented by siitperf-pdv, which is also an extension
of siitperf-tp.

The binaries are implemented in C++ using DPDK to achieve
high enough performance. We used an object oriented design:
the Throughput class served as a base class for the
Latency and Pdv classes.

Internally, siitperf uses TSC (Time Stamp Counter) for
time measurements, which is a very accurate and
computationally inexpensive solution (it is a CPU register,
which can be read by a single CPU instruction: RDTSC [11]).

To achieve as high performance as possible, all test frames
used by siitperf-tp and siitperf-lat are pre-
generated (including the tagged frames). The test frames of
siitperf-pdv are prepared right before sending by
modifying a set of pre-generated frames: their individual
identifiers and checksums are rewritten.

Regarding our error model, it is important that the sending
and receiving of the frames are implemented by sender and
receiver functions, which are executed as threads by the CPU
cores specified by the user in the configuration file.

III. OUR ERROR MODEL

A. Accuracy of the Timing of Frame Sending

There is an excellent paper that examines the accuracy of the
timing of different software packet generators [12]. It points out
that the inter-sending time of the packets is rather imprecise at
demanding frame rates, if pure software methods are used. It
also mentions the buffering of the frames by the NIC (Network
Interface Card) among the root causes of this phenomenon,
what we have also experienced and reported: our experience
was that when a packet was reported by the DPDK function as
“sent”, it was still in the buffer of the NIC [3]. Unfortunately,
this buffering completely discredits any investigation based on
using timestamps stored at the sending of the frames: even if we
store timestamps both before and after the sending of a frame,
we may not be sure, when the frame was actually sent.

Imprecise timing may come from various root causes. At
demanding frame rates, one of them is that our contemporary
CPUs use several solutions to increase their performance
including caching, branch prediction, etc. and they usually
provide their optimum performance only after the first
execution (or after the first few executions) of the core of the
packet sending cycle, thus the first (few) longer than required
inter-sending time(s) is/are followed by shorter ones to
compensate the latency. This compensation depends on the

1
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Abstract— Siitperf is the world’s first free software RFC 8219

compliant SIIT (Stateless IP/ICMP Translation, also called as
Stateless NAT64) tester, which implements throughput, frame loss
rate, latency and packet delay variation tests. In this paper, we
show that the reliability of its results mainly depends on the
accuracy of the timing of its frame sender algorithm. We also
investigate the effect of Ethernet flow control on the measurement
results. Siitperf is calibrated by the comparison of its results with
that of a commercial network performance tester, when both of
them are used for determining the throughput of the IPv4 routing
of the Linux kernel.

Index Terms—accuracy, network benchmarking tools,

calibration, frame loss rate, latency, network performance
measurement, siitperf, throughput.

I. INTRODUCTION
FC 8219 [1] has defined a benchmarking methodology for
 the high number of IPv6 transition technologies [2] by

classifying them into a small number of categories and defining
benchmarking procedures for each category. As far as we know,
our siitperf [3] is the world’s first free software RFC 8219
compliant SIIT (Stateless IP/ICMP Translation) [4] (also called
stateless NAT64) tester, written in C++ using DPDK (Data
Plane Development Kit) [5] available from GitHub [6]. Being a
measurement tool, the accuracy of siitperf is a key issue,
which we examine in this paper. To that end, first, we give a
short introduction to RFC 8219 and siitperf only up to the
measure necessary to understand the rest of this paper. Then,
we define our error model by overviewing the most important
factors that could cause unreliable measurement results. Next,
we examine the effect of Ethernet flow control on the
measurement results. After that, we measure the throughput of
the same DUT (Device Under Test) using a commercial
network performance tester and siitperf and compare their
results. Finally, we discuss our results and disclose our plans
for further research.

II. A SHORT INTRODUCTION TO RFC 8219 AND SIITPERF
In order to provide the reader with the necessary background

information for the understanding of the rest of this paper, we
give a short overview of RFC 8219 and siitperf.

A. Summary of RFC 8219 in a Nutshell
RFC 8219 has defined a benchmarking methodology for

IPv6 transition technologies aiming to facilitate their
performance measurement in an objective way producing
reasonable and comparable results. To that end, it has defined
measurement setups, measurement procedures, and several
parameters such as standard frame sizes, duration of the tests,
etc. To be able to deal with the high number of different IPv6
transition technologies, they were classified into the following
categories: dual stack, single translation, double translation
and encapsulation technologies, and the members of each
category may be handled together.

RFC 8219 recommends the Single DUT test setup shown in
Fig. 1 for the performance evaluation of the single translation
technologies, where SIIT belongs to. Here, the Tester device
benchmarks the DUT (Device Under Test). Although the
arrows would imply unidirectional traffic, testing with
bidirectional traffic is required by RFC 8219 and testing with
unidirectional traffic is optional. Of course, both X and Y in
IPvX and IPvY are from the set of {4, 6}. Naturally, if we are
talking about SIIT, then it implies that X≠Y.

From among the measurement procedures, we summarize
only those that are implemented by siitperf.

Throughput is defined as the highest (constant) frame rate at
which the DUT can forward all frames without frame loss.
Although its measurement procedure has special wording, in
practice, the throughput is determined by a binary search. There
are further conditions, e.g. core measurements of the binary
search should last at least for 60 seconds and the tester should
continue on receiving for 2 more seconds after finishing frame
sending so that all residual (buffered) frames may arrive safely.

The frame loss rate measurement procedure measures the
frame loss rate at some specific frame rates starting from the
maximum frame rate for the media and decreasing the frame
rate in steps not higher than the 10% of the maximum frame
rate. Measurements may be finished after two consecutive 0%
frame loss results.

Checking the Accuracy of Siitperf
G. Lencse

R

Submitted: March 21, 2021, revised April 15.
G. Lencse is with the Department of Telecommunications, Széchenyi István

University, Győr, H-9026, Hungary. (e-mail: lencse@sze.hu)

+--------------------+
| |

+--------|IPvX Tester IPvY|<-------+
| | | |
| +--------------------+ |
| |
| +--------------------+ |
| | | |
+------->|IPvX DUT IPvY|--------+

| |
+--------------------+

Fig. 1. Single DUT test setup [1].

2
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Both the latency and the packet delay variation

measurements are to be performed at the frame rate determined
by the throughput test. The latency measurement has to tag at
least 500 frames, the latencies of which are measured using
sending and receiving timestamps, and the final results are the
typical latency (the median of the latency values) and the worst
case latency (the 99.9th percentile of the latency values). Packet
delay variation measurement first determines the one way delay
of every single frame, then it calculates the 99.9th percentile
and the minimum of the one way delay values, and finally, their
difference is the packet delay variation.

For an easy to follow introduction to RFC 8219, please refer
to the slides of our IIJ Lab seminar presentation in Tokyo in
2017 [7].

On the one hand, we are not aware of any other RFC 8219
compliant benchmarking tools for network interconnect devices
than our siitperf. On the other hand, RFC 8219 has taken
several benchmarking procedures from the more than 20 years
old RFC 2544 [8]. Several RFC 2544 compliant hardware and
software Testers are listed in [9]. Further network
benchmarking tools are collected and compared in [10].

B. Summary of siitperf in a Nutshell
We give a short overview of siitperf on the basis of our

open access paper [3], in which all the details can be found. Our
aim was to design and implement a high performance and also
flexible research tool. To that end, siitperf is a collection
of binaries and shell scripts. The core measurements are
performed by one of three binaries, which are executed multiple
times by one of four shell scripts. The binaries perform the
sending and receiving of certain IPv4 or IPv6 frames1 at a pre-
defined constant frame rate according to the test setup shown in
Fig. 1. We note that siitperf allows X=Y, that is, it can also
be used for benchmarking an IPv4 or IPv6 router. The shell
scripts call the binaries supplying them with the proper
command line parameters for the given core measurement.

The first two of the supported benchmarking procedures
(throughput and frame loss rate) require only the above
mentioned sending of test frames at a constant rate and counting
of the received test frames, thus the core measurement of both
procedures is the same. The difference is that throughput
measurement requires to find the highest rate at which the DUT
can forward all the frames without loss, whereas the frame loss
rate measurement requires to perform the core measurement at
various frame rates to determine the frame loss rate at those
specific frame rates. The core measurement of both tests is
implemented in the siitperf-tp binary and the two
different benchmarking procedures are performed by two
different shell scripts.

The latency benchmarking procedure requires that
timestamps are stored immediately after sending and receiving
of tagged frames. The latency for each tagged frame is
calculated as the difference of the receiving and sending

1 more precisely: Ethernet frames containing IPv4 or IPv6 packets

timestamps of the given frame. The latency benchmarking
procedure is implemented by siitperf-lat, which is an
extension of siitperf-tp.

From our point of view, the packet delay variation
benchmarking procedure is similar to the latency benchmarking
procedure, but it requires timestamping of every single frame.
The packet delay variation benchmarking procedure is
implemented by siitperf-pdv, which is also an extension
of siitperf-tp.

The binaries are implemented in C++ using DPDK to achieve
high enough performance. We used an object oriented design:
the Throughput class served as a base class for the
Latency and Pdv classes.

Internally, siitperf uses TSC (Time Stamp Counter) for
time measurements, which is a very accurate and
computationally inexpensive solution (it is a CPU register,
which can be read by a single CPU instruction: RDTSC [11]).

To achieve as high performance as possible, all test frames
used by siitperf-tp and siitperf-lat are pre-
generated (including the tagged frames). The test frames of
siitperf-pdv are prepared right before sending by
modifying a set of pre-generated frames: their individual
identifiers and checksums are rewritten.

Regarding our error model, it is important that the sending
and receiving of the frames are implemented by sender and
receiver functions, which are executed as threads by the CPU
cores specified by the user in the configuration file.

III. OUR ERROR MODEL

A. Accuracy of the Timing of Frame Sending

There is an excellent paper that examines the accuracy of the
timing of different software packet generators [12]. It points out
that the inter-sending time of the packets is rather imprecise at
demanding frame rates, if pure software methods are used. It
also mentions the buffering of the frames by the NIC (Network
Interface Card) among the root causes of this phenomenon,
what we have also experienced and reported: our experience
was that when a packet was reported by the DPDK function as
“sent”, it was still in the buffer of the NIC [3]. Unfortunately,
this buffering completely discredits any investigation based on
using timestamps stored at the sending of the frames: even if we
store timestamps both before and after the sending of a frame,
we may not be sure, when the frame was actually sent.

Imprecise timing may come from various root causes. At
demanding frame rates, one of them is that our contemporary
CPUs use several solutions to increase their performance
including caching, branch prediction, etc. and they usually
provide their optimum performance only after the first
execution (or after the first few executions) of the core of the
packet sending cycle, thus the first (few) longer than required
inter-sending time(s) is/are followed by shorter ones to
compensate the latency. This compensation depends on the

 A. Summary of RFC 8219 in a Nutshell

1
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Abstract— Siitperf is the world’s first free software RFC 8219

compliant SIIT (Stateless IP/ICMP Translation, also called as
Stateless NAT64) tester, which implements throughput, frame loss
rate, latency and packet delay variation tests. In this paper, we
show that the reliability of its results mainly depends on the
accuracy of the timing of its frame sender algorithm. We also
investigate the effect of Ethernet flow control on the measurement
results. Siitperf is calibrated by the comparison of its results with
that of a commercial network performance tester, when both of
them are used for determining the throughput of the IPv4 routing
of the Linux kernel.

Index Terms—accuracy, network benchmarking tools,

calibration, frame loss rate, latency, network performance
measurement, siitperf, throughput.

I. INTRODUCTION
FC 8219 [1] has defined a benchmarking methodology for
 the high number of IPv6 transition technologies [2] by

classifying them into a small number of categories and defining
benchmarking procedures for each category. As far as we know,
our siitperf [3] is the world’s first free software RFC 8219
compliant SIIT (Stateless IP/ICMP Translation) [4] (also called
stateless NAT64) tester, written in C++ using DPDK (Data
Plane Development Kit) [5] available from GitHub [6]. Being a
measurement tool, the accuracy of siitperf is a key issue,
which we examine in this paper. To that end, first, we give a
short introduction to RFC 8219 and siitperf only up to the
measure necessary to understand the rest of this paper. Then,
we define our error model by overviewing the most important
factors that could cause unreliable measurement results. Next,
we examine the effect of Ethernet flow control on the
measurement results. After that, we measure the throughput of
the same DUT (Device Under Test) using a commercial
network performance tester and siitperf and compare their
results. Finally, we discuss our results and disclose our plans
for further research.

II. A SHORT INTRODUCTION TO RFC 8219 AND SIITPERF
In order to provide the reader with the necessary background

information for the understanding of the rest of this paper, we
give a short overview of RFC 8219 and siitperf.

A. Summary of RFC 8219 in a Nutshell
RFC 8219 has defined a benchmarking methodology for

IPv6 transition technologies aiming to facilitate their
performance measurement in an objective way producing
reasonable and comparable results. To that end, it has defined
measurement setups, measurement procedures, and several
parameters such as standard frame sizes, duration of the tests,
etc. To be able to deal with the high number of different IPv6
transition technologies, they were classified into the following
categories: dual stack, single translation, double translation
and encapsulation technologies, and the members of each
category may be handled together.

RFC 8219 recommends the Single DUT test setup shown in
Fig. 1 for the performance evaluation of the single translation
technologies, where SIIT belongs to. Here, the Tester device
benchmarks the DUT (Device Under Test). Although the
arrows would imply unidirectional traffic, testing with
bidirectional traffic is required by RFC 8219 and testing with
unidirectional traffic is optional. Of course, both X and Y in
IPvX and IPvY are from the set of {4, 6}. Naturally, if we are
talking about SIIT, then it implies that X≠Y.

From among the measurement procedures, we summarize
only those that are implemented by siitperf.

Throughput is defined as the highest (constant) frame rate at
which the DUT can forward all frames without frame loss.
Although its measurement procedure has special wording, in
practice, the throughput is determined by a binary search. There
are further conditions, e.g. core measurements of the binary
search should last at least for 60 seconds and the tester should
continue on receiving for 2 more seconds after finishing frame
sending so that all residual (buffered) frames may arrive safely.

The frame loss rate measurement procedure measures the
frame loss rate at some specific frame rates starting from the
maximum frame rate for the media and decreasing the frame
rate in steps not higher than the 10% of the maximum frame
rate. Measurements may be finished after two consecutive 0%
frame loss results.

Checking the Accuracy of Siitperf
G. Lencse

R

Submitted: March 21, 2021, revised April 15.
G. Lencse is with the Department of Telecommunications, Széchenyi István

University, Győr, H-9026, Hungary. (e-mail: lencse@sze.hu)

+--------------------+
| |

+--------|IPvX Tester IPvY|<-------+
| | | |
| +--------------------+ |
| |
| +--------------------+ |
| | | |
+------->|IPvX DUT IPvY|--------+

| |
+--------------------+

Fig. 1. Single DUT test setup [1].

2
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Both the latency and the packet delay variation

measurements are to be performed at the frame rate determined
by the throughput test. The latency measurement has to tag at
least 500 frames, the latencies of which are measured using
sending and receiving timestamps, and the final results are the
typical latency (the median of the latency values) and the worst
case latency (the 99.9th percentile of the latency values). Packet
delay variation measurement first determines the one way delay
of every single frame, then it calculates the 99.9th percentile
and the minimum of the one way delay values, and finally, their
difference is the packet delay variation.

For an easy to follow introduction to RFC 8219, please refer
to the slides of our IIJ Lab seminar presentation in Tokyo in
2017 [7].

On the one hand, we are not aware of any other RFC 8219
compliant benchmarking tools for network interconnect devices
than our siitperf. On the other hand, RFC 8219 has taken
several benchmarking procedures from the more than 20 years
old RFC 2544 [8]. Several RFC 2544 compliant hardware and
software Testers are listed in [9]. Further network
benchmarking tools are collected and compared in [10].

B. Summary of siitperf in a Nutshell
We give a short overview of siitperf on the basis of our

open access paper [3], in which all the details can be found. Our
aim was to design and implement a high performance and also
flexible research tool. To that end, siitperf is a collection
of binaries and shell scripts. The core measurements are
performed by one of three binaries, which are executed multiple
times by one of four shell scripts. The binaries perform the
sending and receiving of certain IPv4 or IPv6 frames1 at a pre-
defined constant frame rate according to the test setup shown in
Fig. 1. We note that siitperf allows X=Y, that is, it can also
be used for benchmarking an IPv4 or IPv6 router. The shell
scripts call the binaries supplying them with the proper
command line parameters for the given core measurement.

The first two of the supported benchmarking procedures
(throughput and frame loss rate) require only the above
mentioned sending of test frames at a constant rate and counting
of the received test frames, thus the core measurement of both
procedures is the same. The difference is that throughput
measurement requires to find the highest rate at which the DUT
can forward all the frames without loss, whereas the frame loss
rate measurement requires to perform the core measurement at
various frame rates to determine the frame loss rate at those
specific frame rates. The core measurement of both tests is
implemented in the siitperf-tp binary and the two
different benchmarking procedures are performed by two
different shell scripts.

The latency benchmarking procedure requires that
timestamps are stored immediately after sending and receiving
of tagged frames. The latency for each tagged frame is
calculated as the difference of the receiving and sending

1 more precisely: Ethernet frames containing IPv4 or IPv6 packets

timestamps of the given frame. The latency benchmarking
procedure is implemented by siitperf-lat, which is an
extension of siitperf-tp.

From our point of view, the packet delay variation
benchmarking procedure is similar to the latency benchmarking
procedure, but it requires timestamping of every single frame.
The packet delay variation benchmarking procedure is
implemented by siitperf-pdv, which is also an extension
of siitperf-tp.

The binaries are implemented in C++ using DPDK to achieve
high enough performance. We used an object oriented design:
the Throughput class served as a base class for the
Latency and Pdv classes.

Internally, siitperf uses TSC (Time Stamp Counter) for
time measurements, which is a very accurate and
computationally inexpensive solution (it is a CPU register,
which can be read by a single CPU instruction: RDTSC [11]).

To achieve as high performance as possible, all test frames
used by siitperf-tp and siitperf-lat are pre-
generated (including the tagged frames). The test frames of
siitperf-pdv are prepared right before sending by
modifying a set of pre-generated frames: their individual
identifiers and checksums are rewritten.

Regarding our error model, it is important that the sending
and receiving of the frames are implemented by sender and
receiver functions, which are executed as threads by the CPU
cores specified by the user in the configuration file.

III. OUR ERROR MODEL

A. Accuracy of the Timing of Frame Sending

There is an excellent paper that examines the accuracy of the
timing of different software packet generators [12]. It points out
that the inter-sending time of the packets is rather imprecise at
demanding frame rates, if pure software methods are used. It
also mentions the buffering of the frames by the NIC (Network
Interface Card) among the root causes of this phenomenon,
what we have also experienced and reported: our experience
was that when a packet was reported by the DPDK function as
“sent”, it was still in the buffer of the NIC [3]. Unfortunately,
this buffering completely discredits any investigation based on
using timestamps stored at the sending of the frames: even if we
store timestamps both before and after the sending of a frame,
we may not be sure, when the frame was actually sent.

Imprecise timing may come from various root causes. At
demanding frame rates, one of them is that our contemporary
CPUs use several solutions to increase their performance
including caching, branch prediction, etc. and they usually
provide their optimum performance only after the first
execution (or after the first few executions) of the core of the
packet sending cycle, thus the first (few) longer than required
inter-sending time(s) is/are followed by shorter ones to
compensate the latency. This compensation depends on the

Abstract— Siitperf is the world’s first free software RFC 8219
compliant SIIT (Stateless IP/ICMP Translation, also called as
Stateless NAT64) tester, which implements throughput, frame
loss rate, latency and packet delay variation tests. In this paper,
we show that the reliability of its results mainly depends on
the accuracy of the timing of its frame sender algorithm. We
also investigate the effect of Ethernet flow control on the
measurement results. Siitperf is calibrated by the comparison of
its results with that of a commercial network performance tester,
when both of them are used for determining the throughput of
the IPv4 routing of the Linux kernel.

Index Terms—accuracy, network benchmarking tools,
calibration, frame loss rate, latency, network performance
measurement, siitperf, throughput.

mailto:lencse%40sze.hu?subject=
https://doi.org/10.36244/ICJ.2021.2.1

Checking the Accuracy of Siitperf
INFOCOMMUNICATIONS JOURNAL

JUNE 2021 • VOLUME XIII • NUMBER 2 3

2
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Both the latency and the packet delay variation

measurements are to be performed at the frame rate determined
by the throughput test. The latency measurement has to tag at
least 500 frames, the latencies of which are measured using
sending and receiving timestamps, and the final results are the
typical latency (the median of the latency values) and the worst
case latency (the 99.9th percentile of the latency values). Packet
delay variation measurement first determines the one way delay
of every single frame, then it calculates the 99.9th percentile
and the minimum of the one way delay values, and finally, their
difference is the packet delay variation.

For an easy to follow introduction to RFC 8219, please refer
to the slides of our IIJ Lab seminar presentation in Tokyo in
2017 [7].

On the one hand, we are not aware of any other RFC 8219
compliant benchmarking tools for network interconnect devices
than our siitperf. On the other hand, RFC 8219 has taken
several benchmarking procedures from the more than 20 years
old RFC 2544 [8]. Several RFC 2544 compliant hardware and
software Testers are listed in [9]. Further network
benchmarking tools are collected and compared in [10].

B. Summary of siitperf in a Nutshell
We give a short overview of siitperf on the basis of our

open access paper [3], in which all the details can be found. Our
aim was to design and implement a high performance and also
flexible research tool. To that end, siitperf is a collection
of binaries and shell scripts. The core measurements are
performed by one of three binaries, which are executed multiple
times by one of four shell scripts. The binaries perform the
sending and receiving of certain IPv4 or IPv6 frames1 at a pre-
defined constant frame rate according to the test setup shown in
Fig. 1. We note that siitperf allows X=Y, that is, it can also
be used for benchmarking an IPv4 or IPv6 router. The shell
scripts call the binaries supplying them with the proper
command line parameters for the given core measurement.

The first two of the supported benchmarking procedures
(throughput and frame loss rate) require only the above
mentioned sending of test frames at a constant rate and counting
of the received test frames, thus the core measurement of both
procedures is the same. The difference is that throughput
measurement requires to find the highest rate at which the DUT
can forward all the frames without loss, whereas the frame loss
rate measurement requires to perform the core measurement at
various frame rates to determine the frame loss rate at those
specific frame rates. The core measurement of both tests is
implemented in the siitperf-tp binary and the two
different benchmarking procedures are performed by two
different shell scripts.

The latency benchmarking procedure requires that
timestamps are stored immediately after sending and receiving
of tagged frames. The latency for each tagged frame is
calculated as the difference of the receiving and sending

1 more precisely: Ethernet frames containing IPv4 or IPv6 packets

timestamps of the given frame. The latency benchmarking
procedure is implemented by siitperf-lat, which is an
extension of siitperf-tp.

From our point of view, the packet delay variation
benchmarking procedure is similar to the latency benchmarking
procedure, but it requires timestamping of every single frame.
The packet delay variation benchmarking procedure is
implemented by siitperf-pdv, which is also an extension
of siitperf-tp.

The binaries are implemented in C++ using DPDK to achieve
high enough performance. We used an object oriented design:
the Throughput class served as a base class for the
Latency and Pdv classes.

Internally, siitperf uses TSC (Time Stamp Counter) for
time measurements, which is a very accurate and
computationally inexpensive solution (it is a CPU register,
which can be read by a single CPU instruction: RDTSC [11]).

To achieve as high performance as possible, all test frames
used by siitperf-tp and siitperf-lat are pre-
generated (including the tagged frames). The test frames of
siitperf-pdv are prepared right before sending by
modifying a set of pre-generated frames: their individual
identifiers and checksums are rewritten.

Regarding our error model, it is important that the sending
and receiving of the frames are implemented by sender and
receiver functions, which are executed as threads by the CPU
cores specified by the user in the configuration file.

III. OUR ERROR MODEL

A. Accuracy of the Timing of Frame Sending

There is an excellent paper that examines the accuracy of the
timing of different software packet generators [12]. It points out
that the inter-sending time of the packets is rather imprecise at
demanding frame rates, if pure software methods are used. It
also mentions the buffering of the frames by the NIC (Network
Interface Card) among the root causes of this phenomenon,
what we have also experienced and reported: our experience
was that when a packet was reported by the DPDK function as
“sent”, it was still in the buffer of the NIC [3]. Unfortunately,
this buffering completely discredits any investigation based on
using timestamps stored at the sending of the frames: even if we
store timestamps both before and after the sending of a frame,
we may not be sure, when the frame was actually sent.

Imprecise timing may come from various root causes. At
demanding frame rates, one of them is that our contemporary
CPUs use several solutions to increase their performance
including caching, branch prediction, etc. and they usually
provide their optimum performance only after the first
execution (or after the first few executions) of the core of the
packet sending cycle, thus the first (few) longer than required
inter-sending time(s) is/are followed by shorter ones to
compensate the latency. This compensation depends on the

1
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Abstract— Siitperf is the world’s first free software RFC 8219

compliant SIIT (Stateless IP/ICMP Translation, also called as
Stateless NAT64) tester, which implements throughput, frame loss
rate, latency and packet delay variation tests. In this paper, we
show that the reliability of its results mainly depends on the
accuracy of the timing of its frame sender algorithm. We also
investigate the effect of Ethernet flow control on the measurement
results. Siitperf is calibrated by the comparison of its results with
that of a commercial network performance tester, when both of
them are used for determining the throughput of the IPv4 routing
of the Linux kernel.

Index Terms—accuracy, network benchmarking tools,

calibration, frame loss rate, latency, network performance
measurement, siitperf, throughput.

I. INTRODUCTION
FC 8219 [1] has defined a benchmarking methodology for
 the high number of IPv6 transition technologies [2] by

classifying them into a small number of categories and defining
benchmarking procedures for each category. As far as we know,
our siitperf [3] is the world’s first free software RFC 8219
compliant SIIT (Stateless IP/ICMP Translation) [4] (also called
stateless NAT64) tester, written in C++ using DPDK (Data
Plane Development Kit) [5] available from GitHub [6]. Being a
measurement tool, the accuracy of siitperf is a key issue,
which we examine in this paper. To that end, first, we give a
short introduction to RFC 8219 and siitperf only up to the
measure necessary to understand the rest of this paper. Then,
we define our error model by overviewing the most important
factors that could cause unreliable measurement results. Next,
we examine the effect of Ethernet flow control on the
measurement results. After that, we measure the throughput of
the same DUT (Device Under Test) using a commercial
network performance tester and siitperf and compare their
results. Finally, we discuss our results and disclose our plans
for further research.

II. A SHORT INTRODUCTION TO RFC 8219 AND SIITPERF
In order to provide the reader with the necessary background

information for the understanding of the rest of this paper, we
give a short overview of RFC 8219 and siitperf.

A. Summary of RFC 8219 in a Nutshell
RFC 8219 has defined a benchmarking methodology for

IPv6 transition technologies aiming to facilitate their
performance measurement in an objective way producing
reasonable and comparable results. To that end, it has defined
measurement setups, measurement procedures, and several
parameters such as standard frame sizes, duration of the tests,
etc. To be able to deal with the high number of different IPv6
transition technologies, they were classified into the following
categories: dual stack, single translation, double translation
and encapsulation technologies, and the members of each
category may be handled together.

RFC 8219 recommends the Single DUT test setup shown in
Fig. 1 for the performance evaluation of the single translation
technologies, where SIIT belongs to. Here, the Tester device
benchmarks the DUT (Device Under Test). Although the
arrows would imply unidirectional traffic, testing with
bidirectional traffic is required by RFC 8219 and testing with
unidirectional traffic is optional. Of course, both X and Y in
IPvX and IPvY are from the set of {4, 6}. Naturally, if we are
talking about SIIT, then it implies that X≠Y.

From among the measurement procedures, we summarize
only those that are implemented by siitperf.

Throughput is defined as the highest (constant) frame rate at
which the DUT can forward all frames without frame loss.
Although its measurement procedure has special wording, in
practice, the throughput is determined by a binary search. There
are further conditions, e.g. core measurements of the binary
search should last at least for 60 seconds and the tester should
continue on receiving for 2 more seconds after finishing frame
sending so that all residual (buffered) frames may arrive safely.

The frame loss rate measurement procedure measures the
frame loss rate at some specific frame rates starting from the
maximum frame rate for the media and decreasing the frame
rate in steps not higher than the 10% of the maximum frame
rate. Measurements may be finished after two consecutive 0%
frame loss results.

Checking the Accuracy of Siitperf
G. Lencse

R

Submitted: March 21, 2021, revised April 15.
G. Lencse is with the Department of Telecommunications, Széchenyi István

University, Győr, H-9026, Hungary. (e-mail: lencse@sze.hu)

+--------------------+
| |

+--------|IPvX Tester IPvY|<-------+
| | | |
| +--------------------+ |
| |
| +--------------------+ |
| | | |
+------->|IPvX DUT IPvY|--------+

| |
+--------------------+

Fig. 1. Single DUT test setup [1].

2
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Both the latency and the packet delay variation

measurements are to be performed at the frame rate determined
by the throughput test. The latency measurement has to tag at
least 500 frames, the latencies of which are measured using
sending and receiving timestamps, and the final results are the
typical latency (the median of the latency values) and the worst
case latency (the 99.9th percentile of the latency values). Packet
delay variation measurement first determines the one way delay
of every single frame, then it calculates the 99.9th percentile
and the minimum of the one way delay values, and finally, their
difference is the packet delay variation.

For an easy to follow introduction to RFC 8219, please refer
to the slides of our IIJ Lab seminar presentation in Tokyo in
2017 [7].

On the one hand, we are not aware of any other RFC 8219
compliant benchmarking tools for network interconnect devices
than our siitperf. On the other hand, RFC 8219 has taken
several benchmarking procedures from the more than 20 years
old RFC 2544 [8]. Several RFC 2544 compliant hardware and
software Testers are listed in [9]. Further network
benchmarking tools are collected and compared in [10].

B. Summary of siitperf in a Nutshell
We give a short overview of siitperf on the basis of our

open access paper [3], in which all the details can be found. Our
aim was to design and implement a high performance and also
flexible research tool. To that end, siitperf is a collection
of binaries and shell scripts. The core measurements are
performed by one of three binaries, which are executed multiple
times by one of four shell scripts. The binaries perform the
sending and receiving of certain IPv4 or IPv6 frames1 at a pre-
defined constant frame rate according to the test setup shown in
Fig. 1. We note that siitperf allows X=Y, that is, it can also
be used for benchmarking an IPv4 or IPv6 router. The shell
scripts call the binaries supplying them with the proper
command line parameters for the given core measurement.

The first two of the supported benchmarking procedures
(throughput and frame loss rate) require only the above
mentioned sending of test frames at a constant rate and counting
of the received test frames, thus the core measurement of both
procedures is the same. The difference is that throughput
measurement requires to find the highest rate at which the DUT
can forward all the frames without loss, whereas the frame loss
rate measurement requires to perform the core measurement at
various frame rates to determine the frame loss rate at those
specific frame rates. The core measurement of both tests is
implemented in the siitperf-tp binary and the two
different benchmarking procedures are performed by two
different shell scripts.

The latency benchmarking procedure requires that
timestamps are stored immediately after sending and receiving
of tagged frames. The latency for each tagged frame is
calculated as the difference of the receiving and sending

1 more precisely: Ethernet frames containing IPv4 or IPv6 packets

timestamps of the given frame. The latency benchmarking
procedure is implemented by siitperf-lat, which is an
extension of siitperf-tp.

From our point of view, the packet delay variation
benchmarking procedure is similar to the latency benchmarking
procedure, but it requires timestamping of every single frame.
The packet delay variation benchmarking procedure is
implemented by siitperf-pdv, which is also an extension
of siitperf-tp.

The binaries are implemented in C++ using DPDK to achieve
high enough performance. We used an object oriented design:
the Throughput class served as a base class for the
Latency and Pdv classes.

Internally, siitperf uses TSC (Time Stamp Counter) for
time measurements, which is a very accurate and
computationally inexpensive solution (it is a CPU register,
which can be read by a single CPU instruction: RDTSC [11]).

To achieve as high performance as possible, all test frames
used by siitperf-tp and siitperf-lat are pre-
generated (including the tagged frames). The test frames of
siitperf-pdv are prepared right before sending by
modifying a set of pre-generated frames: their individual
identifiers and checksums are rewritten.

Regarding our error model, it is important that the sending
and receiving of the frames are implemented by sender and
receiver functions, which are executed as threads by the CPU
cores specified by the user in the configuration file.

III. OUR ERROR MODEL

A. Accuracy of the Timing of Frame Sending

There is an excellent paper that examines the accuracy of the
timing of different software packet generators [12]. It points out
that the inter-sending time of the packets is rather imprecise at
demanding frame rates, if pure software methods are used. It
also mentions the buffering of the frames by the NIC (Network
Interface Card) among the root causes of this phenomenon,
what we have also experienced and reported: our experience
was that when a packet was reported by the DPDK function as
“sent”, it was still in the buffer of the NIC [3]. Unfortunately,
this buffering completely discredits any investigation based on
using timestamps stored at the sending of the frames: even if we
store timestamps both before and after the sending of a frame,
we may not be sure, when the frame was actually sent.

Imprecise timing may come from various root causes. At
demanding frame rates, one of them is that our contemporary
CPUs use several solutions to increase their performance
including caching, branch prediction, etc. and they usually
provide their optimum performance only after the first
execution (or after the first few executions) of the core of the
packet sending cycle, thus the first (few) longer than required
inter-sending time(s) is/are followed by shorter ones to
compensate the latency. This compensation depends on the

On the one hand, we are not aware of any other RFC 8219
compliant benchmarking tools for network interconnect devices
than our . On the other hand, RFC 8219 has taken
several benchmarking procedures from the more than 20 years
old RFC 2544 [8]. Several RFC 2544 compliant hardware
and software Testers are listed in [9]. Further network
benchmarking tools are collected and compared in [10].

2
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Both the latency and the packet delay variation

measurements are to be performed at the frame rate determined
by the throughput test. The latency measurement has to tag at
least 500 frames, the latencies of which are measured using
sending and receiving timestamps, and the final results are the
typical latency (the median of the latency values) and the worst
case latency (the 99.9th percentile of the latency values). Packet
delay variation measurement first determines the one way delay
of every single frame, then it calculates the 99.9th percentile
and the minimum of the one way delay values, and finally, their
difference is the packet delay variation.

For an easy to follow introduction to RFC 8219, please refer
to the slides of our IIJ Lab seminar presentation in Tokyo in
2017 [7].

On the one hand, we are not aware of any other RFC 8219
compliant benchmarking tools for network interconnect devices
than our siitperf. On the other hand, RFC 8219 has taken
several benchmarking procedures from the more than 20 years
old RFC 2544 [8]. Several RFC 2544 compliant hardware and
software Testers are listed in [9]. Further network
benchmarking tools are collected and compared in [10].

B. Summary of siitperf in a Nutshell
We give a short overview of siitperf on the basis of our

open access paper [3], in which all the details can be found. Our
aim was to design and implement a high performance and also
flexible research tool. To that end, siitperf is a collection
of binaries and shell scripts. The core measurements are
performed by one of three binaries, which are executed multiple
times by one of four shell scripts. The binaries perform the
sending and receiving of certain IPv4 or IPv6 frames1 at a pre-
defined constant frame rate according to the test setup shown in
Fig. 1. We note that siitperf allows X=Y, that is, it can also
be used for benchmarking an IPv4 or IPv6 router. The shell
scripts call the binaries supplying them with the proper
command line parameters for the given core measurement.

The first two of the supported benchmarking procedures
(throughput and frame loss rate) require only the above
mentioned sending of test frames at a constant rate and counting
of the received test frames, thus the core measurement of both
procedures is the same. The difference is that throughput
measurement requires to find the highest rate at which the DUT
can forward all the frames without loss, whereas the frame loss
rate measurement requires to perform the core measurement at
various frame rates to determine the frame loss rate at those
specific frame rates. The core measurement of both tests is
implemented in the siitperf-tp binary and the two
different benchmarking procedures are performed by two
different shell scripts.

The latency benchmarking procedure requires that
timestamps are stored immediately after sending and receiving
of tagged frames. The latency for each tagged frame is
calculated as the difference of the receiving and sending

1 more precisely: Ethernet frames containing IPv4 or IPv6 packets

timestamps of the given frame. The latency benchmarking
procedure is implemented by siitperf-lat, which is an
extension of siitperf-tp.

From our point of view, the packet delay variation
benchmarking procedure is similar to the latency benchmarking
procedure, but it requires timestamping of every single frame.
The packet delay variation benchmarking procedure is
implemented by siitperf-pdv, which is also an extension
of siitperf-tp.

The binaries are implemented in C++ using DPDK to achieve
high enough performance. We used an object oriented design:
the Throughput class served as a base class for the
Latency and Pdv classes.

Internally, siitperf uses TSC (Time Stamp Counter) for
time measurements, which is a very accurate and
computationally inexpensive solution (it is a CPU register,
which can be read by a single CPU instruction: RDTSC [11]).

To achieve as high performance as possible, all test frames
used by siitperf-tp and siitperf-lat are pre-
generated (including the tagged frames). The test frames of
siitperf-pdv are prepared right before sending by
modifying a set of pre-generated frames: their individual
identifiers and checksums are rewritten.

Regarding our error model, it is important that the sending
and receiving of the frames are implemented by sender and
receiver functions, which are executed as threads by the CPU
cores specified by the user in the configuration file.

III. OUR ERROR MODEL

A. Accuracy of the Timing of Frame Sending

There is an excellent paper that examines the accuracy of the
timing of different software packet generators [12]. It points out
that the inter-sending time of the packets is rather imprecise at
demanding frame rates, if pure software methods are used. It
also mentions the buffering of the frames by the NIC (Network
Interface Card) among the root causes of this phenomenon,
what we have also experienced and reported: our experience
was that when a packet was reported by the DPDK function as
“sent”, it was still in the buffer of the NIC [3]. Unfortunately,
this buffering completely discredits any investigation based on
using timestamps stored at the sending of the frames: even if we
store timestamps both before and after the sending of a frame,
we may not be sure, when the frame was actually sent.

Imprecise timing may come from various root causes. At
demanding frame rates, one of them is that our contemporary
CPUs use several solutions to increase their performance
including caching, branch prediction, etc. and they usually
provide their optimum performance only after the first
execution (or after the first few executions) of the core of the
packet sending cycle, thus the first (few) longer than required
inter-sending time(s) is/are followed by shorter ones to
compensate the latency. This compensation depends on the

2
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Both the latency and the packet delay variation

measurements are to be performed at the frame rate determined
by the throughput test. The latency measurement has to tag at
least 500 frames, the latencies of which are measured using
sending and receiving timestamps, and the final results are the
typical latency (the median of the latency values) and the worst
case latency (the 99.9th percentile of the latency values). Packet
delay variation measurement first determines the one way delay
of every single frame, then it calculates the 99.9th percentile
and the minimum of the one way delay values, and finally, their
difference is the packet delay variation.

For an easy to follow introduction to RFC 8219, please refer
to the slides of our IIJ Lab seminar presentation in Tokyo in
2017 [7].

On the one hand, we are not aware of any other RFC 8219
compliant benchmarking tools for network interconnect devices
than our siitperf. On the other hand, RFC 8219 has taken
several benchmarking procedures from the more than 20 years
old RFC 2544 [8]. Several RFC 2544 compliant hardware and
software Testers are listed in [9]. Further network
benchmarking tools are collected and compared in [10].

B. Summary of siitperf in a Nutshell
We give a short overview of siitperf on the basis of our

open access paper [3], in which all the details can be found. Our
aim was to design and implement a high performance and also
flexible research tool. To that end, siitperf is a collection
of binaries and shell scripts. The core measurements are
performed by one of three binaries, which are executed multiple
times by one of four shell scripts. The binaries perform the
sending and receiving of certain IPv4 or IPv6 frames1 at a pre-
defined constant frame rate according to the test setup shown in
Fig. 1. We note that siitperf allows X=Y, that is, it can also
be used for benchmarking an IPv4 or IPv6 router. The shell
scripts call the binaries supplying them with the proper
command line parameters for the given core measurement.

The first two of the supported benchmarking procedures
(throughput and frame loss rate) require only the above
mentioned sending of test frames at a constant rate and counting
of the received test frames, thus the core measurement of both
procedures is the same. The difference is that throughput
measurement requires to find the highest rate at which the DUT
can forward all the frames without loss, whereas the frame loss
rate measurement requires to perform the core measurement at
various frame rates to determine the frame loss rate at those
specific frame rates. The core measurement of both tests is
implemented in the siitperf-tp binary and the two
different benchmarking procedures are performed by two
different shell scripts.

The latency benchmarking procedure requires that
timestamps are stored immediately after sending and receiving
of tagged frames. The latency for each tagged frame is
calculated as the difference of the receiving and sending

1 more precisely: Ethernet frames containing IPv4 or IPv6 packets

timestamps of the given frame. The latency benchmarking
procedure is implemented by siitperf-lat, which is an
extension of siitperf-tp.

From our point of view, the packet delay variation
benchmarking procedure is similar to the latency benchmarking
procedure, but it requires timestamping of every single frame.
The packet delay variation benchmarking procedure is
implemented by siitperf-pdv, which is also an extension
of siitperf-tp.

The binaries are implemented in C++ using DPDK to achieve
high enough performance. We used an object oriented design:
the Throughput class served as a base class for the
Latency and Pdv classes.

Internally, siitperf uses TSC (Time Stamp Counter) for
time measurements, which is a very accurate and
computationally inexpensive solution (it is a CPU register,
which can be read by a single CPU instruction: RDTSC [11]).

To achieve as high performance as possible, all test frames
used by siitperf-tp and siitperf-lat are pre-
generated (including the tagged frames). The test frames of
siitperf-pdv are prepared right before sending by
modifying a set of pre-generated frames: their individual
identifiers and checksums are rewritten.

Regarding our error model, it is important that the sending
and receiving of the frames are implemented by sender and
receiver functions, which are executed as threads by the CPU
cores specified by the user in the configuration file.

III. OUR ERROR MODEL

A. Accuracy of the Timing of Frame Sending

There is an excellent paper that examines the accuracy of the
timing of different software packet generators [12]. It points out
that the inter-sending time of the packets is rather imprecise at
demanding frame rates, if pure software methods are used. It
also mentions the buffering of the frames by the NIC (Network
Interface Card) among the root causes of this phenomenon,
what we have also experienced and reported: our experience
was that when a packet was reported by the DPDK function as
“sent”, it was still in the buffer of the NIC [3]. Unfortunately,
this buffering completely discredits any investigation based on
using timestamps stored at the sending of the frames: even if we
store timestamps both before and after the sending of a frame,
we may not be sure, when the frame was actually sent.

Imprecise timing may come from various root causes. At
demanding frame rates, one of them is that our contemporary
CPUs use several solutions to increase their performance
including caching, branch prediction, etc. and they usually
provide their optimum performance only after the first
execution (or after the first few executions) of the core of the
packet sending cycle, thus the first (few) longer than required
inter-sending time(s) is/are followed by shorter ones to
compensate the latency. This compensation depends on the

2
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Both the latency and the packet delay variation

measurements are to be performed at the frame rate determined
by the throughput test. The latency measurement has to tag at
least 500 frames, the latencies of which are measured using
sending and receiving timestamps, and the final results are the
typical latency (the median of the latency values) and the worst
case latency (the 99.9th percentile of the latency values). Packet
delay variation measurement first determines the one way delay
of every single frame, then it calculates the 99.9th percentile
and the minimum of the one way delay values, and finally, their
difference is the packet delay variation.

For an easy to follow introduction to RFC 8219, please refer
to the slides of our IIJ Lab seminar presentation in Tokyo in
2017 [7].

On the one hand, we are not aware of any other RFC 8219
compliant benchmarking tools for network interconnect devices
than our siitperf. On the other hand, RFC 8219 has taken
several benchmarking procedures from the more than 20 years
old RFC 2544 [8]. Several RFC 2544 compliant hardware and
software Testers are listed in [9]. Further network
benchmarking tools are collected and compared in [10].

B. Summary of siitperf in a Nutshell
We give a short overview of siitperf on the basis of our

open access paper [3], in which all the details can be found. Our
aim was to design and implement a high performance and also
flexible research tool. To that end, siitperf is a collection
of binaries and shell scripts. The core measurements are
performed by one of three binaries, which are executed multiple
times by one of four shell scripts. The binaries perform the
sending and receiving of certain IPv4 or IPv6 frames1 at a pre-
defined constant frame rate according to the test setup shown in
Fig. 1. We note that siitperf allows X=Y, that is, it can also
be used for benchmarking an IPv4 or IPv6 router. The shell
scripts call the binaries supplying them with the proper
command line parameters for the given core measurement.

The first two of the supported benchmarking procedures
(throughput and frame loss rate) require only the above
mentioned sending of test frames at a constant rate and counting
of the received test frames, thus the core measurement of both
procedures is the same. The difference is that throughput
measurement requires to find the highest rate at which the DUT
can forward all the frames without loss, whereas the frame loss
rate measurement requires to perform the core measurement at
various frame rates to determine the frame loss rate at those
specific frame rates. The core measurement of both tests is
implemented in the siitperf-tp binary and the two
different benchmarking procedures are performed by two
different shell scripts.

The latency benchmarking procedure requires that
timestamps are stored immediately after sending and receiving
of tagged frames. The latency for each tagged frame is
calculated as the difference of the receiving and sending

1 more precisely: Ethernet frames containing IPv4 or IPv6 packets

timestamps of the given frame. The latency benchmarking
procedure is implemented by siitperf-lat, which is an
extension of siitperf-tp.

From our point of view, the packet delay variation
benchmarking procedure is similar to the latency benchmarking
procedure, but it requires timestamping of every single frame.
The packet delay variation benchmarking procedure is
implemented by siitperf-pdv, which is also an extension
of siitperf-tp.

The binaries are implemented in C++ using DPDK to achieve
high enough performance. We used an object oriented design:
the Throughput class served as a base class for the
Latency and Pdv classes.

Internally, siitperf uses TSC (Time Stamp Counter) for
time measurements, which is a very accurate and
computationally inexpensive solution (it is a CPU register,
which can be read by a single CPU instruction: RDTSC [11]).

To achieve as high performance as possible, all test frames
used by siitperf-tp and siitperf-lat are pre-
generated (including the tagged frames). The test frames of
siitperf-pdv are prepared right before sending by
modifying a set of pre-generated frames: their individual
identifiers and checksums are rewritten.

Regarding our error model, it is important that the sending
and receiving of the frames are implemented by sender and
receiver functions, which are executed as threads by the CPU
cores specified by the user in the configuration file.

III. OUR ERROR MODEL

A. Accuracy of the Timing of Frame Sending

There is an excellent paper that examines the accuracy of the
timing of different software packet generators [12]. It points out
that the inter-sending time of the packets is rather imprecise at
demanding frame rates, if pure software methods are used. It
also mentions the buffering of the frames by the NIC (Network
Interface Card) among the root causes of this phenomenon,
what we have also experienced and reported: our experience
was that when a packet was reported by the DPDK function as
“sent”, it was still in the buffer of the NIC [3]. Unfortunately,
this buffering completely discredits any investigation based on
using timestamps stored at the sending of the frames: even if we
store timestamps both before and after the sending of a frame,
we may not be sure, when the frame was actually sent.

Imprecise timing may come from various root causes. At
demanding frame rates, one of them is that our contemporary
CPUs use several solutions to increase their performance
including caching, branch prediction, etc. and they usually
provide their optimum performance only after the first
execution (or after the first few executions) of the core of the
packet sending cycle, thus the first (few) longer than required
inter-sending time(s) is/are followed by shorter ones to
compensate the latency. This compensation depends on the

Checking the Accuracy of Siitperf

JUNE 2021 • VOLUME XIII • NUMBER 24

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <3

antenna orientation towards each other is ensured.

III.EXISTING PROPAGATION MODELS

The models can be divided into three large groups: indoor,
outdoor and free space. In addition we can distinguish between
empirical, deterministic, and semi-empirical models.
For empirical modelsa correlation based on a statistical
approach can be given. Easily and are quick to use, in return
they are not always the most accurate. Ina deterministic case
based on some preliminary model, the propagation in the given
space is calculated to get the quantity sought.
For mobile communication networks, outdoor and indoor
models are important, however, outdoor propagationmodels
can also be used for a kind of control (but these are best for
point-to-point connections in particular).
The number of models dedicated to this frequency band is very
low in the literature. Due to the nature of the problem,
deterministic modellingmethodsare accurate but require more
computing capacity,while the ray-tracing methodscan be used
along affordable computational capacities [13].
From end use,it follows that we want to perform as few
calculations as possible in order to get results as soon as
possible. Inthis paper, wedeal only with the examination of
empirical models.

A.Free-space propagation
In the case of outdoor propagation, most models assume

direct vision or other special circumstances. The attenuation per
unit length thus calculated is typically loweras for indoor
propagation models, but of a similar order of magnitude[17].
Hence an estimate can be used in indoor modelling(taking into
account its limitations). The most common such relationship,
which wesimply refer to as outdoor attenuationhereinafter [21]
takes the following form:

𝑃𝑃𝐿𝐿=20∙log10(𝑑𝑑)+20∙log10(𝑓𝑓)+92.45(1)

where dis the distance in kilometres,fis the frequency in GHz,
and the result is given in decibels and describes the outdoor
attenuationbetween isotropic antennas invacuum.Once the
medium in which the wave propagates is already air, additional
attenuation occurs up.For low distances Fig. 1. depicts the path
loss calculated withEquation(1).

B.Close-in free space reference distance path loss model
The Close-in free space reference distance path loss model

[22] (hereinafter CI) is a reference model based on outdoor
propagation and it is applied forcomparison multiple indoor
signal propagation results:

𝑃𝑃𝐿𝐿
(𝐶𝐶𝐶𝐶)=FSPL(𝑓𝑓,𝑑𝑑0)+10⋅𝑛𝑛⋅log10(

𝑑𝑑
𝑑𝑑0

)+𝑋𝑋σ𝐶𝐶𝐶𝐶(2)

where FSPL(f,d0)is the outdoor attenuationat the reference
distance (d0is 1 meter) at the given frequency fmeasured in
GHz,nis the pathloss factor (PLE) and Xσ

CIis a zero-valued
Gaussian random variable with σstandard deviation. The
measured PLE[23] coefficients found in the literature are
largely the same in the ITU model of indoor signal propagation
with distance-based loss coefficients. A semi-outdoor, semi-
indoor measurement can be found in the literature where the
measured PLE is double of theITUmodel,however, a high
value for standard deviation was measured here[24].

C.Outdoor propagation models
Outdoor propagation models usually differentiate cases

according to how they are builtandwhether the area is
environmental or natural. In addition, onecan count on
individual models on topography, degree of incorporation,
location of the transmitting antenna, climate characteristics and
other similar factors. In a sense, the simplest such model is the
ITU surface model [25].Of interest for classification are
models that are essentially outdoor,but are used in a somewhat
enclosed built environment. In the literaturecan be found a
measurement procedure (and, in fact, a result) that is a corridor
open from one sidewere thus considered to be predominantly
outdoor measurements [24].

One of the most common relationships describing outdoor
propagationis the Okumura model [23], in the followingform:

𝑃𝑃𝐿𝐿=𝑙𝑙𝑓𝑓+𝐴𝐴𝑚𝑚𝑚𝑚(𝑓𝑓,𝑑𝑑)−𝐺𝐺(ℎ𝑡𝑡𝑡𝑡)−𝐺𝐺(ℎ𝑟𝑟𝑡𝑡)−𝐺𝐺𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎(3)

where Plis the attenuation, lfis the free-spaceattenuation,
Amu(f,d)is the relative median attenuation outdoors (as a
function of frequency and distance), G(hte)is the transmitter
gain, G(hre)is the receiver gain,Gareais the amplification ofthe
environment. The model is actually breaks down the attenuation
into two parts: into an outdoor component and factors that
modify the environment, and to the amplifying ofthe
environment (which can even be attenuation).

An improved version of the Okumura model is the Hata
model [22], which distinguishes theoutdoor locations
depending on built-inrate.

The COST-Hata model [23], (a furtherdevelopment of the
Hata model) takes the following form:

𝑃𝑃𝐿𝐿=46.3+33.9∙log10(𝑓𝑓)−13.82∙log10(ℎ𝐵𝐵)
−𝑎𝑎(ℎ𝑅𝑅,𝑓𝑓)
+(4.9−6.55∙log10(ℎ𝐵𝐵))
∙log10(𝑑𝑑)+𝐶𝐶𝑚𝑚

(4)

where PLis the median loss/attenuation, fis the frequency in
MHz,hBis the transmitting antenna effective height in meters,
dis the distance in km,hRis the effective height of the (mobile)
receiving antenna in meters, Cmis the constant offset in dB.

Fig. 1. Short-range free-space path loss in FR2 band at 38.72 GHz

4
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

The Debian Linux operating system was updated to version
9.13 on all computers. The Linux kernel version was: 4.9.0-4-
amd64. The DPDK version was 16.11.11-1+deb9u2.” [16]

The “varport” branch of siitperf was used, its latest
commit was bfddb5f on Aug 23, 2020. (Since then, the varport
branch was merged into the master branch.)

We expected that the difference between the results with and
without Ethernet flow control depends on the frame rate and we
also wanted to test this hypothesis.

To achieve high enough frame rates, first, we benchmarked
IPv4 kernel routing using random source and destination port
numbers as we did in [16]. The topology of the test system is
shown in Fig. 2. The CPU clock rate was set to fixed 2GHz on
both computers and hyperthreading was switched off (using the
same BIOS settings as specified in the appendix of [18]). All
cores of the second CPU of the DUT were switched off using
the maxcpus=8 kernel parameter to avoid NUMA issues
(please refer to [15] for a detailed explanation).

As for frames sizes, we used 64, 128 and 256 bytes from
among the standard frame sizes recommended by RFC 8219,
because the throughput of the DUT was limited by the
performance of the DUT with these frame sizes, whereas
throughput was limited by the maximum frame rate of the 10G
Ethernet for all higher standard frame sizes.

Technical note: siitperf interprets the specified frame
size values for IPv6 frames and uses 20 bytes less for IPv4
frames, therefore we always set 20 bytes higher values. This is
important, if someone would like to repeat our experiments.

As required by RFC 8219, we used bidirectional traffic and
60s long tests at each step of the binary search. The Error2
parameter of the binary search was set to 1. The throughput tests
were performed 20 times and the median, minimum and
maximum values of the 20 results were calculated. In addition

2 Error means that the binary search may stop, when:

upper_limit – lower_limit ≤ Error.

to that, we have also calculated another value to express the
consistent or scattered nature of the results, which we named
dispersion and defined as follows:

%100
median

minmaxDispersion

 (1)

The results are shown it Table I. We note that commercial
Testers like the one we used in the next section, usually report
the number of all frames per second (including frames in both
directions), but siitperf reports the number of frames per
second per direction. Thus the number of all frames per second
forwarded by the Linux kernel was the double of the numbers
shown in Table I.

Let us compare the results with and without flow control for
each frame size individually. As for 64-byte frames, the median
throughput with flow control (3,432,658fps) is about 0.6%
higher than the median throughput without flow control
(3,411,322fps). The lack of flow control has also significantly
increased the dispersion of the results (from 0.6% to 1.28%).
As for 128-byte frames, the median throughput with flow
control (3,352,378fps) is only about 0.2% higher than the
median throughput without flow control (3,444,630fps).
Finally, with 256-byte frames, the median throughput with flow
control (3,153,894fps) is only about 0.03% higher than the
median throughput without flow control (3,152,872fps). We
can observe that the difference between the median of the
results with and without flow control definitely decreases with
the increase of the frame size.

We are satisfied with the results in the sense that the 3,4Mfps
is more than the half of the 6,3Mfps maximum frame rate
siitperf can achieve on the given hardware [16] and our
results with and without Ethernet flow control are quite close to
each other (even the largest difference is below 1%).

To be able to test the effect of the Ethernet flow control at a
significantly lower frame rate using the very same test system,
we used fixed port numbers. In this case, the packet processing
at the DUT was not hashed to all 8 active CPU cores of the
DUT, but only two CPU cores were used3 (one core per
direction). This time we performed the throughput
measurements using all standard frame sizes, as throughput was
always lower than the theoretical maximum value for the media
at the given frame size. Our results with flow control are shown
in Table II. As we expected, the dispersion of the results is
lower than 1% for all frame rates. The median throughput
slightly decreases, when we increase the frame size from 64
bytes (885,643fps) through 128 bytes (878,256fps) to 256 bytes
(857,575fps). There is significant decrease at 512 bytes
(779,410fps) and median throughput remains constant (within
measurement error) at all higher frame sizes. The investigation
of the decrease of the median at 512 bytes is beyond the scope
of our current paper, we just mention that it can also be
observed in Fig. 3 of [15].

3 We could observe only the load caused by software interrupts.

DUT
Dell PowerEdge C6220

Tester
Dell PowerEdge C6220
(running siitperf)

eno2: DHCP

eno2: DHCP

enp3s0f0:
198.18.0.2/24

enp3s0f1:
198.19.0.2/24

enp3s0f1:
198.19.0.1/24

enp3s0f0:
198.18.0.1/24

2x 10G Ethernet
with direct cables

n017

n018

Fig. 2. Measurement setup for IPv4 Linux kernel routing:
throughput tests with and without Ethernet flow control.

3
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

timing algorithm of the sender function. For example, the
original implementation of dns64perf++ used a
sophisticated algorithm that intended to distribute the
compensation of such initial latency for the rest of the
measurement time [13]. Unfortunately, the compensation
algorithm did not work well and thus the sending rate was
somewhat lower than required from the beginning of the
measurement for a long time, and it was significantly higher
than required at the end [14]. Therefore, we have replaced the
timing algorithm with a simpler one that promptly compensates
the latency [14]. We followed the same approach in
siitperf, thus it sends the test frame (if it can), when its time
has arrived, with no respect to what has happened before [3].
Therefore, siitperf very likely produces micro burst(s) at
rates close to the upper limit of its sending performance.

Unfortunately, we did not have a NetFPGA device used by
the authors of [12], therefore, we decided to check, how the
imprecise timing of siitperf influences its measurement
results. Our error model is that traffic with not exact inter-
arrival time may have the following influence on the throughput
test results:

1. The median decreases, because the imprecise timing
causes sometimes overload and thus frame loss at lower
rates than the throughput rate with precise timing.

2. The dispersion of the results increases, because some
random events (like interrupts) influence each execution
of the test differently.

The actual frame loss caused by the imprecise timing may
also depend on a further parameter, namely, if Ethernet flow
control (IEEE 802.3x) is used or not, because flow control may
“iron out” the random peaks of the frame sending rate caused
by imprecise timing.

Therefore, first, we test how the presence or absence of flow
control influences the results. This phenomenon is interesting
by itself, and the results of this comparison proved to be very
important due to the limitations of our next examination.

Then, we benchmark the same DUT with both a calibrated
tester and siitperf so that we can see the difference. The
fact that siitperf is able to perform pure IPv4 or IPv6
benchmarking tests, allowed us to use an RFC 2544 [8]
compliant legacy tester. This solution has also its limitations:
although RFC 8219 has taken the throughput and frame loss
rate tests verbatim from RFC 2544, the latency test has been
redefined (it requires at least 500 tagged frames instead of a
single one) and packet delay variation measurement is a
completely new one. Thus they cannot be validated by an RFC
2544 tester.

We note that even if we can directly check the accuracy of
frame sending of siitperf-tp only, we expect that the
accuracy of frame sending of the other two programs is not
worse, either. As for siitperf-lat, the relatively low
number of tagged frames, which are distributed evenly, cannot
make any significant effect. As for siitperf-pdv, the
setting of their individual identifier and checksum requires
some time, and thus there is non-zero lower bound for their

inter-frame time, at least in theory. We note that it guarantees
nothing in practice due to the fact of NIC buffering: back-to-
back frames (that is frames with minimum inter-frame gap) may
still occur.

B. Consideration of Other Errors
Unlike the sender function that sends frames individually, the

receiver function may receive multiple frames together to
ensure high performance. This can surely not cause any
problem with the throughput and frame loss rate measurements,
because the frames are only counted. The receiving timestamps
of latency and packed delay variation tests may be influenced,
but they are also influenced by buffering even if they are taken
out from the receive buffer individually.

The sending and receiving timestamps are subject to further
errors due to the fact that interrupts may occur between the
sending/receiving of the frames and taking the timestamp by the
execution of the RDTSC machine code instruction. This is a
kind of error we cannot measure. As for latency measurements,
one possible mitigation can be, if the user sets the number of
time stamps to be used to a significantly higher value than the
required minimum 500 (siitperf supports up to 50,000) and
thus the calculation of the 99.9th percentile removes the errors,
if they are rare enough. This mitigation automatically applies
for packet delay variation tests, as all frames are time stamped.

Although it is the responsibility of the user to specify the four
cores that execute the sending and receiving threads so that they
belong to the same physical CPU as the main core (used for
starting the program), siitperf does some sanity checks if
the TSC-s of the four CPU cores are synchronized with that of
the main core. Otherwise the TSC values specified for starting
and stopping the experiment as well as the differences of the
timestamps of the corresponding senders and receivers would
be invalid.

We believe that all other errors including the conversions
between (milli)seconds and TSC, the counting of the sent and
received frames, the calculations with the timestamps, etc. are
subject to general software testing and verification procedures.

IV. INVESTIGATION OF THE EFFECT OF ETHERNET FLOW
CONTROL

To be able to investigate, how the presence or the absence of
the Ethernet flow control influences the results, we needed a
test system that is free from any other effects that may make our
results noisy. Based on our SIIT benchmarking experience [15],
we have chosen to reuse a previously built tests system, which
was build up by two identical Dell PowerEdge C6220 servers
in the NICT StarBED, Japan. The very same system was also
used for benchmarking the extension of siitperf with the
ability of using random source and destination port numbers
[16] as required by RFC 4814 [17].

We have taken the following description of the test system
from that paper [16].

“The servers were equipped with two 2GHz Intel Xeon E5-
2650 CPUs having 8 cores each, 128GB 1333MHz DDR3
RAM and Intel 10G dual port X520 Ethernet network adapters.

4
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

The Debian Linux operating system was updated to version
9.13 on all computers. The Linux kernel version was: 4.9.0-4-
amd64. The DPDK version was 16.11.11-1+deb9u2.” [16]

The “varport” branch of siitperf was used, its latest
commit was bfddb5f on Aug 23, 2020. (Since then, the varport
branch was merged into the master branch.)

We expected that the difference between the results with and
without Ethernet flow control depends on the frame rate and we
also wanted to test this hypothesis.

To achieve high enough frame rates, first, we benchmarked
IPv4 kernel routing using random source and destination port
numbers as we did in [16]. The topology of the test system is
shown in Fig. 2. The CPU clock rate was set to fixed 2GHz on
both computers and hyperthreading was switched off (using the
same BIOS settings as specified in the appendix of [18]). All
cores of the second CPU of the DUT were switched off using
the maxcpus=8 kernel parameter to avoid NUMA issues
(please refer to [15] for a detailed explanation).

As for frames sizes, we used 64, 128 and 256 bytes from
among the standard frame sizes recommended by RFC 8219,
because the throughput of the DUT was limited by the
performance of the DUT with these frame sizes, whereas
throughput was limited by the maximum frame rate of the 10G
Ethernet for all higher standard frame sizes.

Technical note: siitperf interprets the specified frame
size values for IPv6 frames and uses 20 bytes less for IPv4
frames, therefore we always set 20 bytes higher values. This is
important, if someone would like to repeat our experiments.

As required by RFC 8219, we used bidirectional traffic and
60s long tests at each step of the binary search. The Error2
parameter of the binary search was set to 1. The throughput tests
were performed 20 times and the median, minimum and
maximum values of the 20 results were calculated. In addition

2 Error means that the binary search may stop, when:

upper_limit – lower_limit ≤ Error.

to that, we have also calculated another value to express the
consistent or scattered nature of the results, which we named
dispersion and defined as follows:

%100
median

minmaxDispersion

 (1)

The results are shown it Table I. We note that commercial
Testers like the one we used in the next section, usually report
the number of all frames per second (including frames in both
directions), but siitperf reports the number of frames per
second per direction. Thus the number of all frames per second
forwarded by the Linux kernel was the double of the numbers
shown in Table I.

Let us compare the results with and without flow control for
each frame size individually. As for 64-byte frames, the median
throughput with flow control (3,432,658fps) is about 0.6%
higher than the median throughput without flow control
(3,411,322fps). The lack of flow control has also significantly
increased the dispersion of the results (from 0.6% to 1.28%).
As for 128-byte frames, the median throughput with flow
control (3,352,378fps) is only about 0.2% higher than the
median throughput without flow control (3,444,630fps).
Finally, with 256-byte frames, the median throughput with flow
control (3,153,894fps) is only about 0.03% higher than the
median throughput without flow control (3,152,872fps). We
can observe that the difference between the median of the
results with and without flow control definitely decreases with
the increase of the frame size.

We are satisfied with the results in the sense that the 3,4Mfps
is more than the half of the 6,3Mfps maximum frame rate
siitperf can achieve on the given hardware [16] and our
results with and without Ethernet flow control are quite close to
each other (even the largest difference is below 1%).

To be able to test the effect of the Ethernet flow control at a
significantly lower frame rate using the very same test system,
we used fixed port numbers. In this case, the packet processing
at the DUT was not hashed to all 8 active CPU cores of the
DUT, but only two CPU cores were used3 (one core per
direction). This time we performed the throughput
measurements using all standard frame sizes, as throughput was
always lower than the theoretical maximum value for the media
at the given frame size. Our results with flow control are shown
in Table II. As we expected, the dispersion of the results is
lower than 1% for all frame rates. The median throughput
slightly decreases, when we increase the frame size from 64
bytes (885,643fps) through 128 bytes (878,256fps) to 256 bytes
(857,575fps). There is significant decrease at 512 bytes
(779,410fps) and median throughput remains constant (within
measurement error) at all higher frame sizes. The investigation
of the decrease of the median at 512 bytes is beyond the scope
of our current paper, we just mention that it can also be
observed in Fig. 3 of [15].

3 We could observe only the load caused by software interrupts.

DUT
Dell PowerEdge C6220

Tester
Dell PowerEdge C6220
(running siitperf)

eno2: DHCP

eno2: DHCP

enp3s0f0:
198.18.0.2/24

enp3s0f1:
198.19.0.2/24

enp3s0f1:
198.19.0.1/24

enp3s0f0:
198.18.0.1/24

2x 10G Ethernet
with direct cables

n017

n018

Fig. 2. Measurement setup for IPv4 Linux kernel routing:
throughput tests with and without Ethernet flow control.

3
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

timing algorithm of the sender function. For example, the
original implementation of dns64perf++ used a
sophisticated algorithm that intended to distribute the
compensation of such initial latency for the rest of the
measurement time [13]. Unfortunately, the compensation
algorithm did not work well and thus the sending rate was
somewhat lower than required from the beginning of the
measurement for a long time, and it was significantly higher
than required at the end [14]. Therefore, we have replaced the
timing algorithm with a simpler one that promptly compensates
the latency [14]. We followed the same approach in
siitperf, thus it sends the test frame (if it can), when its time
has arrived, with no respect to what has happened before [3].
Therefore, siitperf very likely produces micro burst(s) at
rates close to the upper limit of its sending performance.

Unfortunately, we did not have a NetFPGA device used by
the authors of [12], therefore, we decided to check, how the
imprecise timing of siitperf influences its measurement
results. Our error model is that traffic with not exact inter-
arrival time may have the following influence on the throughput
test results:

1. The median decreases, because the imprecise timing
causes sometimes overload and thus frame loss at lower
rates than the throughput rate with precise timing.

2. The dispersion of the results increases, because some
random events (like interrupts) influence each execution
of the test differently.

The actual frame loss caused by the imprecise timing may
also depend on a further parameter, namely, if Ethernet flow
control (IEEE 802.3x) is used or not, because flow control may
“iron out” the random peaks of the frame sending rate caused
by imprecise timing.

Therefore, first, we test how the presence or absence of flow
control influences the results. This phenomenon is interesting
by itself, and the results of this comparison proved to be very
important due to the limitations of our next examination.

Then, we benchmark the same DUT with both a calibrated
tester and siitperf so that we can see the difference. The
fact that siitperf is able to perform pure IPv4 or IPv6
benchmarking tests, allowed us to use an RFC 2544 [8]
compliant legacy tester. This solution has also its limitations:
although RFC 8219 has taken the throughput and frame loss
rate tests verbatim from RFC 2544, the latency test has been
redefined (it requires at least 500 tagged frames instead of a
single one) and packet delay variation measurement is a
completely new one. Thus they cannot be validated by an RFC
2544 tester.

We note that even if we can directly check the accuracy of
frame sending of siitperf-tp only, we expect that the
accuracy of frame sending of the other two programs is not
worse, either. As for siitperf-lat, the relatively low
number of tagged frames, which are distributed evenly, cannot
make any significant effect. As for siitperf-pdv, the
setting of their individual identifier and checksum requires
some time, and thus there is non-zero lower bound for their

inter-frame time, at least in theory. We note that it guarantees
nothing in practice due to the fact of NIC buffering: back-to-
back frames (that is frames with minimum inter-frame gap) may
still occur.

B. Consideration of Other Errors
Unlike the sender function that sends frames individually, the

receiver function may receive multiple frames together to
ensure high performance. This can surely not cause any
problem with the throughput and frame loss rate measurements,
because the frames are only counted. The receiving timestamps
of latency and packed delay variation tests may be influenced,
but they are also influenced by buffering even if they are taken
out from the receive buffer individually.

The sending and receiving timestamps are subject to further
errors due to the fact that interrupts may occur between the
sending/receiving of the frames and taking the timestamp by the
execution of the RDTSC machine code instruction. This is a
kind of error we cannot measure. As for latency measurements,
one possible mitigation can be, if the user sets the number of
time stamps to be used to a significantly higher value than the
required minimum 500 (siitperf supports up to 50,000) and
thus the calculation of the 99.9th percentile removes the errors,
if they are rare enough. This mitigation automatically applies
for packet delay variation tests, as all frames are time stamped.

Although it is the responsibility of the user to specify the four
cores that execute the sending and receiving threads so that they
belong to the same physical CPU as the main core (used for
starting the program), siitperf does some sanity checks if
the TSC-s of the four CPU cores are synchronized with that of
the main core. Otherwise the TSC values specified for starting
and stopping the experiment as well as the differences of the
timestamps of the corresponding senders and receivers would
be invalid.

We believe that all other errors including the conversions
between (milli)seconds and TSC, the counting of the sent and
received frames, the calculations with the timestamps, etc. are
subject to general software testing and verification procedures.

IV. INVESTIGATION OF THE EFFECT OF ETHERNET FLOW
CONTROL

To be able to investigate, how the presence or the absence of
the Ethernet flow control influences the results, we needed a
test system that is free from any other effects that may make our
results noisy. Based on our SIIT benchmarking experience [15],
we have chosen to reuse a previously built tests system, which
was build up by two identical Dell PowerEdge C6220 servers
in the NICT StarBED, Japan. The very same system was also
used for benchmarking the extension of siitperf with the
ability of using random source and destination port numbers
[16] as required by RFC 4814 [17].

We have taken the following description of the test system
from that paper [16].

“The servers were equipped with two 2GHz Intel Xeon E5-
2650 CPUs having 8 cores each, 128GB 1333MHz DDR3
RAM and Intel 10G dual port X520 Ethernet network adapters.

3
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

timing algorithm of the sender function. For example, the
original implementation of dns64perf++ used a
sophisticated algorithm that intended to distribute the
compensation of such initial latency for the rest of the
measurement time [13]. Unfortunately, the compensation
algorithm did not work well and thus the sending rate was
somewhat lower than required from the beginning of the
measurement for a long time, and it was significantly higher
than required at the end [14]. Therefore, we have replaced the
timing algorithm with a simpler one that promptly compensates
the latency [14]. We followed the same approach in
siitperf, thus it sends the test frame (if it can), when its time
has arrived, with no respect to what has happened before [3].
Therefore, siitperf very likely produces micro burst(s) at
rates close to the upper limit of its sending performance.

Unfortunately, we did not have a NetFPGA device used by
the authors of [12], therefore, we decided to check, how the
imprecise timing of siitperf influences its measurement
results. Our error model is that traffic with not exact inter-
arrival time may have the following influence on the throughput
test results:

1. The median decreases, because the imprecise timing
causes sometimes overload and thus frame loss at lower
rates than the throughput rate with precise timing.

2. The dispersion of the results increases, because some
random events (like interrupts) influence each execution
of the test differently.

The actual frame loss caused by the imprecise timing may
also depend on a further parameter, namely, if Ethernet flow
control (IEEE 802.3x) is used or not, because flow control may
“iron out” the random peaks of the frame sending rate caused
by imprecise timing.

Therefore, first, we test how the presence or absence of flow
control influences the results. This phenomenon is interesting
by itself, and the results of this comparison proved to be very
important due to the limitations of our next examination.

Then, we benchmark the same DUT with both a calibrated
tester and siitperf so that we can see the difference. The
fact that siitperf is able to perform pure IPv4 or IPv6
benchmarking tests, allowed us to use an RFC 2544 [8]
compliant legacy tester. This solution has also its limitations:
although RFC 8219 has taken the throughput and frame loss
rate tests verbatim from RFC 2544, the latency test has been
redefined (it requires at least 500 tagged frames instead of a
single one) and packet delay variation measurement is a
completely new one. Thus they cannot be validated by an RFC
2544 tester.

We note that even if we can directly check the accuracy of
frame sending of siitperf-tp only, we expect that the
accuracy of frame sending of the other two programs is not
worse, either. As for siitperf-lat, the relatively low
number of tagged frames, which are distributed evenly, cannot
make any significant effect. As for siitperf-pdv, the
setting of their individual identifier and checksum requires
some time, and thus there is non-zero lower bound for their

inter-frame time, at least in theory. We note that it guarantees
nothing in practice due to the fact of NIC buffering: back-to-
back frames (that is frames with minimum inter-frame gap) may
still occur.

B. Consideration of Other Errors
Unlike the sender function that sends frames individually, the

receiver function may receive multiple frames together to
ensure high performance. This can surely not cause any
problem with the throughput and frame loss rate measurements,
because the frames are only counted. The receiving timestamps
of latency and packed delay variation tests may be influenced,
but they are also influenced by buffering even if they are taken
out from the receive buffer individually.

The sending and receiving timestamps are subject to further
errors due to the fact that interrupts may occur between the
sending/receiving of the frames and taking the timestamp by the
execution of the RDTSC machine code instruction. This is a
kind of error we cannot measure. As for latency measurements,
one possible mitigation can be, if the user sets the number of
time stamps to be used to a significantly higher value than the
required minimum 500 (siitperf supports up to 50,000) and
thus the calculation of the 99.9th percentile removes the errors,
if they are rare enough. This mitigation automatically applies
for packet delay variation tests, as all frames are time stamped.

Although it is the responsibility of the user to specify the four
cores that execute the sending and receiving threads so that they
belong to the same physical CPU as the main core (used for
starting the program), siitperf does some sanity checks if
the TSC-s of the four CPU cores are synchronized with that of
the main core. Otherwise the TSC values specified for starting
and stopping the experiment as well as the differences of the
timestamps of the corresponding senders and receivers would
be invalid.

We believe that all other errors including the conversions
between (milli)seconds and TSC, the counting of the sent and
received frames, the calculations with the timestamps, etc. are
subject to general software testing and verification procedures.

IV. INVESTIGATION OF THE EFFECT OF ETHERNET FLOW
CONTROL

To be able to investigate, how the presence or the absence of
the Ethernet flow control influences the results, we needed a
test system that is free from any other effects that may make our
results noisy. Based on our SIIT benchmarking experience [15],
we have chosen to reuse a previously built tests system, which
was build up by two identical Dell PowerEdge C6220 servers
in the NICT StarBED, Japan. The very same system was also
used for benchmarking the extension of siitperf with the
ability of using random source and destination port numbers
[16] as required by RFC 4814 [17].

We have taken the following description of the test system
from that paper [16].

“The servers were equipped with two 2GHz Intel Xeon E5-
2650 CPUs having 8 cores each, 128GB 1333MHz DDR3
RAM and Intel 10G dual port X520 Ethernet network adapters.

4
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

The Debian Linux operating system was updated to version
9.13 on all computers. The Linux kernel version was: 4.9.0-4-
amd64. The DPDK version was 16.11.11-1+deb9u2.” [16]

The “varport” branch of siitperf was used, its latest
commit was bfddb5f on Aug 23, 2020. (Since then, the varport
branch was merged into the master branch.)

We expected that the difference between the results with and
without Ethernet flow control depends on the frame rate and we
also wanted to test this hypothesis.

To achieve high enough frame rates, first, we benchmarked
IPv4 kernel routing using random source and destination port
numbers as we did in [16]. The topology of the test system is
shown in Fig. 2. The CPU clock rate was set to fixed 2GHz on
both computers and hyperthreading was switched off (using the
same BIOS settings as specified in the appendix of [18]). All
cores of the second CPU of the DUT were switched off using
the maxcpus=8 kernel parameter to avoid NUMA issues
(please refer to [15] for a detailed explanation).

As for frames sizes, we used 64, 128 and 256 bytes from
among the standard frame sizes recommended by RFC 8219,
because the throughput of the DUT was limited by the
performance of the DUT with these frame sizes, whereas
throughput was limited by the maximum frame rate of the 10G
Ethernet for all higher standard frame sizes.

Technical note: siitperf interprets the specified frame
size values for IPv6 frames and uses 20 bytes less for IPv4
frames, therefore we always set 20 bytes higher values. This is
important, if someone would like to repeat our experiments.

As required by RFC 8219, we used bidirectional traffic and
60s long tests at each step of the binary search. The Error2
parameter of the binary search was set to 1. The throughput tests
were performed 20 times and the median, minimum and
maximum values of the 20 results were calculated. In addition

2 Error means that the binary search may stop, when:

upper_limit – lower_limit ≤ Error.

to that, we have also calculated another value to express the
consistent or scattered nature of the results, which we named
dispersion and defined as follows:

%100
median

minmaxDispersion

 (1)

The results are shown it Table I. We note that commercial
Testers like the one we used in the next section, usually report
the number of all frames per second (including frames in both
directions), but siitperf reports the number of frames per
second per direction. Thus the number of all frames per second
forwarded by the Linux kernel was the double of the numbers
shown in Table I.

Let us compare the results with and without flow control for
each frame size individually. As for 64-byte frames, the median
throughput with flow control (3,432,658fps) is about 0.6%
higher than the median throughput without flow control
(3,411,322fps). The lack of flow control has also significantly
increased the dispersion of the results (from 0.6% to 1.28%).
As for 128-byte frames, the median throughput with flow
control (3,352,378fps) is only about 0.2% higher than the
median throughput without flow control (3,444,630fps).
Finally, with 256-byte frames, the median throughput with flow
control (3,153,894fps) is only about 0.03% higher than the
median throughput without flow control (3,152,872fps). We
can observe that the difference between the median of the
results with and without flow control definitely decreases with
the increase of the frame size.

We are satisfied with the results in the sense that the 3,4Mfps
is more than the half of the 6,3Mfps maximum frame rate
siitperf can achieve on the given hardware [16] and our
results with and without Ethernet flow control are quite close to
each other (even the largest difference is below 1%).

To be able to test the effect of the Ethernet flow control at a
significantly lower frame rate using the very same test system,
we used fixed port numbers. In this case, the packet processing
at the DUT was not hashed to all 8 active CPU cores of the
DUT, but only two CPU cores were used3 (one core per
direction). This time we performed the throughput
measurements using all standard frame sizes, as throughput was
always lower than the theoretical maximum value for the media
at the given frame size. Our results with flow control are shown
in Table II. As we expected, the dispersion of the results is
lower than 1% for all frame rates. The median throughput
slightly decreases, when we increase the frame size from 64
bytes (885,643fps) through 128 bytes (878,256fps) to 256 bytes
(857,575fps). There is significant decrease at 512 bytes
(779,410fps) and median throughput remains constant (within
measurement error) at all higher frame sizes. The investigation
of the decrease of the median at 512 bytes is beyond the scope
of our current paper, we just mention that it can also be
observed in Fig. 3 of [15].

3 We could observe only the load caused by software interrupts.

DUT
Dell PowerEdge C6220

Tester
Dell PowerEdge C6220
(running siitperf)

eno2: DHCP

eno2: DHCP

enp3s0f0:
198.18.0.2/24

enp3s0f1:
198.19.0.2/24

enp3s0f1:
198.19.0.1/24

enp3s0f0:
198.18.0.1/24

2x 10G Ethernet
with direct cables

n017

n018

Fig. 2. Measurement setup for IPv4 Linux kernel routing:
throughput tests with and without Ethernet flow control.

Checking the Accuracy of Siitperf
INFOCOMMUNICATIONS JOURNAL

JUNE 2021 • VOLUME XIII • NUMBER 2 5

4
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

The Debian Linux operating system was updated to version
9.13 on all computers. The Linux kernel version was: 4.9.0-4-
amd64. The DPDK version was 16.11.11-1+deb9u2.” [16]

The “varport” branch of siitperf was used, its latest
commit was bfddb5f on Aug 23, 2020. (Since then, the varport
branch was merged into the master branch.)

We expected that the difference between the results with and
without Ethernet flow control depends on the frame rate and we
also wanted to test this hypothesis.

To achieve high enough frame rates, first, we benchmarked
IPv4 kernel routing using random source and destination port
numbers as we did in [16]. The topology of the test system is
shown in Fig. 2. The CPU clock rate was set to fixed 2GHz on
both computers and hyperthreading was switched off (using the
same BIOS settings as specified in the appendix of [18]). All
cores of the second CPU of the DUT were switched off using
the maxcpus=8 kernel parameter to avoid NUMA issues
(please refer to [15] for a detailed explanation).

As for frames sizes, we used 64, 128 and 256 bytes from
among the standard frame sizes recommended by RFC 8219,
because the throughput of the DUT was limited by the
performance of the DUT with these frame sizes, whereas
throughput was limited by the maximum frame rate of the 10G
Ethernet for all higher standard frame sizes.

Technical note: siitperf interprets the specified frame
size values for IPv6 frames and uses 20 bytes less for IPv4
frames, therefore we always set 20 bytes higher values. This is
important, if someone would like to repeat our experiments.

As required by RFC 8219, we used bidirectional traffic and
60s long tests at each step of the binary search. The Error2
parameter of the binary search was set to 1. The throughput tests
were performed 20 times and the median, minimum and
maximum values of the 20 results were calculated. In addition

2 Error means that the binary search may stop, when:

upper_limit – lower_limit ≤ Error.

to that, we have also calculated another value to express the
consistent or scattered nature of the results, which we named
dispersion and defined as follows:

%100
median

minmaxDispersion

 (1)

The results are shown it Table I. We note that commercial
Testers like the one we used in the next section, usually report
the number of all frames per second (including frames in both
directions), but siitperf reports the number of frames per
second per direction. Thus the number of all frames per second
forwarded by the Linux kernel was the double of the numbers
shown in Table I.

Let us compare the results with and without flow control for
each frame size individually. As for 64-byte frames, the median
throughput with flow control (3,432,658fps) is about 0.6%
higher than the median throughput without flow control
(3,411,322fps). The lack of flow control has also significantly
increased the dispersion of the results (from 0.6% to 1.28%).
As for 128-byte frames, the median throughput with flow
control (3,352,378fps) is only about 0.2% higher than the
median throughput without flow control (3,444,630fps).
Finally, with 256-byte frames, the median throughput with flow
control (3,153,894fps) is only about 0.03% higher than the
median throughput without flow control (3,152,872fps). We
can observe that the difference between the median of the
results with and without flow control definitely decreases with
the increase of the frame size.

We are satisfied with the results in the sense that the 3,4Mfps
is more than the half of the 6,3Mfps maximum frame rate
siitperf can achieve on the given hardware [16] and our
results with and without Ethernet flow control are quite close to
each other (even the largest difference is below 1%).

To be able to test the effect of the Ethernet flow control at a
significantly lower frame rate using the very same test system,
we used fixed port numbers. In this case, the packet processing
at the DUT was not hashed to all 8 active CPU cores of the
DUT, but only two CPU cores were used3 (one core per
direction). This time we performed the throughput
measurements using all standard frame sizes, as throughput was
always lower than the theoretical maximum value for the media
at the given frame size. Our results with flow control are shown
in Table II. As we expected, the dispersion of the results is
lower than 1% for all frame rates. The median throughput
slightly decreases, when we increase the frame size from 64
bytes (885,643fps) through 128 bytes (878,256fps) to 256 bytes
(857,575fps). There is significant decrease at 512 bytes
(779,410fps) and median throughput remains constant (within
measurement error) at all higher frame sizes. The investigation
of the decrease of the median at 512 bytes is beyond the scope
of our current paper, we just mention that it can also be
observed in Fig. 3 of [15].

3 We could observe only the load caused by software interrupts.

DUT
Dell PowerEdge C6220

Tester
Dell PowerEdge C6220
(running siitperf)

eno2: DHCP

eno2: DHCP

enp3s0f0:
198.18.0.2/24

enp3s0f1:
198.19.0.2/24

enp3s0f1:
198.19.0.1/24

enp3s0f0:
198.18.0.1/24

2x 10G Ethernet
with direct cables

n017

n018

Fig. 2. Measurement setup for IPv4 Linux kernel routing:
throughput tests with and without Ethernet flow control.

3
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

timing algorithm of the sender function. For example, the
original implementation of dns64perf++ used a
sophisticated algorithm that intended to distribute the
compensation of such initial latency for the rest of the
measurement time [13]. Unfortunately, the compensation
algorithm did not work well and thus the sending rate was
somewhat lower than required from the beginning of the
measurement for a long time, and it was significantly higher
than required at the end [14]. Therefore, we have replaced the
timing algorithm with a simpler one that promptly compensates
the latency [14]. We followed the same approach in
siitperf, thus it sends the test frame (if it can), when its time
has arrived, with no respect to what has happened before [3].
Therefore, siitperf very likely produces micro burst(s) at
rates close to the upper limit of its sending performance.

Unfortunately, we did not have a NetFPGA device used by
the authors of [12], therefore, we decided to check, how the
imprecise timing of siitperf influences its measurement
results. Our error model is that traffic with not exact inter-
arrival time may have the following influence on the throughput
test results:

1. The median decreases, because the imprecise timing
causes sometimes overload and thus frame loss at lower
rates than the throughput rate with precise timing.

2. The dispersion of the results increases, because some
random events (like interrupts) influence each execution
of the test differently.

The actual frame loss caused by the imprecise timing may
also depend on a further parameter, namely, if Ethernet flow
control (IEEE 802.3x) is used or not, because flow control may
“iron out” the random peaks of the frame sending rate caused
by imprecise timing.

Therefore, first, we test how the presence or absence of flow
control influences the results. This phenomenon is interesting
by itself, and the results of this comparison proved to be very
important due to the limitations of our next examination.

Then, we benchmark the same DUT with both a calibrated
tester and siitperf so that we can see the difference. The
fact that siitperf is able to perform pure IPv4 or IPv6
benchmarking tests, allowed us to use an RFC 2544 [8]
compliant legacy tester. This solution has also its limitations:
although RFC 8219 has taken the throughput and frame loss
rate tests verbatim from RFC 2544, the latency test has been
redefined (it requires at least 500 tagged frames instead of a
single one) and packet delay variation measurement is a
completely new one. Thus they cannot be validated by an RFC
2544 tester.

We note that even if we can directly check the accuracy of
frame sending of siitperf-tp only, we expect that the
accuracy of frame sending of the other two programs is not
worse, either. As for siitperf-lat, the relatively low
number of tagged frames, which are distributed evenly, cannot
make any significant effect. As for siitperf-pdv, the
setting of their individual identifier and checksum requires
some time, and thus there is non-zero lower bound for their

inter-frame time, at least in theory. We note that it guarantees
nothing in practice due to the fact of NIC buffering: back-to-
back frames (that is frames with minimum inter-frame gap) may
still occur.

B. Consideration of Other Errors
Unlike the sender function that sends frames individually, the

receiver function may receive multiple frames together to
ensure high performance. This can surely not cause any
problem with the throughput and frame loss rate measurements,
because the frames are only counted. The receiving timestamps
of latency and packed delay variation tests may be influenced,
but they are also influenced by buffering even if they are taken
out from the receive buffer individually.

The sending and receiving timestamps are subject to further
errors due to the fact that interrupts may occur between the
sending/receiving of the frames and taking the timestamp by the
execution of the RDTSC machine code instruction. This is a
kind of error we cannot measure. As for latency measurements,
one possible mitigation can be, if the user sets the number of
time stamps to be used to a significantly higher value than the
required minimum 500 (siitperf supports up to 50,000) and
thus the calculation of the 99.9th percentile removes the errors,
if they are rare enough. This mitigation automatically applies
for packet delay variation tests, as all frames are time stamped.

Although it is the responsibility of the user to specify the four
cores that execute the sending and receiving threads so that they
belong to the same physical CPU as the main core (used for
starting the program), siitperf does some sanity checks if
the TSC-s of the four CPU cores are synchronized with that of
the main core. Otherwise the TSC values specified for starting
and stopping the experiment as well as the differences of the
timestamps of the corresponding senders and receivers would
be invalid.

We believe that all other errors including the conversions
between (milli)seconds and TSC, the counting of the sent and
received frames, the calculations with the timestamps, etc. are
subject to general software testing and verification procedures.

IV. INVESTIGATION OF THE EFFECT OF ETHERNET FLOW
CONTROL

To be able to investigate, how the presence or the absence of
the Ethernet flow control influences the results, we needed a
test system that is free from any other effects that may make our
results noisy. Based on our SIIT benchmarking experience [15],
we have chosen to reuse a previously built tests system, which
was build up by two identical Dell PowerEdge C6220 servers
in the NICT StarBED, Japan. The very same system was also
used for benchmarking the extension of siitperf with the
ability of using random source and destination port numbers
[16] as required by RFC 4814 [17].

We have taken the following description of the test system
from that paper [16].

“The servers were equipped with two 2GHz Intel Xeon E5-
2650 CPUs having 8 cores each, 128GB 1333MHz DDR3
RAM and Intel 10G dual port X520 Ethernet network adapters.

4
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

The Debian Linux operating system was updated to version
9.13 on all computers. The Linux kernel version was: 4.9.0-4-
amd64. The DPDK version was 16.11.11-1+deb9u2.” [16]

The “varport” branch of siitperf was used, its latest
commit was bfddb5f on Aug 23, 2020. (Since then, the varport
branch was merged into the master branch.)

We expected that the difference between the results with and
without Ethernet flow control depends on the frame rate and we
also wanted to test this hypothesis.

To achieve high enough frame rates, first, we benchmarked
IPv4 kernel routing using random source and destination port
numbers as we did in [16]. The topology of the test system is
shown in Fig. 2. The CPU clock rate was set to fixed 2GHz on
both computers and hyperthreading was switched off (using the
same BIOS settings as specified in the appendix of [18]). All
cores of the second CPU of the DUT were switched off using
the maxcpus=8 kernel parameter to avoid NUMA issues
(please refer to [15] for a detailed explanation).

As for frames sizes, we used 64, 128 and 256 bytes from
among the standard frame sizes recommended by RFC 8219,
because the throughput of the DUT was limited by the
performance of the DUT with these frame sizes, whereas
throughput was limited by the maximum frame rate of the 10G
Ethernet for all higher standard frame sizes.

Technical note: siitperf interprets the specified frame
size values for IPv6 frames and uses 20 bytes less for IPv4
frames, therefore we always set 20 bytes higher values. This is
important, if someone would like to repeat our experiments.

As required by RFC 8219, we used bidirectional traffic and
60s long tests at each step of the binary search. The Error2
parameter of the binary search was set to 1. The throughput tests
were performed 20 times and the median, minimum and
maximum values of the 20 results were calculated. In addition

2 Error means that the binary search may stop, when:

upper_limit – lower_limit ≤ Error.

to that, we have also calculated another value to express the
consistent or scattered nature of the results, which we named
dispersion and defined as follows:

%100
median

minmaxDispersion

 (1)

The results are shown it Table I. We note that commercial
Testers like the one we used in the next section, usually report
the number of all frames per second (including frames in both
directions), but siitperf reports the number of frames per
second per direction. Thus the number of all frames per second
forwarded by the Linux kernel was the double of the numbers
shown in Table I.

Let us compare the results with and without flow control for
each frame size individually. As for 64-byte frames, the median
throughput with flow control (3,432,658fps) is about 0.6%
higher than the median throughput without flow control
(3,411,322fps). The lack of flow control has also significantly
increased the dispersion of the results (from 0.6% to 1.28%).
As for 128-byte frames, the median throughput with flow
control (3,352,378fps) is only about 0.2% higher than the
median throughput without flow control (3,444,630fps).
Finally, with 256-byte frames, the median throughput with flow
control (3,153,894fps) is only about 0.03% higher than the
median throughput without flow control (3,152,872fps). We
can observe that the difference between the median of the
results with and without flow control definitely decreases with
the increase of the frame size.

We are satisfied with the results in the sense that the 3,4Mfps
is more than the half of the 6,3Mfps maximum frame rate
siitperf can achieve on the given hardware [16] and our
results with and without Ethernet flow control are quite close to
each other (even the largest difference is below 1%).

To be able to test the effect of the Ethernet flow control at a
significantly lower frame rate using the very same test system,
we used fixed port numbers. In this case, the packet processing
at the DUT was not hashed to all 8 active CPU cores of the
DUT, but only two CPU cores were used3 (one core per
direction). This time we performed the throughput
measurements using all standard frame sizes, as throughput was
always lower than the theoretical maximum value for the media
at the given frame size. Our results with flow control are shown
in Table II. As we expected, the dispersion of the results is
lower than 1% for all frame rates. The median throughput
slightly decreases, when we increase the frame size from 64
bytes (885,643fps) through 128 bytes (878,256fps) to 256 bytes
(857,575fps). There is significant decrease at 512 bytes
(779,410fps) and median throughput remains constant (within
measurement error) at all higher frame sizes. The investigation
of the decrease of the median at 512 bytes is beyond the scope
of our current paper, we just mention that it can also be
observed in Fig. 3 of [15].

3 We could observe only the load caused by software interrupts.

DUT
Dell PowerEdge C6220

Tester
Dell PowerEdge C6220
(running siitperf)

eno2: DHCP

eno2: DHCP

enp3s0f0:
198.18.0.2/24

enp3s0f1:
198.19.0.2/24

enp3s0f1:
198.19.0.1/24

enp3s0f0:
198.18.0.1/24

2x 10G Ethernet
with direct cables

n017

n018

Fig. 2. Measurement setup for IPv4 Linux kernel routing:
throughput tests with and without Ethernet flow control.

3
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

timing algorithm of the sender function. For example, the
original implementation of dns64perf++ used a
sophisticated algorithm that intended to distribute the
compensation of such initial latency for the rest of the
measurement time [13]. Unfortunately, the compensation
algorithm did not work well and thus the sending rate was
somewhat lower than required from the beginning of the
measurement for a long time, and it was significantly higher
than required at the end [14]. Therefore, we have replaced the
timing algorithm with a simpler one that promptly compensates
the latency [14]. We followed the same approach in
siitperf, thus it sends the test frame (if it can), when its time
has arrived, with no respect to what has happened before [3].
Therefore, siitperf very likely produces micro burst(s) at
rates close to the upper limit of its sending performance.

Unfortunately, we did not have a NetFPGA device used by
the authors of [12], therefore, we decided to check, how the
imprecise timing of siitperf influences its measurement
results. Our error model is that traffic with not exact inter-
arrival time may have the following influence on the throughput
test results:

1. The median decreases, because the imprecise timing
causes sometimes overload and thus frame loss at lower
rates than the throughput rate with precise timing.

2. The dispersion of the results increases, because some
random events (like interrupts) influence each execution
of the test differently.

The actual frame loss caused by the imprecise timing may
also depend on a further parameter, namely, if Ethernet flow
control (IEEE 802.3x) is used or not, because flow control may
“iron out” the random peaks of the frame sending rate caused
by imprecise timing.

Therefore, first, we test how the presence or absence of flow
control influences the results. This phenomenon is interesting
by itself, and the results of this comparison proved to be very
important due to the limitations of our next examination.

Then, we benchmark the same DUT with both a calibrated
tester and siitperf so that we can see the difference. The
fact that siitperf is able to perform pure IPv4 or IPv6
benchmarking tests, allowed us to use an RFC 2544 [8]
compliant legacy tester. This solution has also its limitations:
although RFC 8219 has taken the throughput and frame loss
rate tests verbatim from RFC 2544, the latency test has been
redefined (it requires at least 500 tagged frames instead of a
single one) and packet delay variation measurement is a
completely new one. Thus they cannot be validated by an RFC
2544 tester.

We note that even if we can directly check the accuracy of
frame sending of siitperf-tp only, we expect that the
accuracy of frame sending of the other two programs is not
worse, either. As for siitperf-lat, the relatively low
number of tagged frames, which are distributed evenly, cannot
make any significant effect. As for siitperf-pdv, the
setting of their individual identifier and checksum requires
some time, and thus there is non-zero lower bound for their

inter-frame time, at least in theory. We note that it guarantees
nothing in practice due to the fact of NIC buffering: back-to-
back frames (that is frames with minimum inter-frame gap) may
still occur.

B. Consideration of Other Errors
Unlike the sender function that sends frames individually, the

receiver function may receive multiple frames together to
ensure high performance. This can surely not cause any
problem with the throughput and frame loss rate measurements,
because the frames are only counted. The receiving timestamps
of latency and packed delay variation tests may be influenced,
but they are also influenced by buffering even if they are taken
out from the receive buffer individually.

The sending and receiving timestamps are subject to further
errors due to the fact that interrupts may occur between the
sending/receiving of the frames and taking the timestamp by the
execution of the RDTSC machine code instruction. This is a
kind of error we cannot measure. As for latency measurements,
one possible mitigation can be, if the user sets the number of
time stamps to be used to a significantly higher value than the
required minimum 500 (siitperf supports up to 50,000) and
thus the calculation of the 99.9th percentile removes the errors,
if they are rare enough. This mitigation automatically applies
for packet delay variation tests, as all frames are time stamped.

Although it is the responsibility of the user to specify the four
cores that execute the sending and receiving threads so that they
belong to the same physical CPU as the main core (used for
starting the program), siitperf does some sanity checks if
the TSC-s of the four CPU cores are synchronized with that of
the main core. Otherwise the TSC values specified for starting
and stopping the experiment as well as the differences of the
timestamps of the corresponding senders and receivers would
be invalid.

We believe that all other errors including the conversions
between (milli)seconds and TSC, the counting of the sent and
received frames, the calculations with the timestamps, etc. are
subject to general software testing and verification procedures.

IV. INVESTIGATION OF THE EFFECT OF ETHERNET FLOW
CONTROL

To be able to investigate, how the presence or the absence of
the Ethernet flow control influences the results, we needed a
test system that is free from any other effects that may make our
results noisy. Based on our SIIT benchmarking experience [15],
we have chosen to reuse a previously built tests system, which
was build up by two identical Dell PowerEdge C6220 servers
in the NICT StarBED, Japan. The very same system was also
used for benchmarking the extension of siitperf with the
ability of using random source and destination port numbers
[16] as required by RFC 4814 [17].

We have taken the following description of the test system
from that paper [16].

“The servers were equipped with two 2GHz Intel Xeon E5-
2650 CPUs having 8 cores each, 128GB 1333MHz DDR3
RAM and Intel 10G dual port X520 Ethernet network adapters.

both computers and hyperthreading was switched off (using the

4
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

The Debian Linux operating system was updated to version
9.13 on all computers. The Linux kernel version was: 4.9.0-4-
amd64. The DPDK version was 16.11.11-1+deb9u2.” [16]

The “varport” branch of siitperf was used, its latest
commit was bfddb5f on Aug 23, 2020. (Since then, the varport
branch was merged into the master branch.)

We expected that the difference between the results with and
without Ethernet flow control depends on the frame rate and we
also wanted to test this hypothesis.

To achieve high enough frame rates, first, we benchmarked
IPv4 kernel routing using random source and destination port
numbers as we did in [16]. The topology of the test system is
shown in Fig. 2. The CPU clock rate was set to fixed 2GHz on
both computers and hyperthreading was switched off (using the
same BIOS settings as specified in the appendix of [18]). All
cores of the second CPU of the DUT were switched off using
the maxcpus=8 kernel parameter to avoid NUMA issues
(please refer to [15] for a detailed explanation).

As for frames sizes, we used 64, 128 and 256 bytes from
among the standard frame sizes recommended by RFC 8219,
because the throughput of the DUT was limited by the
performance of the DUT with these frame sizes, whereas
throughput was limited by the maximum frame rate of the 10G
Ethernet for all higher standard frame sizes.

Technical note: siitperf interprets the specified frame
size values for IPv6 frames and uses 20 bytes less for IPv4
frames, therefore we always set 20 bytes higher values. This is
important, if someone would like to repeat our experiments.

As required by RFC 8219, we used bidirectional traffic and
60s long tests at each step of the binary search. The Error2
parameter of the binary search was set to 1. The throughput tests
were performed 20 times and the median, minimum and
maximum values of the 20 results were calculated. In addition

2 Error means that the binary search may stop, when:

upper_limit – lower_limit ≤ Error.

to that, we have also calculated another value to express the
consistent or scattered nature of the results, which we named
dispersion and defined as follows:

%100
median

minmaxDispersion

 (1)

The results are shown it Table I. We note that commercial
Testers like the one we used in the next section, usually report
the number of all frames per second (including frames in both
directions), but siitperf reports the number of frames per
second per direction. Thus the number of all frames per second
forwarded by the Linux kernel was the double of the numbers
shown in Table I.

Let us compare the results with and without flow control for
each frame size individually. As for 64-byte frames, the median
throughput with flow control (3,432,658fps) is about 0.6%
higher than the median throughput without flow control
(3,411,322fps). The lack of flow control has also significantly
increased the dispersion of the results (from 0.6% to 1.28%).
As for 128-byte frames, the median throughput with flow
control (3,352,378fps) is only about 0.2% higher than the
median throughput without flow control (3,444,630fps).
Finally, with 256-byte frames, the median throughput with flow
control (3,153,894fps) is only about 0.03% higher than the
median throughput without flow control (3,152,872fps). We
can observe that the difference between the median of the
results with and without flow control definitely decreases with
the increase of the frame size.

We are satisfied with the results in the sense that the 3,4Mfps
is more than the half of the 6,3Mfps maximum frame rate
siitperf can achieve on the given hardware [16] and our
results with and without Ethernet flow control are quite close to
each other (even the largest difference is below 1%).

To be able to test the effect of the Ethernet flow control at a
significantly lower frame rate using the very same test system,
we used fixed port numbers. In this case, the packet processing
at the DUT was not hashed to all 8 active CPU cores of the
DUT, but only two CPU cores were used3 (one core per
direction). This time we performed the throughput
measurements using all standard frame sizes, as throughput was
always lower than the theoretical maximum value for the media
at the given frame size. Our results with flow control are shown
in Table II. As we expected, the dispersion of the results is
lower than 1% for all frame rates. The median throughput
slightly decreases, when we increase the frame size from 64
bytes (885,643fps) through 128 bytes (878,256fps) to 256 bytes
(857,575fps). There is significant decrease at 512 bytes
(779,410fps) and median throughput remains constant (within
measurement error) at all higher frame sizes. The investigation
of the decrease of the median at 512 bytes is beyond the scope
of our current paper, we just mention that it can also be
observed in Fig. 3 of [15].

3 We could observe only the load caused by software interrupts.

DUT
Dell PowerEdge C6220

Tester
Dell PowerEdge C6220
(running siitperf)

eno2: DHCP

eno2: DHCP

enp3s0f0:
198.18.0.2/24

enp3s0f1:
198.19.0.2/24

enp3s0f1:
198.19.0.1/24

enp3s0f0:
198.18.0.1/24

2x 10G Ethernet
with direct cables

n017

n018

Fig. 2. Measurement setup for IPv4 Linux kernel routing:
throughput tests with and without Ethernet flow control.

4
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

The Debian Linux operating system was updated to version
9.13 on all computers. The Linux kernel version was: 4.9.0-4-
amd64. The DPDK version was 16.11.11-1+deb9u2.” [16]

The “varport” branch of siitperf was used, its latest
commit was bfddb5f on Aug 23, 2020. (Since then, the varport
branch was merged into the master branch.)

We expected that the difference between the results with and
without Ethernet flow control depends on the frame rate and we
also wanted to test this hypothesis.

To achieve high enough frame rates, first, we benchmarked
IPv4 kernel routing using random source and destination port
numbers as we did in [16]. The topology of the test system is
shown in Fig. 2. The CPU clock rate was set to fixed 2GHz on
both computers and hyperthreading was switched off (using the
same BIOS settings as specified in the appendix of [18]). All
cores of the second CPU of the DUT were switched off using
the maxcpus=8 kernel parameter to avoid NUMA issues
(please refer to [15] for a detailed explanation).

As for frames sizes, we used 64, 128 and 256 bytes from
among the standard frame sizes recommended by RFC 8219,
because the throughput of the DUT was limited by the
performance of the DUT with these frame sizes, whereas
throughput was limited by the maximum frame rate of the 10G
Ethernet for all higher standard frame sizes.

Technical note: siitperf interprets the specified frame
size values for IPv6 frames and uses 20 bytes less for IPv4
frames, therefore we always set 20 bytes higher values. This is
important, if someone would like to repeat our experiments.

As required by RFC 8219, we used bidirectional traffic and
60s long tests at each step of the binary search. The Error2
parameter of the binary search was set to 1. The throughput tests
were performed 20 times and the median, minimum and
maximum values of the 20 results were calculated. In addition

2 Error means that the binary search may stop, when:

upper_limit – lower_limit ≤ Error.

to that, we have also calculated another value to express the
consistent or scattered nature of the results, which we named
dispersion and defined as follows:

%100
median

minmaxDispersion

 (1)

The results are shown it Table I. We note that commercial
Testers like the one we used in the next section, usually report
the number of all frames per second (including frames in both
directions), but siitperf reports the number of frames per
second per direction. Thus the number of all frames per second
forwarded by the Linux kernel was the double of the numbers
shown in Table I.

Let us compare the results with and without flow control for
each frame size individually. As for 64-byte frames, the median
throughput with flow control (3,432,658fps) is about 0.6%
higher than the median throughput without flow control
(3,411,322fps). The lack of flow control has also significantly
increased the dispersion of the results (from 0.6% to 1.28%).
As for 128-byte frames, the median throughput with flow
control (3,352,378fps) is only about 0.2% higher than the
median throughput without flow control (3,444,630fps).
Finally, with 256-byte frames, the median throughput with flow
control (3,153,894fps) is only about 0.03% higher than the
median throughput without flow control (3,152,872fps). We
can observe that the difference between the median of the
results with and without flow control definitely decreases with
the increase of the frame size.

We are satisfied with the results in the sense that the 3,4Mfps
is more than the half of the 6,3Mfps maximum frame rate
siitperf can achieve on the given hardware [16] and our
results with and without Ethernet flow control are quite close to
each other (even the largest difference is below 1%).

To be able to test the effect of the Ethernet flow control at a
significantly lower frame rate using the very same test system,
we used fixed port numbers. In this case, the packet processing
at the DUT was not hashed to all 8 active CPU cores of the
DUT, but only two CPU cores were used3 (one core per
direction). This time we performed the throughput
measurements using all standard frame sizes, as throughput was
always lower than the theoretical maximum value for the media
at the given frame size. Our results with flow control are shown
in Table II. As we expected, the dispersion of the results is
lower than 1% for all frame rates. The median throughput
slightly decreases, when we increase the frame size from 64
bytes (885,643fps) through 128 bytes (878,256fps) to 256 bytes
(857,575fps). There is significant decrease at 512 bytes
(779,410fps) and median throughput remains constant (within
measurement error) at all higher frame sizes. The investigation
of the decrease of the median at 512 bytes is beyond the scope
of our current paper, we just mention that it can also be
observed in Fig. 3 of [15].

3 We could observe only the load caused by software interrupts.

DUT
Dell PowerEdge C6220

Tester
Dell PowerEdge C6220
(running siitperf)

eno2: DHCP

eno2: DHCP

enp3s0f0:
198.18.0.2/24

enp3s0f1:
198.19.0.2/24

enp3s0f1:
198.19.0.1/24

enp3s0f0:
198.18.0.1/24

2x 10G Ethernet
with direct cables

n017

n018

Fig. 2. Measurement setup for IPv4 Linux kernel routing:
throughput tests with and without Ethernet flow control.

We are satisfied with the results in the sense that the 3.4Mfps
is more than the half of the 6.3Mfps maximum frame rate

4
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

The Debian Linux operating system was updated to version
9.13 on all computers. The Linux kernel version was: 4.9.0-4-
amd64. The DPDK version was 16.11.11-1+deb9u2.” [16]

The “varport” branch of siitperf was used, its latest
commit was bfddb5f on Aug 23, 2020. (Since then, the varport
branch was merged into the master branch.)

We expected that the difference between the results with and
without Ethernet flow control depends on the frame rate and we
also wanted to test this hypothesis.

To achieve high enough frame rates, first, we benchmarked
IPv4 kernel routing using random source and destination port
numbers as we did in [16]. The topology of the test system is
shown in Fig. 2. The CPU clock rate was set to fixed 2GHz on
both computers and hyperthreading was switched off (using the
same BIOS settings as specified in the appendix of [18]). All
cores of the second CPU of the DUT were switched off using
the maxcpus=8 kernel parameter to avoid NUMA issues
(please refer to [15] for a detailed explanation).

As for frames sizes, we used 64, 128 and 256 bytes from
among the standard frame sizes recommended by RFC 8219,
because the throughput of the DUT was limited by the
performance of the DUT with these frame sizes, whereas
throughput was limited by the maximum frame rate of the 10G
Ethernet for all higher standard frame sizes.

Technical note: siitperf interprets the specified frame
size values for IPv6 frames and uses 20 bytes less for IPv4
frames, therefore we always set 20 bytes higher values. This is
important, if someone would like to repeat our experiments.

As required by RFC 8219, we used bidirectional traffic and
60s long tests at each step of the binary search. The Error2
parameter of the binary search was set to 1. The throughput tests
were performed 20 times and the median, minimum and
maximum values of the 20 results were calculated. In addition

2 Error means that the binary search may stop, when:

upper_limit – lower_limit ≤ Error.

to that, we have also calculated another value to express the
consistent or scattered nature of the results, which we named
dispersion and defined as follows:

%100
median

minmaxDispersion

 (1)

The results are shown it Table I. We note that commercial
Testers like the one we used in the next section, usually report
the number of all frames per second (including frames in both
directions), but siitperf reports the number of frames per
second per direction. Thus the number of all frames per second
forwarded by the Linux kernel was the double of the numbers
shown in Table I.

Let us compare the results with and without flow control for
each frame size individually. As for 64-byte frames, the median
throughput with flow control (3,432,658fps) is about 0.6%
higher than the median throughput without flow control
(3,411,322fps). The lack of flow control has also significantly
increased the dispersion of the results (from 0.6% to 1.28%).
As for 128-byte frames, the median throughput with flow
control (3,352,378fps) is only about 0.2% higher than the
median throughput without flow control (3,444,630fps).
Finally, with 256-byte frames, the median throughput with flow
control (3,153,894fps) is only about 0.03% higher than the
median throughput without flow control (3,152,872fps). We
can observe that the difference between the median of the
results with and without flow control definitely decreases with
the increase of the frame size.

We are satisfied with the results in the sense that the 3,4Mfps
is more than the half of the 6,3Mfps maximum frame rate
siitperf can achieve on the given hardware [16] and our
results with and without Ethernet flow control are quite close to
each other (even the largest difference is below 1%).

To be able to test the effect of the Ethernet flow control at a
significantly lower frame rate using the very same test system,
we used fixed port numbers. In this case, the packet processing
at the DUT was not hashed to all 8 active CPU cores of the
DUT, but only two CPU cores were used3 (one core per
direction). This time we performed the throughput
measurements using all standard frame sizes, as throughput was
always lower than the theoretical maximum value for the media
at the given frame size. Our results with flow control are shown
in Table II. As we expected, the dispersion of the results is
lower than 1% for all frame rates. The median throughput
slightly decreases, when we increase the frame size from 64
bytes (885,643fps) through 128 bytes (878,256fps) to 256 bytes
(857,575fps). There is significant decrease at 512 bytes
(779,410fps) and median throughput remains constant (within
measurement error) at all higher frame sizes. The investigation
of the decrease of the median at 512 bytes is beyond the scope
of our current paper, we just mention that it can also be
observed in Fig. 3 of [15].

3 We could observe only the load caused by software interrupts.

DUT
Dell PowerEdge C6220

Tester
Dell PowerEdge C6220
(running siitperf)

eno2: DHCP

eno2: DHCP

enp3s0f0:
198.18.0.2/24

enp3s0f1:
198.19.0.2/24

enp3s0f1:
198.19.0.1/24

enp3s0f0:
198.18.0.1/24

2x 10G Ethernet
with direct cables

n017

n018

Fig. 2. Measurement setup for IPv4 Linux kernel routing:
throughput tests with and without Ethernet flow control.

JUNE 2021 • VOLUME XIII • NUMBER 26

INFOCOMMUNICATIONS JOURNAL
Checking the Accuracy of Siitperf

6
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

resolution (or with other words error) of the binary search was
about 149fps (calculated as: 1,488,095/10,000).

We note that the Anritsu tester does not perform a binary
search, if the test at the “Maximum Frame Rate” is successful.
We set the value of this parameter to 100%.

By default, flow control was not enabled on the Anritsu
tester. When we enabled flow control, the Anritsu tester became
practically unusable for throughput measurements, because it
qualified all tests as successful, even if they lasted much longer
than 60s. Thus, we could use this tester for meaningful
measurements only, when flow control was disabled.

B. Measurements with Siitperf
The parameters of the DUT were the same as in the previous

case, but this time the Tester was a Dell PowerEdge R620 server
with two six core 2GHz Intel Xeon E5-2620 CPUs, two 16GB
1600MHz DDR3 SDRAM modules and with an additional Intel
I350-T4 Ethernet Server Adapter (needed for DPDK). Debian
9.11 GNU/Linux operating system with 4.9.0-11-amd64 kernel
was installed on it. The version of DPDK was 16.11.9-
1+deb9u2. As siitperf does not have version numbers yet,
we can identify its version with its latest commit number
05247a1 on Jul 1, 2020. This time, we used the master branch.

The measurement setup is shown in Fig. 4. We used the same
standard frame sizes mentioned before.

As required by RFC 8219, bidirectional traffic was used and
full 60s length trials were executed, and the “Error” of the
binary search was set to 1.

We note that as the binary-rate-alg.sh script
distributed with siitperf supports only tests for a single pre-
set frame size, with a single pre-set upper bound, we have added
a for cycle to the script with the appropriate frame sizes and
the following upper bounds for the consecutive standard frame
sizes: 1,500,000 850,000 460,000 240,000 160,000 120,000
100,000 82,000. They are wilfully somewhat higher than the
theoretical maximum frame rates for the media with the given
frame size, because we wanted to test and demonstrate how
siitperf behaves, when the maximum frame rate for the

media is achieved by the DUT. Our script performed the binary
search for all standard fame sizes starting in the interval of 0 (as
lower bound) and the above mentioned upper bound values.

Unlike with the Antritsu Tester, the log file of the DUT
showed that flow control was enabled on the interfaces used for
testing (Flow Control: Rx/Tx). We tried to switch off flow
control using the same command as with the 10G Ethernet
interfaces (ethtool -A interface rx off tx off),
which has been executed without any error message, however
flow control remained enabled.

C. Results
The Anritsu Tester reported the results in a form of a graph,

which we include in Fig. 5 to facilitate an easy overview of the
results. Except for the first two frame sizes, the throughput
achieved its theoretical maximum value. However, this
reporting format covers some very important details by
displaying only the average value of the measurement results.
Therefore, we processed the detailed result file and calculated
the median, minimum, and maximum of the 20 throughput
results for each frame size. Please see our results in Table IV.
We note that the Anritsu Tester reported the number of all

DUT

Anritsu MP1590B

Port1: 198.18.0.2

eth1: 198.18.0.1 eth2: 198.19.0.1

Port2: 198.19.0.2

1000Base-T
(direct cable)

1000Base-T
(direct cable)

Tester

Sun Fire X4150

Fig. 3. Measurement setup for IPv4 Linux kernel routing:

reference throughput test with a commercial Tester.

DUT

siitperf on a Dell server

enp5s0f0:
198.18.0.2

eth1: 198.18.0.1 eth2: 198.19.0.1

enp5s0f1:
198.19.0.2

1000Base-T
(direct cable)

1000Base-T
(direct cable)

Tester

Sun Fire X4150

Fig. 4. Measurement setup for IPv4 Linux kernel routing:

throughput test with siitperf.

Fig. 5. IPv4 Linux kernel routing performance of the Sun server:

reported by the Anritsu Tester with no flow control

5
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Our results without flow control are shown in Table III. The
difference of the median throughput between the results with
flow control (885,643fps) and without flow control
(880,381fps) is about 0.6% at 64 bytes frame size. Although this
difference decreases to 0.36% at 128 bytes, but it is about 0.8%
at 256 bytes frame size. Thus the increase of the frames size
was not enough to make the difference diminish. For the
following three standard frame sizes, this difference is about:
0.14%, 0.08%, 0.2%, and for the last two frame sizes, the
difference is deliberately less than measurement error.
Unfortunately, the dispersion of the results of the measurements
without flow control is rather high: it exceeds 15% at 128 bytes
frame size. At this point, we cannot tell whether this high
dispersion is caused by the improper timing of siitperf or
by the nature of the DUT.

V. CALIBRATION WITH A STANDARD TESTER
We have built two tests systems to determine the IPv4

routing performance of the same DUT, which was a Sun Fire
X4150 server with two Quad Core 2.83GHz Intel Xeon E5440
CPUs, four 2GB 667MHz DDR2 SDRAM modules and four
Gigabit Ethernet ports. Debian 9.11 GNU/Linux operating
system with 4.9.0-5-amd64 kernel was installed on it. The clock

frequency of all 8 CPU cores was set to fixed 2.833GHz using
the cpufreq-set command of the cpufrequtils
package.

A. Reference Measurement
To provide reference, the throughput of IPv4 Linux kernel

routing was measured using a commercial Anritsu MP1590B
Network Performance Tester. It had a four port Anritsu
MU210212A 10/100/1000M Ethernet Module, and we used
Port1 and Port2 of the module. The measurement setup is
shown in Fig. 3.

As RFC 8219 has somewhat extended the standard frame
sizes to be used for benchmarking originally defined in RFC
2544, we have chosen custom frame sizes and defined the
following frame sizes: 64, 128, 256, 512, 768,1024, 1280, 1518.

As required by RFC 8219, bidirectional traffic was used and
full 60s length trials were executed and the “Loss Tolerance”
parameter was set to 0%.

The Anritsu tester has a parameter called “Resolution”,
which can be specified as the percentage of maximum frame
rate of the media. Its smallest possible value is 0.01. As the
theoretical maximum frame rate for Gigabit Ethernet with 64
byte frame size is 1,488,095, this setting means that the

TABLE I.
IPV4 LINUX KERNEL ROUTING PERFORMANCE WITH AND WITHOUT FLOW CONTROL, DELL POWEREDGE C6220 SERVERS, FIXED 2GHZ CPU CLOCK RATE,

8 ACTIVE CPU CORES, RFC 4814 RANDOM PORT NUMBERS

mode with flow control without flow control
frame size 64 bytes 128 bytes 256 bytes 64 bytes 128 bytes 256 bytes
median (fps) 3,432,658 3,352,378 3,153,894 3,411,322 3,344,630 3,152,872
min (fps) 3,420,774 3,347,624 3,145,506 3,374,999 3,312,499 3,140,624
max (fps) 3,441,407 3,359,921 3,158,448 3,418,731 3,351,578 3,164,064
disp. (%) 0.60 0.37 0.41 1.28 1.17 0.74

TABLE II
 IPV4 LINUX KERNEL ROUTING PERFORMANCE WITH FLOW CONTROL, DELL POWEREDGE C6220 SERVERS, FIXED 2GHZ CPU CLOCK RATE, 8 ACTIVE CPU

CORES, BUT ONLY TWO OF THEM ARE USED DUE TO FIXED PORT NUMBERS

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 885,643 878,256 857,575 779,410 779,503 779,982 779,194 779,035
min (fps) 882,811 874,006 855,467 775,389 777,326 777,342 777,828 777,342
max (fps) 887,696 880,860 859,631 781,746 781,861 781,251 780,274 779,663
disp. (%) 0.55 0.78 0.49 0.82 0.58 0.50 0.31 0.30

TABLE III
IPV4 LINUX KERNEL ROUTING PERFORMANCE WITHOUT FLOW CONTROL, DELL POWEREDGE C6220 SERVERS, FIXED 2GHZ CPU CLOCK RATE, 8 ACTIVE CPU

CORES, BUT ONLY TWO OF THEM ARE USED DUE TO FIXED PORT NUMBERS

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 880,381 875,126 850,740 778,295 778,861 778,535 779,078 779,069
min (fps) 826,610 742,186 749,999 757,807 765,624 734,374 749,693 749,968
max (fps) 883,850 876,617 853,763 780,274 780,274 779,790 780,518 779,420
disp. (%) 6.50 15.36 12.20 2.89 1.88 5.83 3.96 3.78

5
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Our results without flow control are shown in Table III. The
difference of the median throughput between the results with
flow control (885,643fps) and without flow control
(880,381fps) is about 0.6% at 64 bytes frame size. Although this
difference decreases to 0.36% at 128 bytes, but it is about 0.8%
at 256 bytes frame size. Thus the increase of the frames size
was not enough to make the difference diminish. For the
following three standard frame sizes, this difference is about:
0.14%, 0.08%, 0.2%, and for the last two frame sizes, the
difference is deliberately less than measurement error.
Unfortunately, the dispersion of the results of the measurements
without flow control is rather high: it exceeds 15% at 128 bytes
frame size. At this point, we cannot tell whether this high
dispersion is caused by the improper timing of siitperf or
by the nature of the DUT.

V. CALIBRATION WITH A STANDARD TESTER
We have built two tests systems to determine the IPv4

routing performance of the same DUT, which was a Sun Fire
X4150 server with two Quad Core 2.83GHz Intel Xeon E5440
CPUs, four 2GB 667MHz DDR2 SDRAM modules and four
Gigabit Ethernet ports. Debian 9.11 GNU/Linux operating
system with 4.9.0-5-amd64 kernel was installed on it. The clock

frequency of all 8 CPU cores was set to fixed 2.833GHz using
the cpufreq-set command of the cpufrequtils
package.

A. Reference Measurement
To provide reference, the throughput of IPv4 Linux kernel

routing was measured using a commercial Anritsu MP1590B
Network Performance Tester. It had a four port Anritsu
MU210212A 10/100/1000M Ethernet Module, and we used
Port1 and Port2 of the module. The measurement setup is
shown in Fig. 3.

As RFC 8219 has somewhat extended the standard frame
sizes to be used for benchmarking originally defined in RFC
2544, we have chosen custom frame sizes and defined the
following frame sizes: 64, 128, 256, 512, 768,1024, 1280, 1518.

As required by RFC 8219, bidirectional traffic was used and
full 60s length trials were executed and the “Loss Tolerance”
parameter was set to 0%.

The Anritsu tester has a parameter called “Resolution”,
which can be specified as the percentage of maximum frame
rate of the media. Its smallest possible value is 0.01. As the
theoretical maximum frame rate for Gigabit Ethernet with 64
byte frame size is 1,488,095, this setting means that the

TABLE I.
IPV4 LINUX KERNEL ROUTING PERFORMANCE WITH AND WITHOUT FLOW CONTROL, DELL POWEREDGE C6220 SERVERS, FIXED 2GHZ CPU CLOCK RATE,

8 ACTIVE CPU CORES, RFC 4814 RANDOM PORT NUMBERS

mode with flow control without flow control
frame size 64 bytes 128 bytes 256 bytes 64 bytes 128 bytes 256 bytes
median (fps) 3,432,658 3,352,378 3,153,894 3,411,322 3,344,630 3,152,872
min (fps) 3,420,774 3,347,624 3,145,506 3,374,999 3,312,499 3,140,624
max (fps) 3,441,407 3,359,921 3,158,448 3,418,731 3,351,578 3,164,064
disp. (%) 0.60 0.37 0.41 1.28 1.17 0.74

TABLE II
 IPV4 LINUX KERNEL ROUTING PERFORMANCE WITH FLOW CONTROL, DELL POWEREDGE C6220 SERVERS, FIXED 2GHZ CPU CLOCK RATE, 8 ACTIVE CPU

CORES, BUT ONLY TWO OF THEM ARE USED DUE TO FIXED PORT NUMBERS

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 885,643 878,256 857,575 779,410 779,503 779,982 779,194 779,035
min (fps) 882,811 874,006 855,467 775,389 777,326 777,342 777,828 777,342
max (fps) 887,696 880,860 859,631 781,746 781,861 781,251 780,274 779,663
disp. (%) 0.55 0.78 0.49 0.82 0.58 0.50 0.31 0.30

TABLE III
IPV4 LINUX KERNEL ROUTING PERFORMANCE WITHOUT FLOW CONTROL, DELL POWEREDGE C6220 SERVERS, FIXED 2GHZ CPU CLOCK RATE, 8 ACTIVE CPU

CORES, BUT ONLY TWO OF THEM ARE USED DUE TO FIXED PORT NUMBERS

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 880,381 875,126 850,740 778,295 778,861 778,535 779,078 779,069
min (fps) 826,610 742,186 749,999 757,807 765,624 734,374 749,693 749,968
max (fps) 883,850 876,617 853,763 780,274 780,274 779,790 780,518 779,420
disp. (%) 6.50 15.36 12.20 2.89 1.88 5.83 3.96 3.78

5
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Our results without flow control are shown in Table III. The
difference of the median throughput between the results with
flow control (885,643fps) and without flow control
(880,381fps) is about 0.6% at 64 bytes frame size. Although this
difference decreases to 0.36% at 128 bytes, but it is about 0.8%
at 256 bytes frame size. Thus the increase of the frames size
was not enough to make the difference diminish. For the
following three standard frame sizes, this difference is about:
0.14%, 0.08%, 0.2%, and for the last two frame sizes, the
difference is deliberately less than measurement error.
Unfortunately, the dispersion of the results of the measurements
without flow control is rather high: it exceeds 15% at 128 bytes
frame size. At this point, we cannot tell whether this high
dispersion is caused by the improper timing of siitperf or
by the nature of the DUT.

V. CALIBRATION WITH A STANDARD TESTER
We have built two tests systems to determine the IPv4

routing performance of the same DUT, which was a Sun Fire
X4150 server with two Quad Core 2.83GHz Intel Xeon E5440
CPUs, four 2GB 667MHz DDR2 SDRAM modules and four
Gigabit Ethernet ports. Debian 9.11 GNU/Linux operating
system with 4.9.0-5-amd64 kernel was installed on it. The clock

frequency of all 8 CPU cores was set to fixed 2.833GHz using
the cpufreq-set command of the cpufrequtils
package.

A. Reference Measurement
To provide reference, the throughput of IPv4 Linux kernel

routing was measured using a commercial Anritsu MP1590B
Network Performance Tester. It had a four port Anritsu
MU210212A 10/100/1000M Ethernet Module, and we used
Port1 and Port2 of the module. The measurement setup is
shown in Fig. 3.

As RFC 8219 has somewhat extended the standard frame
sizes to be used for benchmarking originally defined in RFC
2544, we have chosen custom frame sizes and defined the
following frame sizes: 64, 128, 256, 512, 768,1024, 1280, 1518.

As required by RFC 8219, bidirectional traffic was used and
full 60s length trials were executed and the “Loss Tolerance”
parameter was set to 0%.

The Anritsu tester has a parameter called “Resolution”,
which can be specified as the percentage of maximum frame
rate of the media. Its smallest possible value is 0.01. As the
theoretical maximum frame rate for Gigabit Ethernet with 64
byte frame size is 1,488,095, this setting means that the

TABLE I.
IPV4 LINUX KERNEL ROUTING PERFORMANCE WITH AND WITHOUT FLOW CONTROL, DELL POWEREDGE C6220 SERVERS, FIXED 2GHZ CPU CLOCK RATE,

8 ACTIVE CPU CORES, RFC 4814 RANDOM PORT NUMBERS

mode with flow control without flow control
frame size 64 bytes 128 bytes 256 bytes 64 bytes 128 bytes 256 bytes
median (fps) 3,432,658 3,352,378 3,153,894 3,411,322 3,344,630 3,152,872
min (fps) 3,420,774 3,347,624 3,145,506 3,374,999 3,312,499 3,140,624
max (fps) 3,441,407 3,359,921 3,158,448 3,418,731 3,351,578 3,164,064
disp. (%) 0.60 0.37 0.41 1.28 1.17 0.74

TABLE II
 IPV4 LINUX KERNEL ROUTING PERFORMANCE WITH FLOW CONTROL, DELL POWEREDGE C6220 SERVERS, FIXED 2GHZ CPU CLOCK RATE, 8 ACTIVE CPU

CORES, BUT ONLY TWO OF THEM ARE USED DUE TO FIXED PORT NUMBERS

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 885,643 878,256 857,575 779,410 779,503 779,982 779,194 779,035
min (fps) 882,811 874,006 855,467 775,389 777,326 777,342 777,828 777,342
max (fps) 887,696 880,860 859,631 781,746 781,861 781,251 780,274 779,663
disp. (%) 0.55 0.78 0.49 0.82 0.58 0.50 0.31 0.30

TABLE III
IPV4 LINUX KERNEL ROUTING PERFORMANCE WITHOUT FLOW CONTROL, DELL POWEREDGE C6220 SERVERS, FIXED 2GHZ CPU CLOCK RATE, 8 ACTIVE CPU

CORES, BUT ONLY TWO OF THEM ARE USED DUE TO FIXED PORT NUMBERS

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 880,381 875,126 850,740 778,295 778,861 778,535 779,078 779,069
min (fps) 826,610 742,186 749,999 757,807 765,624 734,374 749,693 749,968
max (fps) 883,850 876,617 853,763 780,274 780,274 779,790 780,518 779,420
disp. (%) 6.50 15.36 12.20 2.89 1.88 5.83 3.96 3.78

5
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Our results without flow control are shown in Table III. The
difference of the median throughput between the results with
flow control (885,643fps) and without flow control
(880,381fps) is about 0.6% at 64 bytes frame size. Although this
difference decreases to 0.36% at 128 bytes, but it is about 0.8%
at 256 bytes frame size. Thus the increase of the frames size
was not enough to make the difference diminish. For the
following three standard frame sizes, this difference is about:
0.14%, 0.08%, 0.2%, and for the last two frame sizes, the
difference is deliberately less than measurement error.
Unfortunately, the dispersion of the results of the measurements
without flow control is rather high: it exceeds 15% at 128 bytes
frame size. At this point, we cannot tell whether this high
dispersion is caused by the improper timing of siitperf or
by the nature of the DUT.

V. CALIBRATION WITH A STANDARD TESTER
We have built two tests systems to determine the IPv4

routing performance of the same DUT, which was a Sun Fire
X4150 server with two Quad Core 2.83GHz Intel Xeon E5440
CPUs, four 2GB 667MHz DDR2 SDRAM modules and four
Gigabit Ethernet ports. Debian 9.11 GNU/Linux operating
system with 4.9.0-5-amd64 kernel was installed on it. The clock

frequency of all 8 CPU cores was set to fixed 2.833GHz using
the cpufreq-set command of the cpufrequtils
package.

A. Reference Measurement
To provide reference, the throughput of IPv4 Linux kernel

routing was measured using a commercial Anritsu MP1590B
Network Performance Tester. It had a four port Anritsu
MU210212A 10/100/1000M Ethernet Module, and we used
Port1 and Port2 of the module. The measurement setup is
shown in Fig. 3.

As RFC 8219 has somewhat extended the standard frame
sizes to be used for benchmarking originally defined in RFC
2544, we have chosen custom frame sizes and defined the
following frame sizes: 64, 128, 256, 512, 768,1024, 1280, 1518.

As required by RFC 8219, bidirectional traffic was used and
full 60s length trials were executed and the “Loss Tolerance”
parameter was set to 0%.

The Anritsu tester has a parameter called “Resolution”,
which can be specified as the percentage of maximum frame
rate of the media. Its smallest possible value is 0.01. As the
theoretical maximum frame rate for Gigabit Ethernet with 64
byte frame size is 1,488,095, this setting means that the

TABLE I.
IPV4 LINUX KERNEL ROUTING PERFORMANCE WITH AND WITHOUT FLOW CONTROL, DELL POWEREDGE C6220 SERVERS, FIXED 2GHZ CPU CLOCK RATE,

8 ACTIVE CPU CORES, RFC 4814 RANDOM PORT NUMBERS

mode with flow control without flow control
frame size 64 bytes 128 bytes 256 bytes 64 bytes 128 bytes 256 bytes
median (fps) 3,432,658 3,352,378 3,153,894 3,411,322 3,344,630 3,152,872
min (fps) 3,420,774 3,347,624 3,145,506 3,374,999 3,312,499 3,140,624
max (fps) 3,441,407 3,359,921 3,158,448 3,418,731 3,351,578 3,164,064
disp. (%) 0.60 0.37 0.41 1.28 1.17 0.74

TABLE II
 IPV4 LINUX KERNEL ROUTING PERFORMANCE WITH FLOW CONTROL, DELL POWEREDGE C6220 SERVERS, FIXED 2GHZ CPU CLOCK RATE, 8 ACTIVE CPU

CORES, BUT ONLY TWO OF THEM ARE USED DUE TO FIXED PORT NUMBERS

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 885,643 878,256 857,575 779,410 779,503 779,982 779,194 779,035
min (fps) 882,811 874,006 855,467 775,389 777,326 777,342 777,828 777,342
max (fps) 887,696 880,860 859,631 781,746 781,861 781,251 780,274 779,663
disp. (%) 0.55 0.78 0.49 0.82 0.58 0.50 0.31 0.30

TABLE III
IPV4 LINUX KERNEL ROUTING PERFORMANCE WITHOUT FLOW CONTROL, DELL POWEREDGE C6220 SERVERS, FIXED 2GHZ CPU CLOCK RATE, 8 ACTIVE CPU

CORES, BUT ONLY TWO OF THEM ARE USED DUE TO FIXED PORT NUMBERS

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 880,381 875,126 850,740 778,295 778,861 778,535 779,078 779,069
min (fps) 826,610 742,186 749,999 757,807 765,624 734,374 749,693 749,968
max (fps) 883,850 876,617 853,763 780,274 780,274 779,790 780,518 779,420
disp. (%) 6.50 15.36 12.20 2.89 1.88 5.83 3.96 3.78

5
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Our results without flow control are shown in Table III. The
difference of the median throughput between the results with
flow control (885,643fps) and without flow control
(880,381fps) is about 0.6% at 64 bytes frame size. Although this
difference decreases to 0.36% at 128 bytes, but it is about 0.8%
at 256 bytes frame size. Thus the increase of the frames size
was not enough to make the difference diminish. For the
following three standard frame sizes, this difference is about:
0.14%, 0.08%, 0.2%, and for the last two frame sizes, the
difference is deliberately less than measurement error.
Unfortunately, the dispersion of the results of the measurements
without flow control is rather high: it exceeds 15% at 128 bytes
frame size. At this point, we cannot tell whether this high
dispersion is caused by the improper timing of siitperf or
by the nature of the DUT.

V. CALIBRATION WITH A STANDARD TESTER
We have built two tests systems to determine the IPv4

routing performance of the same DUT, which was a Sun Fire
X4150 server with two Quad Core 2.83GHz Intel Xeon E5440
CPUs, four 2GB 667MHz DDR2 SDRAM modules and four
Gigabit Ethernet ports. Debian 9.11 GNU/Linux operating
system with 4.9.0-5-amd64 kernel was installed on it. The clock

frequency of all 8 CPU cores was set to fixed 2.833GHz using
the cpufreq-set command of the cpufrequtils
package.

A. Reference Measurement
To provide reference, the throughput of IPv4 Linux kernel

routing was measured using a commercial Anritsu MP1590B
Network Performance Tester. It had a four port Anritsu
MU210212A 10/100/1000M Ethernet Module, and we used
Port1 and Port2 of the module. The measurement setup is
shown in Fig. 3.

As RFC 8219 has somewhat extended the standard frame
sizes to be used for benchmarking originally defined in RFC
2544, we have chosen custom frame sizes and defined the
following frame sizes: 64, 128, 256, 512, 768,1024, 1280, 1518.

As required by RFC 8219, bidirectional traffic was used and
full 60s length trials were executed and the “Loss Tolerance”
parameter was set to 0%.

The Anritsu tester has a parameter called “Resolution”,
which can be specified as the percentage of maximum frame
rate of the media. Its smallest possible value is 0.01. As the
theoretical maximum frame rate for Gigabit Ethernet with 64
byte frame size is 1,488,095, this setting means that the

TABLE I.
IPV4 LINUX KERNEL ROUTING PERFORMANCE WITH AND WITHOUT FLOW CONTROL, DELL POWEREDGE C6220 SERVERS, FIXED 2GHZ CPU CLOCK RATE,

8 ACTIVE CPU CORES, RFC 4814 RANDOM PORT NUMBERS

mode with flow control without flow control
frame size 64 bytes 128 bytes 256 bytes 64 bytes 128 bytes 256 bytes
median (fps) 3,432,658 3,352,378 3,153,894 3,411,322 3,344,630 3,152,872
min (fps) 3,420,774 3,347,624 3,145,506 3,374,999 3,312,499 3,140,624
max (fps) 3,441,407 3,359,921 3,158,448 3,418,731 3,351,578 3,164,064
disp. (%) 0.60 0.37 0.41 1.28 1.17 0.74

TABLE II
 IPV4 LINUX KERNEL ROUTING PERFORMANCE WITH FLOW CONTROL, DELL POWEREDGE C6220 SERVERS, FIXED 2GHZ CPU CLOCK RATE, 8 ACTIVE CPU

CORES, BUT ONLY TWO OF THEM ARE USED DUE TO FIXED PORT NUMBERS

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 885,643 878,256 857,575 779,410 779,503 779,982 779,194 779,035
min (fps) 882,811 874,006 855,467 775,389 777,326 777,342 777,828 777,342
max (fps) 887,696 880,860 859,631 781,746 781,861 781,251 780,274 779,663
disp. (%) 0.55 0.78 0.49 0.82 0.58 0.50 0.31 0.30

TABLE III
IPV4 LINUX KERNEL ROUTING PERFORMANCE WITHOUT FLOW CONTROL, DELL POWEREDGE C6220 SERVERS, FIXED 2GHZ CPU CLOCK RATE, 8 ACTIVE CPU

CORES, BUT ONLY TWO OF THEM ARE USED DUE TO FIXED PORT NUMBERS

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 880,381 875,126 850,740 778,295 778,861 778,535 779,078 779,069
min (fps) 826,610 742,186 749,999 757,807 765,624 734,374 749,693 749,968
max (fps) 883,850 876,617 853,763 780,274 780,274 779,790 780,518 779,420
disp. (%) 6.50 15.36 12.20 2.89 1.88 5.83 3.96 3.78

6
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

resolution (or with other words error) of the binary search was
about 149fps (calculated as: 1,488,095/10,000).

We note that the Anritsu tester does not perform a binary
search, if the test at the “Maximum Frame Rate” is successful.
We set the value of this parameter to 100%.

By default, flow control was not enabled on the Anritsu
tester. When we enabled flow control, the Anritsu tester became
practically unusable for throughput measurements, because it
qualified all tests as successful, even if they lasted much longer
than 60s. Thus, we could use this tester for meaningful
measurements only, when flow control was disabled.

B. Measurements with Siitperf
The parameters of the DUT were the same as in the previous

case, but this time the Tester was a Dell PowerEdge R620 server
with two six core 2GHz Intel Xeon E5-2620 CPUs, two 16GB
1600MHz DDR3 SDRAM modules and with an additional Intel
I350-T4 Ethernet Server Adapter (needed for DPDK). Debian
9.11 GNU/Linux operating system with 4.9.0-11-amd64 kernel
was installed on it. The version of DPDK was 16.11.9-
1+deb9u2. As siitperf does not have version numbers yet,
we can identify its version with its latest commit number
05247a1 on Jul 1, 2020. This time, we used the master branch.

The measurement setup is shown in Fig. 4. We used the same
standard frame sizes mentioned before.

As required by RFC 8219, bidirectional traffic was used and
full 60s length trials were executed, and the “Error” of the
binary search was set to 1.

We note that as the binary-rate-alg.sh script
distributed with siitperf supports only tests for a single pre-
set frame size, with a single pre-set upper bound, we have added
a for cycle to the script with the appropriate frame sizes and
the following upper bounds for the consecutive standard frame
sizes: 1,500,000 850,000 460,000 240,000 160,000 120,000
100,000 82,000. They are wilfully somewhat higher than the
theoretical maximum frame rates for the media with the given
frame size, because we wanted to test and demonstrate how
siitperf behaves, when the maximum frame rate for the

media is achieved by the DUT. Our script performed the binary
search for all standard fame sizes starting in the interval of 0 (as
lower bound) and the above mentioned upper bound values.

Unlike with the Antritsu Tester, the log file of the DUT
showed that flow control was enabled on the interfaces used for
testing (Flow Control: Rx/Tx). We tried to switch off flow
control using the same command as with the 10G Ethernet
interfaces (ethtool -A interface rx off tx off),
which has been executed without any error message, however
flow control remained enabled.

C. Results
The Anritsu Tester reported the results in a form of a graph,

which we include in Fig. 5 to facilitate an easy overview of the
results. Except for the first two frame sizes, the throughput
achieved its theoretical maximum value. However, this
reporting format covers some very important details by
displaying only the average value of the measurement results.
Therefore, we processed the detailed result file and calculated
the median, minimum, and maximum of the 20 throughput
results for each frame size. Please see our results in Table IV.
We note that the Anritsu Tester reported the number of all

DUT

Anritsu MP1590B

Port1: 198.18.0.2

eth1: 198.18.0.1 eth2: 198.19.0.1

Port2: 198.19.0.2

1000Base-T
(direct cable)

1000Base-T
(direct cable)

Tester

Sun Fire X4150

Fig. 3. Measurement setup for IPv4 Linux kernel routing:

reference throughput test with a commercial Tester.

DUT

siitperf on a Dell server

enp5s0f0:
198.18.0.2

eth1: 198.18.0.1 eth2: 198.19.0.1

enp5s0f1:
198.19.0.2

1000Base-T
(direct cable)

1000Base-T
(direct cable)

Tester

Sun Fire X4150

Fig. 4. Measurement setup for IPv4 Linux kernel routing:

throughput test with siitperf.

Fig. 5. IPv4 Linux kernel routing performance of the Sun server:

reported by the Anritsu Tester with no flow control

6
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

resolution (or with other words error) of the binary search was
about 149fps (calculated as: 1,488,095/10,000).

We note that the Anritsu tester does not perform a binary
search, if the test at the “Maximum Frame Rate” is successful.
We set the value of this parameter to 100%.

By default, flow control was not enabled on the Anritsu
tester. When we enabled flow control, the Anritsu tester became
practically unusable for throughput measurements, because it
qualified all tests as successful, even if they lasted much longer
than 60s. Thus, we could use this tester for meaningful
measurements only, when flow control was disabled.

B. Measurements with Siitperf
The parameters of the DUT were the same as in the previous

case, but this time the Tester was a Dell PowerEdge R620 server
with two six core 2GHz Intel Xeon E5-2620 CPUs, two 16GB
1600MHz DDR3 SDRAM modules and with an additional Intel
I350-T4 Ethernet Server Adapter (needed for DPDK). Debian
9.11 GNU/Linux operating system with 4.9.0-11-amd64 kernel
was installed on it. The version of DPDK was 16.11.9-
1+deb9u2. As siitperf does not have version numbers yet,
we can identify its version with its latest commit number
05247a1 on Jul 1, 2020. This time, we used the master branch.

The measurement setup is shown in Fig. 4. We used the same
standard frame sizes mentioned before.

As required by RFC 8219, bidirectional traffic was used and
full 60s length trials were executed, and the “Error” of the
binary search was set to 1.

We note that as the binary-rate-alg.sh script
distributed with siitperf supports only tests for a single pre-
set frame size, with a single pre-set upper bound, we have added
a for cycle to the script with the appropriate frame sizes and
the following upper bounds for the consecutive standard frame
sizes: 1,500,000 850,000 460,000 240,000 160,000 120,000
100,000 82,000. They are wilfully somewhat higher than the
theoretical maximum frame rates for the media with the given
frame size, because we wanted to test and demonstrate how
siitperf behaves, when the maximum frame rate for the

media is achieved by the DUT. Our script performed the binary
search for all standard fame sizes starting in the interval of 0 (as
lower bound) and the above mentioned upper bound values.

Unlike with the Antritsu Tester, the log file of the DUT
showed that flow control was enabled on the interfaces used for
testing (Flow Control: Rx/Tx). We tried to switch off flow
control using the same command as with the 10G Ethernet
interfaces (ethtool -A interface rx off tx off),
which has been executed without any error message, however
flow control remained enabled.

C. Results
The Anritsu Tester reported the results in a form of a graph,

which we include in Fig. 5 to facilitate an easy overview of the
results. Except for the first two frame sizes, the throughput
achieved its theoretical maximum value. However, this
reporting format covers some very important details by
displaying only the average value of the measurement results.
Therefore, we processed the detailed result file and calculated
the median, minimum, and maximum of the 20 throughput
results for each frame size. Please see our results in Table IV.
We note that the Anritsu Tester reported the number of all

DUT

Anritsu MP1590B

Port1: 198.18.0.2

eth1: 198.18.0.1 eth2: 198.19.0.1

Port2: 198.19.0.2

1000Base-T
(direct cable)

1000Base-T
(direct cable)

Tester

Sun Fire X4150

Fig. 3. Measurement setup for IPv4 Linux kernel routing:

reference throughput test with a commercial Tester.

DUT

siitperf on a Dell server

enp5s0f0:
198.18.0.2

eth1: 198.18.0.1 eth2: 198.19.0.1

enp5s0f1:
198.19.0.2

1000Base-T
(direct cable)

1000Base-T
(direct cable)

Tester

Sun Fire X4150

Fig. 4. Measurement setup for IPv4 Linux kernel routing:

throughput test with siitperf.

Fig. 5. IPv4 Linux kernel routing performance of the Sun server:

reported by the Anritsu Tester with no flow control

We have built two test systems to determine the IPv4

5
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Our results without flow control are shown in Table III. The
difference of the median throughput between the results with
flow control (885,643fps) and without flow control
(880,381fps) is about 0.6% at 64 bytes frame size. Although this
difference decreases to 0.36% at 128 bytes, but it is about 0.8%
at 256 bytes frame size. Thus the increase of the frames size
was not enough to make the difference diminish. For the
following three standard frame sizes, this difference is about:
0.14%, 0.08%, 0.2%, and for the last two frame sizes, the
difference is deliberately less than measurement error.
Unfortunately, the dispersion of the results of the measurements
without flow control is rather high: it exceeds 15% at 128 bytes
frame size. At this point, we cannot tell whether this high
dispersion is caused by the improper timing of siitperf or
by the nature of the DUT.

V. CALIBRATION WITH A STANDARD TESTER
We have built two tests systems to determine the IPv4

routing performance of the same DUT, which was a Sun Fire
X4150 server with two Quad Core 2.83GHz Intel Xeon E5440
CPUs, four 2GB 667MHz DDR2 SDRAM modules and four
Gigabit Ethernet ports. Debian 9.11 GNU/Linux operating
system with 4.9.0-5-amd64 kernel was installed on it. The clock

frequency of all 8 CPU cores was set to fixed 2.833GHz using
the cpufreq-set command of the cpufrequtils
package.

A. Reference Measurement
To provide reference, the throughput of IPv4 Linux kernel

routing was measured using a commercial Anritsu MP1590B
Network Performance Tester. It had a four port Anritsu
MU210212A 10/100/1000M Ethernet Module, and we used
Port1 and Port2 of the module. The measurement setup is
shown in Fig. 3.

As RFC 8219 has somewhat extended the standard frame
sizes to be used for benchmarking originally defined in RFC
2544, we have chosen custom frame sizes and defined the
following frame sizes: 64, 128, 256, 512, 768,1024, 1280, 1518.

As required by RFC 8219, bidirectional traffic was used and
full 60s length trials were executed and the “Loss Tolerance”
parameter was set to 0%.

The Anritsu tester has a parameter called “Resolution”,
which can be specified as the percentage of maximum frame
rate of the media. Its smallest possible value is 0.01. As the
theoretical maximum frame rate for Gigabit Ethernet with 64
byte frame size is 1,488,095, this setting means that the

TABLE I.
IPV4 LINUX KERNEL ROUTING PERFORMANCE WITH AND WITHOUT FLOW CONTROL, DELL POWEREDGE C6220 SERVERS, FIXED 2GHZ CPU CLOCK RATE,

8 ACTIVE CPU CORES, RFC 4814 RANDOM PORT NUMBERS

mode with flow control without flow control
frame size 64 bytes 128 bytes 256 bytes 64 bytes 128 bytes 256 bytes
median (fps) 3,432,658 3,352,378 3,153,894 3,411,322 3,344,630 3,152,872
min (fps) 3,420,774 3,347,624 3,145,506 3,374,999 3,312,499 3,140,624
max (fps) 3,441,407 3,359,921 3,158,448 3,418,731 3,351,578 3,164,064
disp. (%) 0.60 0.37 0.41 1.28 1.17 0.74

TABLE II
 IPV4 LINUX KERNEL ROUTING PERFORMANCE WITH FLOW CONTROL, DELL POWEREDGE C6220 SERVERS, FIXED 2GHZ CPU CLOCK RATE, 8 ACTIVE CPU

CORES, BUT ONLY TWO OF THEM ARE USED DUE TO FIXED PORT NUMBERS

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 885,643 878,256 857,575 779,410 779,503 779,982 779,194 779,035
min (fps) 882,811 874,006 855,467 775,389 777,326 777,342 777,828 777,342
max (fps) 887,696 880,860 859,631 781,746 781,861 781,251 780,274 779,663
disp. (%) 0.55 0.78 0.49 0.82 0.58 0.50 0.31 0.30

TABLE III
IPV4 LINUX KERNEL ROUTING PERFORMANCE WITHOUT FLOW CONTROL, DELL POWEREDGE C6220 SERVERS, FIXED 2GHZ CPU CLOCK RATE, 8 ACTIVE CPU

CORES, BUT ONLY TWO OF THEM ARE USED DUE TO FIXED PORT NUMBERS

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 880,381 875,126 850,740 778,295 778,861 778,535 779,078 779,069
min (fps) 826,610 742,186 749,999 757,807 765,624 734,374 749,693 749,968
max (fps) 883,850 876,617 853,763 780,274 780,274 779,790 780,518 779,420
disp. (%) 6.50 15.36 12.20 2.89 1.88 5.83 3.96 3.78

INFOCOMMUNICATIONS JOURNAL

JUNE 2021 • VOLUME XIII • NUMBER 2 7

Checking the Accuracy of Siitperf
6
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

resolution (or with other words error) of the binary search was
about 149fps (calculated as: 1,488,095/10,000).

We note that the Anritsu tester does not perform a binary
search, if the test at the “Maximum Frame Rate” is successful.
We set the value of this parameter to 100%.

By default, flow control was not enabled on the Anritsu
tester. When we enabled flow control, the Anritsu tester became
practically unusable for throughput measurements, because it
qualified all tests as successful, even if they lasted much longer
than 60s. Thus, we could use this tester for meaningful
measurements only, when flow control was disabled.

B. Measurements with Siitperf
The parameters of the DUT were the same as in the previous

case, but this time the Tester was a Dell PowerEdge R620 server
with two six core 2GHz Intel Xeon E5-2620 CPUs, two 16GB
1600MHz DDR3 SDRAM modules and with an additional Intel
I350-T4 Ethernet Server Adapter (needed for DPDK). Debian
9.11 GNU/Linux operating system with 4.9.0-11-amd64 kernel
was installed on it. The version of DPDK was 16.11.9-
1+deb9u2. As siitperf does not have version numbers yet,
we can identify its version with its latest commit number
05247a1 on Jul 1, 2020. This time, we used the master branch.

The measurement setup is shown in Fig. 4. We used the same
standard frame sizes mentioned before.

As required by RFC 8219, bidirectional traffic was used and
full 60s length trials were executed, and the “Error” of the
binary search was set to 1.

We note that as the binary-rate-alg.sh script
distributed with siitperf supports only tests for a single pre-
set frame size, with a single pre-set upper bound, we have added
a for cycle to the script with the appropriate frame sizes and
the following upper bounds for the consecutive standard frame
sizes: 1,500,000 850,000 460,000 240,000 160,000 120,000
100,000 82,000. They are wilfully somewhat higher than the
theoretical maximum frame rates for the media with the given
frame size, because we wanted to test and demonstrate how
siitperf behaves, when the maximum frame rate for the

media is achieved by the DUT. Our script performed the binary
search for all standard fame sizes starting in the interval of 0 (as
lower bound) and the above mentioned upper bound values.

Unlike with the Antritsu Tester, the log file of the DUT
showed that flow control was enabled on the interfaces used for
testing (Flow Control: Rx/Tx). We tried to switch off flow
control using the same command as with the 10G Ethernet
interfaces (ethtool -A interface rx off tx off),
which has been executed without any error message, however
flow control remained enabled.

C. Results
The Anritsu Tester reported the results in a form of a graph,

which we include in Fig. 5 to facilitate an easy overview of the
results. Except for the first two frame sizes, the throughput
achieved its theoretical maximum value. However, this
reporting format covers some very important details by
displaying only the average value of the measurement results.
Therefore, we processed the detailed result file and calculated
the median, minimum, and maximum of the 20 throughput
results for each frame size. Please see our results in Table IV.
We note that the Anritsu Tester reported the number of all

DUT

Anritsu MP1590B

Port1: 198.18.0.2

eth1: 198.18.0.1 eth2: 198.19.0.1

Port2: 198.19.0.2

1000Base-T
(direct cable)

1000Base-T
(direct cable)

Tester

Sun Fire X4150

Fig. 3. Measurement setup for IPv4 Linux kernel routing:

reference throughput test with a commercial Tester.

DUT

siitperf on a Dell server

enp5s0f0:
198.18.0.2

eth1: 198.18.0.1 eth2: 198.19.0.1

enp5s0f1:
198.19.0.2

1000Base-T
(direct cable)

1000Base-T
(direct cable)

Tester

Sun Fire X4150

Fig. 4. Measurement setup for IPv4 Linux kernel routing:

throughput test with siitperf.

Fig. 5. IPv4 Linux kernel routing performance of the Sun server:

reported by the Anritsu Tester with no flow control

5
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Our results without flow control are shown in Table III. The
difference of the median throughput between the results with
flow control (885,643fps) and without flow control
(880,381fps) is about 0.6% at 64 bytes frame size. Although this
difference decreases to 0.36% at 128 bytes, but it is about 0.8%
at 256 bytes frame size. Thus the increase of the frames size
was not enough to make the difference diminish. For the
following three standard frame sizes, this difference is about:
0.14%, 0.08%, 0.2%, and for the last two frame sizes, the
difference is deliberately less than measurement error.
Unfortunately, the dispersion of the results of the measurements
without flow control is rather high: it exceeds 15% at 128 bytes
frame size. At this point, we cannot tell whether this high
dispersion is caused by the improper timing of siitperf or
by the nature of the DUT.

V. CALIBRATION WITH A STANDARD TESTER
We have built two tests systems to determine the IPv4

routing performance of the same DUT, which was a Sun Fire
X4150 server with two Quad Core 2.83GHz Intel Xeon E5440
CPUs, four 2GB 667MHz DDR2 SDRAM modules and four
Gigabit Ethernet ports. Debian 9.11 GNU/Linux operating
system with 4.9.0-5-amd64 kernel was installed on it. The clock

frequency of all 8 CPU cores was set to fixed 2.833GHz using
the cpufreq-set command of the cpufrequtils
package.

A. Reference Measurement
To provide reference, the throughput of IPv4 Linux kernel

routing was measured using a commercial Anritsu MP1590B
Network Performance Tester. It had a four port Anritsu
MU210212A 10/100/1000M Ethernet Module, and we used
Port1 and Port2 of the module. The measurement setup is
shown in Fig. 3.

As RFC 8219 has somewhat extended the standard frame
sizes to be used for benchmarking originally defined in RFC
2544, we have chosen custom frame sizes and defined the
following frame sizes: 64, 128, 256, 512, 768,1024, 1280, 1518.

As required by RFC 8219, bidirectional traffic was used and
full 60s length trials were executed and the “Loss Tolerance”
parameter was set to 0%.

The Anritsu tester has a parameter called “Resolution”,
which can be specified as the percentage of maximum frame
rate of the media. Its smallest possible value is 0.01. As the
theoretical maximum frame rate for Gigabit Ethernet with 64
byte frame size is 1,488,095, this setting means that the

TABLE I.
IPV4 LINUX KERNEL ROUTING PERFORMANCE WITH AND WITHOUT FLOW CONTROL, DELL POWEREDGE C6220 SERVERS, FIXED 2GHZ CPU CLOCK RATE,

8 ACTIVE CPU CORES, RFC 4814 RANDOM PORT NUMBERS

mode with flow control without flow control
frame size 64 bytes 128 bytes 256 bytes 64 bytes 128 bytes 256 bytes
median (fps) 3,432,658 3,352,378 3,153,894 3,411,322 3,344,630 3,152,872
min (fps) 3,420,774 3,347,624 3,145,506 3,374,999 3,312,499 3,140,624
max (fps) 3,441,407 3,359,921 3,158,448 3,418,731 3,351,578 3,164,064
disp. (%) 0.60 0.37 0.41 1.28 1.17 0.74

TABLE II
 IPV4 LINUX KERNEL ROUTING PERFORMANCE WITH FLOW CONTROL, DELL POWEREDGE C6220 SERVERS, FIXED 2GHZ CPU CLOCK RATE, 8 ACTIVE CPU

CORES, BUT ONLY TWO OF THEM ARE USED DUE TO FIXED PORT NUMBERS

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 885,643 878,256 857,575 779,410 779,503 779,982 779,194 779,035
min (fps) 882,811 874,006 855,467 775,389 777,326 777,342 777,828 777,342
max (fps) 887,696 880,860 859,631 781,746 781,861 781,251 780,274 779,663
disp. (%) 0.55 0.78 0.49 0.82 0.58 0.50 0.31 0.30

TABLE III
IPV4 LINUX KERNEL ROUTING PERFORMANCE WITHOUT FLOW CONTROL, DELL POWEREDGE C6220 SERVERS, FIXED 2GHZ CPU CLOCK RATE, 8 ACTIVE CPU

CORES, BUT ONLY TWO OF THEM ARE USED DUE TO FIXED PORT NUMBERS

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 880,381 875,126 850,740 778,295 778,861 778,535 779,078 779,069
min (fps) 826,610 742,186 749,999 757,807 765,624 734,374 749,693 749,968
max (fps) 883,850 876,617 853,763 780,274 780,274 779,790 780,518 779,420
disp. (%) 6.50 15.36 12.20 2.89 1.88 5.83 3.96 3.78

5
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Our results without flow control are shown in Table III. The
difference of the median throughput between the results with
flow control (885,643fps) and without flow control
(880,381fps) is about 0.6% at 64 bytes frame size. Although this
difference decreases to 0.36% at 128 bytes, but it is about 0.8%
at 256 bytes frame size. Thus the increase of the frames size
was not enough to make the difference diminish. For the
following three standard frame sizes, this difference is about:
0.14%, 0.08%, 0.2%, and for the last two frame sizes, the
difference is deliberately less than measurement error.
Unfortunately, the dispersion of the results of the measurements
without flow control is rather high: it exceeds 15% at 128 bytes
frame size. At this point, we cannot tell whether this high
dispersion is caused by the improper timing of siitperf or
by the nature of the DUT.

V. CALIBRATION WITH A STANDARD TESTER
We have built two tests systems to determine the IPv4

routing performance of the same DUT, which was a Sun Fire
X4150 server with two Quad Core 2.83GHz Intel Xeon E5440
CPUs, four 2GB 667MHz DDR2 SDRAM modules and four
Gigabit Ethernet ports. Debian 9.11 GNU/Linux operating
system with 4.9.0-5-amd64 kernel was installed on it. The clock

frequency of all 8 CPU cores was set to fixed 2.833GHz using
the cpufreq-set command of the cpufrequtils
package.

A. Reference Measurement
To provide reference, the throughput of IPv4 Linux kernel

routing was measured using a commercial Anritsu MP1590B
Network Performance Tester. It had a four port Anritsu
MU210212A 10/100/1000M Ethernet Module, and we used
Port1 and Port2 of the module. The measurement setup is
shown in Fig. 3.

As RFC 8219 has somewhat extended the standard frame
sizes to be used for benchmarking originally defined in RFC
2544, we have chosen custom frame sizes and defined the
following frame sizes: 64, 128, 256, 512, 768,1024, 1280, 1518.

As required by RFC 8219, bidirectional traffic was used and
full 60s length trials were executed and the “Loss Tolerance”
parameter was set to 0%.

The Anritsu tester has a parameter called “Resolution”,
which can be specified as the percentage of maximum frame
rate of the media. Its smallest possible value is 0.01. As the
theoretical maximum frame rate for Gigabit Ethernet with 64
byte frame size is 1,488,095, this setting means that the

TABLE I.
IPV4 LINUX KERNEL ROUTING PERFORMANCE WITH AND WITHOUT FLOW CONTROL, DELL POWEREDGE C6220 SERVERS, FIXED 2GHZ CPU CLOCK RATE,

8 ACTIVE CPU CORES, RFC 4814 RANDOM PORT NUMBERS

mode with flow control without flow control
frame size 64 bytes 128 bytes 256 bytes 64 bytes 128 bytes 256 bytes
median (fps) 3,432,658 3,352,378 3,153,894 3,411,322 3,344,630 3,152,872
min (fps) 3,420,774 3,347,624 3,145,506 3,374,999 3,312,499 3,140,624
max (fps) 3,441,407 3,359,921 3,158,448 3,418,731 3,351,578 3,164,064
disp. (%) 0.60 0.37 0.41 1.28 1.17 0.74

TABLE II
 IPV4 LINUX KERNEL ROUTING PERFORMANCE WITH FLOW CONTROL, DELL POWEREDGE C6220 SERVERS, FIXED 2GHZ CPU CLOCK RATE, 8 ACTIVE CPU

CORES, BUT ONLY TWO OF THEM ARE USED DUE TO FIXED PORT NUMBERS

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 885,643 878,256 857,575 779,410 779,503 779,982 779,194 779,035
min (fps) 882,811 874,006 855,467 775,389 777,326 777,342 777,828 777,342
max (fps) 887,696 880,860 859,631 781,746 781,861 781,251 780,274 779,663
disp. (%) 0.55 0.78 0.49 0.82 0.58 0.50 0.31 0.30

TABLE III
IPV4 LINUX KERNEL ROUTING PERFORMANCE WITHOUT FLOW CONTROL, DELL POWEREDGE C6220 SERVERS, FIXED 2GHZ CPU CLOCK RATE, 8 ACTIVE CPU

CORES, BUT ONLY TWO OF THEM ARE USED DUE TO FIXED PORT NUMBERS

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 880,381 875,126 850,740 778,295 778,861 778,535 779,078 779,069
min (fps) 826,610 742,186 749,999 757,807 765,624 734,374 749,693 749,968
max (fps) 883,850 876,617 853,763 780,274 780,274 779,790 780,518 779,420
disp. (%) 6.50 15.36 12.20 2.89 1.88 5.83 3.96 3.78

5
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Our results without flow control are shown in Table III. The
difference of the median throughput between the results with
flow control (885,643fps) and without flow control
(880,381fps) is about 0.6% at 64 bytes frame size. Although this
difference decreases to 0.36% at 128 bytes, but it is about 0.8%
at 256 bytes frame size. Thus the increase of the frames size
was not enough to make the difference diminish. For the
following three standard frame sizes, this difference is about:
0.14%, 0.08%, 0.2%, and for the last two frame sizes, the
difference is deliberately less than measurement error.
Unfortunately, the dispersion of the results of the measurements
without flow control is rather high: it exceeds 15% at 128 bytes
frame size. At this point, we cannot tell whether this high
dispersion is caused by the improper timing of siitperf or
by the nature of the DUT.

V. CALIBRATION WITH A STANDARD TESTER
We have built two tests systems to determine the IPv4

routing performance of the same DUT, which was a Sun Fire
X4150 server with two Quad Core 2.83GHz Intel Xeon E5440
CPUs, four 2GB 667MHz DDR2 SDRAM modules and four
Gigabit Ethernet ports. Debian 9.11 GNU/Linux operating
system with 4.9.0-5-amd64 kernel was installed on it. The clock

frequency of all 8 CPU cores was set to fixed 2.833GHz using
the cpufreq-set command of the cpufrequtils
package.

A. Reference Measurement
To provide reference, the throughput of IPv4 Linux kernel

routing was measured using a commercial Anritsu MP1590B
Network Performance Tester. It had a four port Anritsu
MU210212A 10/100/1000M Ethernet Module, and we used
Port1 and Port2 of the module. The measurement setup is
shown in Fig. 3.

As RFC 8219 has somewhat extended the standard frame
sizes to be used for benchmarking originally defined in RFC
2544, we have chosen custom frame sizes and defined the
following frame sizes: 64, 128, 256, 512, 768,1024, 1280, 1518.

As required by RFC 8219, bidirectional traffic was used and
full 60s length trials were executed and the “Loss Tolerance”
parameter was set to 0%.

The Anritsu tester has a parameter called “Resolution”,
which can be specified as the percentage of maximum frame
rate of the media. Its smallest possible value is 0.01. As the
theoretical maximum frame rate for Gigabit Ethernet with 64
byte frame size is 1,488,095, this setting means that the

TABLE I.
IPV4 LINUX KERNEL ROUTING PERFORMANCE WITH AND WITHOUT FLOW CONTROL, DELL POWEREDGE C6220 SERVERS, FIXED 2GHZ CPU CLOCK RATE,

8 ACTIVE CPU CORES, RFC 4814 RANDOM PORT NUMBERS

mode with flow control without flow control
frame size 64 bytes 128 bytes 256 bytes 64 bytes 128 bytes 256 bytes
median (fps) 3,432,658 3,352,378 3,153,894 3,411,322 3,344,630 3,152,872
min (fps) 3,420,774 3,347,624 3,145,506 3,374,999 3,312,499 3,140,624
max (fps) 3,441,407 3,359,921 3,158,448 3,418,731 3,351,578 3,164,064
disp. (%) 0.60 0.37 0.41 1.28 1.17 0.74

TABLE II
 IPV4 LINUX KERNEL ROUTING PERFORMANCE WITH FLOW CONTROL, DELL POWEREDGE C6220 SERVERS, FIXED 2GHZ CPU CLOCK RATE, 8 ACTIVE CPU

CORES, BUT ONLY TWO OF THEM ARE USED DUE TO FIXED PORT NUMBERS

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 885,643 878,256 857,575 779,410 779,503 779,982 779,194 779,035
min (fps) 882,811 874,006 855,467 775,389 777,326 777,342 777,828 777,342
max (fps) 887,696 880,860 859,631 781,746 781,861 781,251 780,274 779,663
disp. (%) 0.55 0.78 0.49 0.82 0.58 0.50 0.31 0.30

TABLE III
IPV4 LINUX KERNEL ROUTING PERFORMANCE WITHOUT FLOW CONTROL, DELL POWEREDGE C6220 SERVERS, FIXED 2GHZ CPU CLOCK RATE, 8 ACTIVE CPU

CORES, BUT ONLY TWO OF THEM ARE USED DUE TO FIXED PORT NUMBERS

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 880,381 875,126 850,740 778,295 778,861 778,535 779,078 779,069
min (fps) 826,610 742,186 749,999 757,807 765,624 734,374 749,693 749,968
max (fps) 883,850 876,617 853,763 780,274 780,274 779,790 780,518 779,420
disp. (%) 6.50 15.36 12.20 2.89 1.88 5.83 3.96 3.78

6
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

resolution (or with other words error) of the binary search was
about 149fps (calculated as: 1,488,095/10,000).

We note that the Anritsu tester does not perform a binary
search, if the test at the “Maximum Frame Rate” is successful.
We set the value of this parameter to 100%.

By default, flow control was not enabled on the Anritsu
tester. When we enabled flow control, the Anritsu tester became
practically unusable for throughput measurements, because it
qualified all tests as successful, even if they lasted much longer
than 60s. Thus, we could use this tester for meaningful
measurements only, when flow control was disabled.

B. Measurements with Siitperf
The parameters of the DUT were the same as in the previous

case, but this time the Tester was a Dell PowerEdge R620 server
with two six core 2GHz Intel Xeon E5-2620 CPUs, two 16GB
1600MHz DDR3 SDRAM modules and with an additional Intel
I350-T4 Ethernet Server Adapter (needed for DPDK). Debian
9.11 GNU/Linux operating system with 4.9.0-11-amd64 kernel
was installed on it. The version of DPDK was 16.11.9-
1+deb9u2. As siitperf does not have version numbers yet,
we can identify its version with its latest commit number
05247a1 on Jul 1, 2020. This time, we used the master branch.

The measurement setup is shown in Fig. 4. We used the same
standard frame sizes mentioned before.

As required by RFC 8219, bidirectional traffic was used and
full 60s length trials were executed, and the “Error” of the
binary search was set to 1.

We note that as the binary-rate-alg.sh script
distributed with siitperf supports only tests for a single pre-
set frame size, with a single pre-set upper bound, we have added
a for cycle to the script with the appropriate frame sizes and
the following upper bounds for the consecutive standard frame
sizes: 1,500,000 850,000 460,000 240,000 160,000 120,000
100,000 82,000. They are wilfully somewhat higher than the
theoretical maximum frame rates for the media with the given
frame size, because we wanted to test and demonstrate how
siitperf behaves, when the maximum frame rate for the

media is achieved by the DUT. Our script performed the binary
search for all standard fame sizes starting in the interval of 0 (as
lower bound) and the above mentioned upper bound values.

Unlike with the Antritsu Tester, the log file of the DUT
showed that flow control was enabled on the interfaces used for
testing (Flow Control: Rx/Tx). We tried to switch off flow
control using the same command as with the 10G Ethernet
interfaces (ethtool -A interface rx off tx off),
which has been executed without any error message, however
flow control remained enabled.

C. Results
The Anritsu Tester reported the results in a form of a graph,

which we include in Fig. 5 to facilitate an easy overview of the
results. Except for the first two frame sizes, the throughput
achieved its theoretical maximum value. However, this
reporting format covers some very important details by
displaying only the average value of the measurement results.
Therefore, we processed the detailed result file and calculated
the median, minimum, and maximum of the 20 throughput
results for each frame size. Please see our results in Table IV.
We note that the Anritsu Tester reported the number of all

DUT

Anritsu MP1590B

Port1: 198.18.0.2

eth1: 198.18.0.1 eth2: 198.19.0.1

Port2: 198.19.0.2

1000Base-T
(direct cable)

1000Base-T
(direct cable)

Tester

Sun Fire X4150

Fig. 3. Measurement setup for IPv4 Linux kernel routing:

reference throughput test with a commercial Tester.

DUT

siitperf on a Dell server

enp5s0f0:
198.18.0.2

eth1: 198.18.0.1 eth2: 198.19.0.1

enp5s0f1:
198.19.0.2

1000Base-T
(direct cable)

1000Base-T
(direct cable)

Tester

Sun Fire X4150

Fig. 4. Measurement setup for IPv4 Linux kernel routing:

throughput test with siitperf.

Fig. 5. IPv4 Linux kernel routing performance of the Sun server:

reported by the Anritsu Tester with no flow control

6
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

resolution (or with other words error) of the binary search was
about 149fps (calculated as: 1,488,095/10,000).

We note that the Anritsu tester does not perform a binary
search, if the test at the “Maximum Frame Rate” is successful.
We set the value of this parameter to 100%.

By default, flow control was not enabled on the Anritsu
tester. When we enabled flow control, the Anritsu tester became
practically unusable for throughput measurements, because it
qualified all tests as successful, even if they lasted much longer
than 60s. Thus, we could use this tester for meaningful
measurements only, when flow control was disabled.

B. Measurements with Siitperf
The parameters of the DUT were the same as in the previous

case, but this time the Tester was a Dell PowerEdge R620 server
with two six core 2GHz Intel Xeon E5-2620 CPUs, two 16GB
1600MHz DDR3 SDRAM modules and with an additional Intel
I350-T4 Ethernet Server Adapter (needed for DPDK). Debian
9.11 GNU/Linux operating system with 4.9.0-11-amd64 kernel
was installed on it. The version of DPDK was 16.11.9-
1+deb9u2. As siitperf does not have version numbers yet,
we can identify its version with its latest commit number
05247a1 on Jul 1, 2020. This time, we used the master branch.

The measurement setup is shown in Fig. 4. We used the same
standard frame sizes mentioned before.

As required by RFC 8219, bidirectional traffic was used and
full 60s length trials were executed, and the “Error” of the
binary search was set to 1.

We note that as the binary-rate-alg.sh script
distributed with siitperf supports only tests for a single pre-
set frame size, with a single pre-set upper bound, we have added
a for cycle to the script with the appropriate frame sizes and
the following upper bounds for the consecutive standard frame
sizes: 1,500,000 850,000 460,000 240,000 160,000 120,000
100,000 82,000. They are wilfully somewhat higher than the
theoretical maximum frame rates for the media with the given
frame size, because we wanted to test and demonstrate how
siitperf behaves, when the maximum frame rate for the

media is achieved by the DUT. Our script performed the binary
search for all standard fame sizes starting in the interval of 0 (as
lower bound) and the above mentioned upper bound values.

Unlike with the Antritsu Tester, the log file of the DUT
showed that flow control was enabled on the interfaces used for
testing (Flow Control: Rx/Tx). We tried to switch off flow
control using the same command as with the 10G Ethernet
interfaces (ethtool -A interface rx off tx off),
which has been executed without any error message, however
flow control remained enabled.

C. Results
The Anritsu Tester reported the results in a form of a graph,

which we include in Fig. 5 to facilitate an easy overview of the
results. Except for the first two frame sizes, the throughput
achieved its theoretical maximum value. However, this
reporting format covers some very important details by
displaying only the average value of the measurement results.
Therefore, we processed the detailed result file and calculated
the median, minimum, and maximum of the 20 throughput
results for each frame size. Please see our results in Table IV.
We note that the Anritsu Tester reported the number of all

DUT

Anritsu MP1590B

Port1: 198.18.0.2

eth1: 198.18.0.1 eth2: 198.19.0.1

Port2: 198.19.0.2

1000Base-T
(direct cable)

1000Base-T
(direct cable)

Tester

Sun Fire X4150

Fig. 3. Measurement setup for IPv4 Linux kernel routing:

reference throughput test with a commercial Tester.

DUT

siitperf on a Dell server

enp5s0f0:
198.18.0.2

eth1: 198.18.0.1 eth2: 198.19.0.1

enp5s0f1:
198.19.0.2

1000Base-T
(direct cable)

1000Base-T
(direct cable)

Tester

Sun Fire X4150

Fig. 4. Measurement setup for IPv4 Linux kernel routing:

throughput test with siitperf.

Fig. 5. IPv4 Linux kernel routing performance of the Sun server:

reported by the Anritsu Tester with no flow control

JUNE 2021 • VOLUME XIII • NUMBER 28

INFOCOMMUNICATIONS JOURNAL

7
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

frames per second (including frames in both directions), but we
divided the results by two to report the number of frames per
second per direction. We did so to show values comparable
with the theoretical maximum frame rates given in Appendix
A.1 of RFC 5180 [19].

One of the most conspicuous things in the table is the high
dispersion of the results at 64-byte frame size. It is caused by a
single outlier. We have investigated the case in the
measurement log file, and we found that 8 frames were missing
during that step of the binary search when the target rate was
34.37%. Of course, it meant that the test failed. After that, all
tests were successful and thus the final result was 34.36%. This
single outlier does not influence the median, but it is reflected
by the minimum and, therefore, in the dispersion, too.

As for the results at 128-byte frame size, the minimum and
the maximum are nearly symmetrical around the median.

As for the results at 256-byte frame size, a single test failed
at 100% due to the loss of a few frames, therefore, binary search
was performed, which finished at 99.99%. All other tests passed
at 100% and thus no binary search was performed.

No binary search was performed at any higher frame sizes,
this is why their minimum and maximum values are equal with
their medians.

The results of the throughput measurements with
siitperf are shown in Table V. The dispersion of the results
is always below 1%, and it is practically 0 upwards from 256
bytes frame size, as the maximum frame rate for the media has
limited the throughput. As the upper limit was set higher than
the theoretical maximum frame rate for the media, siitperf
executed binary search and it measured slightly higher values.
It was possible for at least two reasons:

 As Appendix A.1 of RFC 5180 states: “Ethernet's
maximum frame rates are subject to variances due to
clock slop. The listed rates are theoretical maximums,
and actual tests should account for a +/- 100 ppm
tolerance.”

 The “TOLERANCE” parameter of siitperf was set
to 1.00001, which means that 0.001% more time is
allowed for sending.

There are two throughput values that were limited by the
CPU performance: throughput measured with 64 bytes and 128
bytes frame sizes. The differences of the results of the two test
systems are 0.06% and 0.75%, which we consider good and
acceptable, respectively.

VI. DISCUSSION AND PLANS FOR FUTURE RESEARCH
Our conditions for calibrating siitperf with a standard

tester were far from ideal. We cannot tell the maximum frame
rate, at which the CPU of the Dell PowerEdge R620 server
would be able to generate frames, but it is very likely several
million frames per second, thus the measured throughput
around 550,000 fps was not at all close to it. The technical issue
that we could use the Anritsu tester only without flow control,
whereas we could use siitperf only with flow control (in
the Gigabit Ethernet environment) makes the comparison of
their results more difficult.

We plan to purchase a NetFPGA device like the one used by
the authors of [12] and examine the inter-frame time of the
traffic generated by siitperf.

We also plan to test the accuracy of siitperf in a
10GBase-T environment with a Spirent SPT-N4U Tester used
out of courtesy for the measurements of [20].

VII. CONCLUSION
We have carefully examined, what kind of factors may

distort the measurement results of siitperf, and we set up
an error model.

We have compared the results of siitperf used with and
without Ethernet flow control in a 10GBase-T environment, and
we found that the deviation of the results was always below 1%.

We have calibrated siitperf with a commercial Tester in

TABLE IV
 IPV4 LINUX KERNEL ROUTING PERFORMANCE OF THE SUN SERVER: MEASURED BY THE ANRITSU TESTER WITHOUT FLOW CONTROL

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 548,958 526,351 452,899 234,962 158,629 119,732 96,154 81,274
min (fps) 511,310 522,720 452,853 234,962 158,629 119,732 96,154 81,274
max (fps) 553,720 529,561 452,899 234,962 158,629 119,732 96,154 81,274
disp. (%) 7.73 1.30 0.01 0.00 0.00 0.00 0.00 0.00

TABLE V
IPV4 LINUX KERNEL ROUTING PERFORMANCE OF THE SUN SERVER: MEASURED BY SIITPERF WITH FLOW CONTROL

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 549,297 522,413 452,930 234,986 158,652 119,752 96,173 81,294
min (fps) 547,850 521,285 452,926 234,986 158,650 119,752 96,173 81,294
max (fps) 550,782 524,610 452,960 234,990 158,667 119,767 96,178 81,301
disp. (%) 0.53 0.64 0.01 0.00 0.01 0.01 0.01 0.01

7
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

frames per second (including frames in both directions), but we
divided the results by two to report the number of frames per
second per direction. We did so to show values comparable
with the theoretical maximum frame rates given in Appendix
A.1 of RFC 5180 [19].

One of the most conspicuous things in the table is the high
dispersion of the results at 64-byte frame size. It is caused by a
single outlier. We have investigated the case in the
measurement log file, and we found that 8 frames were missing
during that step of the binary search when the target rate was
34.37%. Of course, it meant that the test failed. After that, all
tests were successful and thus the final result was 34.36%. This
single outlier does not influence the median, but it is reflected
by the minimum and, therefore, in the dispersion, too.

As for the results at 128-byte frame size, the minimum and
the maximum are nearly symmetrical around the median.

As for the results at 256-byte frame size, a single test failed
at 100% due to the loss of a few frames, therefore, binary search
was performed, which finished at 99.99%. All other tests passed
at 100% and thus no binary search was performed.

No binary search was performed at any higher frame sizes,
this is why their minimum and maximum values are equal with
their medians.

The results of the throughput measurements with
siitperf are shown in Table V. The dispersion of the results
is always below 1%, and it is practically 0 upwards from 256
bytes frame size, as the maximum frame rate for the media has
limited the throughput. As the upper limit was set higher than
the theoretical maximum frame rate for the media, siitperf
executed binary search and it measured slightly higher values.
It was possible for at least two reasons:

 As Appendix A.1 of RFC 5180 states: “Ethernet's
maximum frame rates are subject to variances due to
clock slop. The listed rates are theoretical maximums,
and actual tests should account for a +/- 100 ppm
tolerance.”

 The “TOLERANCE” parameter of siitperf was set
to 1.00001, which means that 0.001% more time is
allowed for sending.

There are two throughput values that were limited by the
CPU performance: throughput measured with 64 bytes and 128
bytes frame sizes. The differences of the results of the two test
systems are 0.06% and 0.75%, which we consider good and
acceptable, respectively.

VI. DISCUSSION AND PLANS FOR FUTURE RESEARCH
Our conditions for calibrating siitperf with a standard

tester were far from ideal. We cannot tell the maximum frame
rate, at which the CPU of the Dell PowerEdge R620 server
would be able to generate frames, but it is very likely several
million frames per second, thus the measured throughput
around 550,000 fps was not at all close to it. The technical issue
that we could use the Anritsu tester only without flow control,
whereas we could use siitperf only with flow control (in
the Gigabit Ethernet environment) makes the comparison of
their results more difficult.

We plan to purchase a NetFPGA device like the one used by
the authors of [12] and examine the inter-frame time of the
traffic generated by siitperf.

We also plan to test the accuracy of siitperf in a
10GBase-T environment with a Spirent SPT-N4U Tester used
out of courtesy for the measurements of [20].

VII. CONCLUSION
We have carefully examined, what kind of factors may

distort the measurement results of siitperf, and we set up
an error model.

We have compared the results of siitperf used with and
without Ethernet flow control in a 10GBase-T environment, and
we found that the deviation of the results was always below 1%.

We have calibrated siitperf with a commercial Tester in

TABLE IV
 IPV4 LINUX KERNEL ROUTING PERFORMANCE OF THE SUN SERVER: MEASURED BY THE ANRITSU TESTER WITHOUT FLOW CONTROL

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 548,958 526,351 452,899 234,962 158,629 119,732 96,154 81,274
min (fps) 511,310 522,720 452,853 234,962 158,629 119,732 96,154 81,274
max (fps) 553,720 529,561 452,899 234,962 158,629 119,732 96,154 81,274
disp. (%) 7.73 1.30 0.01 0.00 0.00 0.00 0.00 0.00

TABLE V
IPV4 LINUX KERNEL ROUTING PERFORMANCE OF THE SUN SERVER: MEASURED BY SIITPERF WITH FLOW CONTROL

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 549,297 522,413 452,930 234,986 158,652 119,752 96,173 81,294
min (fps) 547,850 521,285 452,926 234,986 158,650 119,752 96,173 81,294
max (fps) 550,782 524,610 452,960 234,990 158,667 119,767 96,178 81,301
disp. (%) 0.53 0.64 0.01 0.00 0.01 0.01 0.01 0.01

7
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

frames per second (including frames in both directions), but we
divided the results by two to report the number of frames per
second per direction. We did so to show values comparable
with the theoretical maximum frame rates given in Appendix
A.1 of RFC 5180 [19].

One of the most conspicuous things in the table is the high
dispersion of the results at 64-byte frame size. It is caused by a
single outlier. We have investigated the case in the
measurement log file, and we found that 8 frames were missing
during that step of the binary search when the target rate was
34.37%. Of course, it meant that the test failed. After that, all
tests were successful and thus the final result was 34.36%. This
single outlier does not influence the median, but it is reflected
by the minimum and, therefore, in the dispersion, too.

As for the results at 128-byte frame size, the minimum and
the maximum are nearly symmetrical around the median.

As for the results at 256-byte frame size, a single test failed
at 100% due to the loss of a few frames, therefore, binary search
was performed, which finished at 99.99%. All other tests passed
at 100% and thus no binary search was performed.

No binary search was performed at any higher frame sizes,
this is why their minimum and maximum values are equal with
their medians.

The results of the throughput measurements with
siitperf are shown in Table V. The dispersion of the results
is always below 1%, and it is practically 0 upwards from 256
bytes frame size, as the maximum frame rate for the media has
limited the throughput. As the upper limit was set higher than
the theoretical maximum frame rate for the media, siitperf
executed binary search and it measured slightly higher values.
It was possible for at least two reasons:

 As Appendix A.1 of RFC 5180 states: “Ethernet's
maximum frame rates are subject to variances due to
clock slop. The listed rates are theoretical maximums,
and actual tests should account for a +/- 100 ppm
tolerance.”

 The “TOLERANCE” parameter of siitperf was set
to 1.00001, which means that 0.001% more time is
allowed for sending.

There are two throughput values that were limited by the
CPU performance: throughput measured with 64 bytes and 128
bytes frame sizes. The differences of the results of the two test
systems are 0.06% and 0.75%, which we consider good and
acceptable, respectively.

VI. DISCUSSION AND PLANS FOR FUTURE RESEARCH
Our conditions for calibrating siitperf with a standard

tester were far from ideal. We cannot tell the maximum frame
rate, at which the CPU of the Dell PowerEdge R620 server
would be able to generate frames, but it is very likely several
million frames per second, thus the measured throughput
around 550,000 fps was not at all close to it. The technical issue
that we could use the Anritsu tester only without flow control,
whereas we could use siitperf only with flow control (in
the Gigabit Ethernet environment) makes the comparison of
their results more difficult.

We plan to purchase a NetFPGA device like the one used by
the authors of [12] and examine the inter-frame time of the
traffic generated by siitperf.

We also plan to test the accuracy of siitperf in a
10GBase-T environment with a Spirent SPT-N4U Tester used
out of courtesy for the measurements of [20].

VII. CONCLUSION
We have carefully examined, what kind of factors may

distort the measurement results of siitperf, and we set up
an error model.

We have compared the results of siitperf used with and
without Ethernet flow control in a 10GBase-T environment, and
we found that the deviation of the results was always below 1%.

We have calibrated siitperf with a commercial Tester in

TABLE IV
 IPV4 LINUX KERNEL ROUTING PERFORMANCE OF THE SUN SERVER: MEASURED BY THE ANRITSU TESTER WITHOUT FLOW CONTROL

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 548,958 526,351 452,899 234,962 158,629 119,732 96,154 81,274
min (fps) 511,310 522,720 452,853 234,962 158,629 119,732 96,154 81,274
max (fps) 553,720 529,561 452,899 234,962 158,629 119,732 96,154 81,274
disp. (%) 7.73 1.30 0.01 0.00 0.00 0.00 0.00 0.00

TABLE V
IPV4 LINUX KERNEL ROUTING PERFORMANCE OF THE SUN SERVER: MEASURED BY SIITPERF WITH FLOW CONTROL

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 549,297 522,413 452,930 234,986 158,652 119,752 96,173 81,294
min (fps) 547,850 521,285 452,926 234,986 158,650 119,752 96,173 81,294
max (fps) 550,782 524,610 452,960 234,990 158,667 119,767 96,178 81,301
disp. (%) 0.53 0.64 0.01 0.00 0.01 0.01 0.01 0.01

7
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

frames per second (including frames in both directions), but we
divided the results by two to report the number of frames per
second per direction. We did so to show values comparable
with the theoretical maximum frame rates given in Appendix
A.1 of RFC 5180 [19].

One of the most conspicuous things in the table is the high
dispersion of the results at 64-byte frame size. It is caused by a
single outlier. We have investigated the case in the
measurement log file, and we found that 8 frames were missing
during that step of the binary search when the target rate was
34.37%. Of course, it meant that the test failed. After that, all
tests were successful and thus the final result was 34.36%. This
single outlier does not influence the median, but it is reflected
by the minimum and, therefore, in the dispersion, too.

As for the results at 128-byte frame size, the minimum and
the maximum are nearly symmetrical around the median.

As for the results at 256-byte frame size, a single test failed
at 100% due to the loss of a few frames, therefore, binary search
was performed, which finished at 99.99%. All other tests passed
at 100% and thus no binary search was performed.

No binary search was performed at any higher frame sizes,
this is why their minimum and maximum values are equal with
their medians.

The results of the throughput measurements with
siitperf are shown in Table V. The dispersion of the results
is always below 1%, and it is practically 0 upwards from 256
bytes frame size, as the maximum frame rate for the media has
limited the throughput. As the upper limit was set higher than
the theoretical maximum frame rate for the media, siitperf
executed binary search and it measured slightly higher values.
It was possible for at least two reasons:

 As Appendix A.1 of RFC 5180 states: “Ethernet's
maximum frame rates are subject to variances due to
clock slop. The listed rates are theoretical maximums,
and actual tests should account for a +/- 100 ppm
tolerance.”

 The “TOLERANCE” parameter of siitperf was set
to 1.00001, which means that 0.001% more time is
allowed for sending.

There are two throughput values that were limited by the
CPU performance: throughput measured with 64 bytes and 128
bytes frame sizes. The differences of the results of the two test
systems are 0.06% and 0.75%, which we consider good and
acceptable, respectively.

VI. DISCUSSION AND PLANS FOR FUTURE RESEARCH
Our conditions for calibrating siitperf with a standard

tester were far from ideal. We cannot tell the maximum frame
rate, at which the CPU of the Dell PowerEdge R620 server
would be able to generate frames, but it is very likely several
million frames per second, thus the measured throughput
around 550,000 fps was not at all close to it. The technical issue
that we could use the Anritsu tester only without flow control,
whereas we could use siitperf only with flow control (in
the Gigabit Ethernet environment) makes the comparison of
their results more difficult.

We plan to purchase a NetFPGA device like the one used by
the authors of [12] and examine the inter-frame time of the
traffic generated by siitperf.

We also plan to test the accuracy of siitperf in a
10GBase-T environment with a Spirent SPT-N4U Tester used
out of courtesy for the measurements of [20].

VII. CONCLUSION
We have carefully examined, what kind of factors may

distort the measurement results of siitperf, and we set up
an error model.

We have compared the results of siitperf used with and
without Ethernet flow control in a 10GBase-T environment, and
we found that the deviation of the results was always below 1%.

We have calibrated siitperf with a commercial Tester in

TABLE IV
 IPV4 LINUX KERNEL ROUTING PERFORMANCE OF THE SUN SERVER: MEASURED BY THE ANRITSU TESTER WITHOUT FLOW CONTROL

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 548,958 526,351 452,899 234,962 158,629 119,732 96,154 81,274
min (fps) 511,310 522,720 452,853 234,962 158,629 119,732 96,154 81,274
max (fps) 553,720 529,561 452,899 234,962 158,629 119,732 96,154 81,274
disp. (%) 7.73 1.30 0.01 0.00 0.00 0.00 0.00 0.00

TABLE V
IPV4 LINUX KERNEL ROUTING PERFORMANCE OF THE SUN SERVER: MEASURED BY SIITPERF WITH FLOW CONTROL

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 549,297 522,413 452,930 234,986 158,652 119,752 96,173 81,294
min (fps) 547,850 521,285 452,926 234,986 158,650 119,752 96,173 81,294
max (fps) 550,782 524,610 452,960 234,990 158,667 119,767 96,178 81,301
disp. (%) 0.53 0.64 0.01 0.00 0.01 0.01 0.01 0.01

7
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

frames per second (including frames in both directions), but we
divided the results by two to report the number of frames per
second per direction. We did so to show values comparable
with the theoretical maximum frame rates given in Appendix
A.1 of RFC 5180 [19].

One of the most conspicuous things in the table is the high
dispersion of the results at 64-byte frame size. It is caused by a
single outlier. We have investigated the case in the
measurement log file, and we found that 8 frames were missing
during that step of the binary search when the target rate was
34.37%. Of course, it meant that the test failed. After that, all
tests were successful and thus the final result was 34.36%. This
single outlier does not influence the median, but it is reflected
by the minimum and, therefore, in the dispersion, too.

As for the results at 128-byte frame size, the minimum and
the maximum are nearly symmetrical around the median.

As for the results at 256-byte frame size, a single test failed
at 100% due to the loss of a few frames, therefore, binary search
was performed, which finished at 99.99%. All other tests passed
at 100% and thus no binary search was performed.

No binary search was performed at any higher frame sizes,
this is why their minimum and maximum values are equal with
their medians.

The results of the throughput measurements with
siitperf are shown in Table V. The dispersion of the results
is always below 1%, and it is practically 0 upwards from 256
bytes frame size, as the maximum frame rate for the media has
limited the throughput. As the upper limit was set higher than
the theoretical maximum frame rate for the media, siitperf
executed binary search and it measured slightly higher values.
It was possible for at least two reasons:

 As Appendix A.1 of RFC 5180 states: “Ethernet's
maximum frame rates are subject to variances due to
clock slop. The listed rates are theoretical maximums,
and actual tests should account for a +/- 100 ppm
tolerance.”

 The “TOLERANCE” parameter of siitperf was set
to 1.00001, which means that 0.001% more time is
allowed for sending.

There are two throughput values that were limited by the
CPU performance: throughput measured with 64 bytes and 128
bytes frame sizes. The differences of the results of the two test
systems are 0.06% and 0.75%, which we consider good and
acceptable, respectively.

VI. DISCUSSION AND PLANS FOR FUTURE RESEARCH
Our conditions for calibrating siitperf with a standard

tester were far from ideal. We cannot tell the maximum frame
rate, at which the CPU of the Dell PowerEdge R620 server
would be able to generate frames, but it is very likely several
million frames per second, thus the measured throughput
around 550,000 fps was not at all close to it. The technical issue
that we could use the Anritsu tester only without flow control,
whereas we could use siitperf only with flow control (in
the Gigabit Ethernet environment) makes the comparison of
their results more difficult.

We plan to purchase a NetFPGA device like the one used by
the authors of [12] and examine the inter-frame time of the
traffic generated by siitperf.

We also plan to test the accuracy of siitperf in a
10GBase-T environment with a Spirent SPT-N4U Tester used
out of courtesy for the measurements of [20].

VII. CONCLUSION
We have carefully examined, what kind of factors may

distort the measurement results of siitperf, and we set up
an error model.

We have compared the results of siitperf used with and
without Ethernet flow control in a 10GBase-T environment, and
we found that the deviation of the results was always below 1%.

We have calibrated siitperf with a commercial Tester in

TABLE IV
 IPV4 LINUX KERNEL ROUTING PERFORMANCE OF THE SUN SERVER: MEASURED BY THE ANRITSU TESTER WITHOUT FLOW CONTROL

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 548,958 526,351 452,899 234,962 158,629 119,732 96,154 81,274
min (fps) 511,310 522,720 452,853 234,962 158,629 119,732 96,154 81,274
max (fps) 553,720 529,561 452,899 234,962 158,629 119,732 96,154 81,274
disp. (%) 7.73 1.30 0.01 0.00 0.00 0.00 0.00 0.00

TABLE V
IPV4 LINUX KERNEL ROUTING PERFORMANCE OF THE SUN SERVER: MEASURED BY SIITPERF WITH FLOW CONTROL

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 549,297 522,413 452,930 234,986 158,652 119,752 96,173 81,294
min (fps) 547,850 521,285 452,926 234,986 158,650 119,752 96,173 81,294
max (fps) 550,782 524,610 452,960 234,990 158,667 119,767 96,178 81,301
disp. (%) 0.53 0.64 0.01 0.00 0.01 0.01 0.01 0.01

8
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

a Gigabit Ethernet environment, and we found that the
deviation of the results was below 1%.

We conclude that it is necessary to calibrate siitperf also
in a 10GBase-T environment and we plan to do so.

ACKNOWLEDGEMENTS

The measurements for the investigation of the effect of
Ethernet flow control were carried out by remotely using the
resources of NICT StarBED, 2-12 Asahidai, Nomi-City,
Ishikawa 923-1211, Japan. The author would like to thank
Shuuhei Takimoto for the possibility to use StarBED, as well as
to Satoru Gonno and Miku Takuma for their help and advice in
StarBED usage related issues.

The author thanks the National Media and
Infocommunications Authority (NMHH) of Hungary for
lending us the Anritsu MP1590B Network Performance Tester.
The author thanks István Pilisi, NMHH, for his support how to
use the device.

The author thanks István Pilisi and Alexandru Moise for
reading and commenting the manuscript.

REFERENCES
[1] M. Georgescu, L. Pislaru, G. Lencse, “Benchmarking

methodology for IPv6 transition technologies”, IETF RFC 8219,
2017. DOI: 10.17487/rfc8219

[2] G. Lencse and Y. Kadobayashi, “Comprehensive survey of IPv6
transition technologies: A subjective classification for security
analysis”, IEICE Transactions on Communications, vol. E102-B,
no 10, pp. 2021–2035. DOI: 10.1587/transcom.2018ebr0002

[3] G. Lencse, “Design and implementation of a software tester for
benchmarking stateless NAT64 gateways”, IEICE Transactions
on Communications, vol. E104-B, no. 2, pp. 128-140. DOI:
10.1587/transcom.2019ebn0010

[4] C. Bao, X. Li, et al., IP/ICMP translation algorithm, IETF RFC
7915, DOI: 10.17487/rfc7915

[5] D. Scholz, “A look at Intel’s dataplane development kit”, Proc.
Seminars Future Internet (FI) and Innovative Internet
Technologies and Mobile Communications (IITM), Munich,
2014, pp. 115–122. DOI: 10.2313/NET-2014-08-1_15

[6] G. Lencse, Siitperf: An RFC 8219 compliant SIIT (stateless
NAT64) tester, free software under GPLv3 license, [Online]
Available: https://github.com/lencsegabor/siitperf

[7] G. Lencse, Benchmarking methodology for IPv6 transition
technologies, IIJ Lab seminar, Tokyo, Oct. 10, 2017. [Online]
Available: https://seminar-materials.iijlab.net/iijlab-
seminar/iijlab-seminar-20171010.pdf

[8] S. Bradner, J. McQuaid, Benchmarking methodology for network
interconnect devices, IETF RFC 2544, 1999. DOI:
10.17487/rfc2544

[9] D. Raumer, S. Gallenmüller, et al., “Revisiting Benchmarking
Methodology for Interconnect Devices”, Proc. 2016 Applied
Networking Research Workshop (ANRW’16), Berlin, 2016. DOI:
10.1145/2959424.2959430

[10] K. Velásquez and E. Gamess, “A survey of network benchmark
tools”, in: Machine Learning and Systems Engineering, Springer,
Dordrecht, 2010, pp. 465–480. DOI: 10.1007/978-90-481-9419-
3_36

[11] Intel, Intel 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2B: Instruction Set Reference, M-U, Order

Number: 253667-060US, 2016. [Online] Available:
https://www.intel.com/content/dam/www/public/us/en/document
s/manuals/64-ia-32-architectures-software-developer-vol-2b-
manual.pdf

[12] P. Emmerich, S. Gallenmüller, et al., Mind the gap - A
comparison of software packet generators, Proc. 2017
ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), Beijing, China, 2017. DOI
10.1109/ancs.2017.32

[13] G. Lencse, D. Bakai, “Design and implementation of a test
program for benchmarking DNS64 servers”, IEICE Transactions
on Communications, vol. E100-B, no. 6, pp. 948–954. DOI:
10.1587/transcom.2016EBN0007

[14] G. Lencse and A. Pivoda, “Checking and increasing the accuracy
of the dns64perf++ measurement tool for benchmarking DNS64
servers”, International Journal of Advances in
Telecommunications, Electrotechnics, Signals and Systems, vol.
7, no 1, pp. 10–16. DOI: 10.11601/ijates.v7i1.255

[15] G. Lencse, K. Shima, “Performance Analysis of SIIT
Implementations: Testing and Improving the Methodology”,
Computer Communications, vol. 156, no. 1, pp. 54–67. DOI:
10.1016/j.comcom.2020.03.034

[16] G. Lencse, “Adding RFC 4814 random port feature to siitperf:
Design, implementation and performance estimation”,
International Journal of Advances in Telecommunications,
Electrotechnics, Signals and Systems, vol. 9, no. 3, pp. 18–26.
DOI: 10.11601/ijates.v9i3.291

[17] D. Newman, T. Player, “Hash and stuffing: Overlooked factors in
network device benchmarking”, IETF RFC 4814, 2008. DOI:
10.17487/RFC4814

[18] G. Lencse and Y. Kadobayashi, “Benchmarking DNS64
Implementations: Theory and Practice”, Computer
Communications, vol. 127, no. 1, pp. 61–74. DOI:
10.1016/j.comcom.2018.05.005

[19] C. Popoviciu, A. Hamza, et al., “IPv6 benchmarking
methodology for network interconnect devices”, IETF RFC 5180,
2008. DOI: 10.17487/rfc5180

[20] G. Lencse, “Benchmarking Stateless NAT64 Implementations
with a Standard Tester”, Telecommunication Systems, vol. 75, no.
3, pp. 245–257. DOI: 10.1007/s11235-020-00681-x

Gábor Lencse received his MSc and
PhD in computer science from the
Budapest University of Technology and
Economics, Budapest, Hungary in 1994
and 2001, respectively.

He has been working full time for the
Department of Telecommunications,
Széchenyi István University, Győr,
Hungary since 1997. Now, he is a

Professor. He has been working part time for the Department of
Networked Systems and Services, Budapest University of
Technology and Economics, Budapest, Hungary as a Senior
Research Fellow since 2005. The main area of his research is
the performance and security analysis of IPv6 transition
technologies. He is a co-author of RFC 8219.

Dr. Lencse is a member of IEICE (Institute of Electronics,
Information and Communication Engineers, Japan).

Checking the Accuracy of Siitperf

INFOCOMMUNICATIONS JOURNAL

JUNE 2021 • VOLUME XIII • NUMBER 2 9

RefeRences

 [1] M. Georgescu, L. Pislaru, G. Lencse, “Benchmarking methodology for
IPv6 transition technologies”, IETF RFC 8219, 2017.

 doi: 10.17487/rfc8219
 [2] G. Lencse and Y. Kadobayashi, “Comprehensive survey of IPv6

transition technologies: A subjective classification for security
analysis”, IEICE Transactions on Communications, vol. E102-B, no
10, pp. 2021–2035. doi: 10.1587/transcom.2018ebr0002

 [3] G. Lencse, “Design and implementation of a software tester for
benchmarking stateless NAT64 gateways”, IEICE Transactions on
Communications, vol. E104-B, no. 2, pp. 128-140.

 doi: 10.1587/transcom.2019ebn0010
 [4] C. Bao, X. Li, et al., IP/ICMP translation algorithm, IETF RFC 7915,

doi: 10.17487/rfc7915
 [5] D. Scholz, “A look at Intel’s dataplane development kit”, Proc. Seminars

Future Internet (FI) and Innovative Internet Technologies and Mobile
Communications (IITM), Munich, 2014, pp. 115–122.

 doi: 10.2313/NET-2014-08-1_15
 [6] G. Lencse, Siitperf: An RFC 8219 compliant SIIT (stateless NAT64)

tester, free software under GPLv3 license, [Online] Available:
https://github.com/lencsegabor/siitperf

 [7] G. Lencse, Benchmarking methodology for IPv6 transition technologies,
IIJ Lab seminar, Tokyo, Oct. 10, 2017. [Online] Available: https://
seminar-materials.iijlab.net/iijlab-seminar/iijlab-seminar-20171010.pdf

 [8] S. Bradner, J. McQuaid, Benchmarking methodology for network
interconnect devices, IETF RFC 2544, 1999. doi: 10.17487/rfc2544

 [9] D. Raumer, S. Gallenmüller, et al., “Revisiting Benchmarking
Methodology for Interconnect Devices”, Proc. 2016 Applied
Networking Research Workshop (ANRW’16), Berlin, 2016.

 doi: 10.1145/2959424.2959430

8
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

a Gigabit Ethernet environment, and we found that the
deviation of the results was below 1%.

We conclude that it is necessary to calibrate siitperf also
in a 10GBase-T environment and we plan to do so.

ACKNOWLEDGEMENTS

The measurements for the investigation of the effect of
Ethernet flow control were carried out by remotely using the
resources of NICT StarBED, 2-12 Asahidai, Nomi-City,
Ishikawa 923-1211, Japan. The author would like to thank
Shuuhei Takimoto for the possibility to use StarBED, as well as
to Satoru Gonno and Miku Takuma for their help and advice in
StarBED usage related issues.

The author thanks the National Media and
Infocommunications Authority (NMHH) of Hungary for
lending us the Anritsu MP1590B Network Performance Tester.
The author thanks István Pilisi, NMHH, for his support how to
use the device.

The author thanks István Pilisi and Alexandru Moise for
reading and commenting the manuscript.

REFERENCES
[1] M. Georgescu, L. Pislaru, G. Lencse, “Benchmarking

methodology for IPv6 transition technologies”, IETF RFC 8219,
2017. DOI: 10.17487/rfc8219

[2] G. Lencse and Y. Kadobayashi, “Comprehensive survey of IPv6
transition technologies: A subjective classification for security
analysis”, IEICE Transactions on Communications, vol. E102-B,
no 10, pp. 2021–2035. DOI: 10.1587/transcom.2018ebr0002

[3] G. Lencse, “Design and implementation of a software tester for
benchmarking stateless NAT64 gateways”, IEICE Transactions
on Communications, vol. E104-B, no. 2, pp. 128-140. DOI:
10.1587/transcom.2019ebn0010

[4] C. Bao, X. Li, et al., IP/ICMP translation algorithm, IETF RFC
7915, DOI: 10.17487/rfc7915

[5] D. Scholz, “A look at Intel’s dataplane development kit”, Proc.
Seminars Future Internet (FI) and Innovative Internet
Technologies and Mobile Communications (IITM), Munich,
2014, pp. 115–122. DOI: 10.2313/NET-2014-08-1_15

[6] G. Lencse, Siitperf: An RFC 8219 compliant SIIT (stateless
NAT64) tester, free software under GPLv3 license, [Online]
Available: https://github.com/lencsegabor/siitperf

[7] G. Lencse, Benchmarking methodology for IPv6 transition
technologies, IIJ Lab seminar, Tokyo, Oct. 10, 2017. [Online]
Available: https://seminar-materials.iijlab.net/iijlab-
seminar/iijlab-seminar-20171010.pdf

[8] S. Bradner, J. McQuaid, Benchmarking methodology for network
interconnect devices, IETF RFC 2544, 1999. DOI:
10.17487/rfc2544

[9] D. Raumer, S. Gallenmüller, et al., “Revisiting Benchmarking
Methodology for Interconnect Devices”, Proc. 2016 Applied
Networking Research Workshop (ANRW’16), Berlin, 2016. DOI:
10.1145/2959424.2959430

[10] K. Velásquez and E. Gamess, “A survey of network benchmark
tools”, in: Machine Learning and Systems Engineering, Springer,
Dordrecht, 2010, pp. 465–480. DOI: 10.1007/978-90-481-9419-
3_36

[11] Intel, Intel 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2B: Instruction Set Reference, M-U, Order

Number: 253667-060US, 2016. [Online] Available:
https://www.intel.com/content/dam/www/public/us/en/document
s/manuals/64-ia-32-architectures-software-developer-vol-2b-
manual.pdf

[12] P. Emmerich, S. Gallenmüller, et al., Mind the gap - A
comparison of software packet generators, Proc. 2017
ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), Beijing, China, 2017. DOI
10.1109/ancs.2017.32

[13] G. Lencse, D. Bakai, “Design and implementation of a test
program for benchmarking DNS64 servers”, IEICE Transactions
on Communications, vol. E100-B, no. 6, pp. 948–954. DOI:
10.1587/transcom.2016EBN0007

[14] G. Lencse and A. Pivoda, “Checking and increasing the accuracy
of the dns64perf++ measurement tool for benchmarking DNS64
servers”, International Journal of Advances in
Telecommunications, Electrotechnics, Signals and Systems, vol.
7, no 1, pp. 10–16. DOI: 10.11601/ijates.v7i1.255

[15] G. Lencse, K. Shima, “Performance Analysis of SIIT
Implementations: Testing and Improving the Methodology”,
Computer Communications, vol. 156, no. 1, pp. 54–67. DOI:
10.1016/j.comcom.2020.03.034

[16] G. Lencse, “Adding RFC 4814 random port feature to siitperf:
Design, implementation and performance estimation”,
International Journal of Advances in Telecommunications,
Electrotechnics, Signals and Systems, vol. 9, no. 3, pp. 18–26.
DOI: 10.11601/ijates.v9i3.291

[17] D. Newman, T. Player, “Hash and stuffing: Overlooked factors in
network device benchmarking”, IETF RFC 4814, 2008. DOI:
10.17487/RFC4814

[18] G. Lencse and Y. Kadobayashi, “Benchmarking DNS64
Implementations: Theory and Practice”, Computer
Communications, vol. 127, no. 1, pp. 61–74. DOI:
10.1016/j.comcom.2018.05.005

[19] C. Popoviciu, A. Hamza, et al., “IPv6 benchmarking
methodology for network interconnect devices”, IETF RFC 5180,
2008. DOI: 10.17487/rfc5180

[20] G. Lencse, “Benchmarking Stateless NAT64 Implementations
with a Standard Tester”, Telecommunication Systems, vol. 75, no.
3, pp. 245–257. DOI: 10.1007/s11235-020-00681-x

Gábor Lencse received his MSc and
PhD in computer science from the
Budapest University of Technology and
Economics, Budapest, Hungary in 1994
and 2001, respectively.

He has been working full time for the
Department of Telecommunications,
Széchenyi István University, Győr,
Hungary since 1997. Now, he is a

Professor. He has been working part time for the Department of
Networked Systems and Services, Budapest University of
Technology and Economics, Budapest, Hungary as a Senior
Research Fellow since 2005. The main area of his research is
the performance and security analysis of IPv6 transition
technologies. He is a co-author of RFC 8219.

Dr. Lencse is a member of IEICE (Institute of Electronics,
Information and Communication Engineers, Japan).

7
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

frames per second (including frames in both directions), but we
divided the results by two to report the number of frames per
second per direction. We did so to show values comparable
with the theoretical maximum frame rates given in Appendix
A.1 of RFC 5180 [19].

One of the most conspicuous things in the table is the high
dispersion of the results at 64-byte frame size. It is caused by a
single outlier. We have investigated the case in the
measurement log file, and we found that 8 frames were missing
during that step of the binary search when the target rate was
34.37%. Of course, it meant that the test failed. After that, all
tests were successful and thus the final result was 34.36%. This
single outlier does not influence the median, but it is reflected
by the minimum and, therefore, in the dispersion, too.

As for the results at 128-byte frame size, the minimum and
the maximum are nearly symmetrical around the median.

As for the results at 256-byte frame size, a single test failed
at 100% due to the loss of a few frames, therefore, binary search
was performed, which finished at 99.99%. All other tests passed
at 100% and thus no binary search was performed.

No binary search was performed at any higher frame sizes,
this is why their minimum and maximum values are equal with
their medians.

The results of the throughput measurements with
siitperf are shown in Table V. The dispersion of the results
is always below 1%, and it is practically 0 upwards from 256
bytes frame size, as the maximum frame rate for the media has
limited the throughput. As the upper limit was set higher than
the theoretical maximum frame rate for the media, siitperf
executed binary search and it measured slightly higher values.
It was possible for at least two reasons:

 As Appendix A.1 of RFC 5180 states: “Ethernet's
maximum frame rates are subject to variances due to
clock slop. The listed rates are theoretical maximums,
and actual tests should account for a +/- 100 ppm
tolerance.”

 The “TOLERANCE” parameter of siitperf was set
to 1.00001, which means that 0.001% more time is
allowed for sending.

There are two throughput values that were limited by the
CPU performance: throughput measured with 64 bytes and 128
bytes frame sizes. The differences of the results of the two test
systems are 0.06% and 0.75%, which we consider good and
acceptable, respectively.

VI. DISCUSSION AND PLANS FOR FUTURE RESEARCH
Our conditions for calibrating siitperf with a standard

tester were far from ideal. We cannot tell the maximum frame
rate, at which the CPU of the Dell PowerEdge R620 server
would be able to generate frames, but it is very likely several
million frames per second, thus the measured throughput
around 550,000 fps was not at all close to it. The technical issue
that we could use the Anritsu tester only without flow control,
whereas we could use siitperf only with flow control (in
the Gigabit Ethernet environment) makes the comparison of
their results more difficult.

We plan to purchase a NetFPGA device like the one used by
the authors of [12] and examine the inter-frame time of the
traffic generated by siitperf.

We also plan to test the accuracy of siitperf in a
10GBase-T environment with a Spirent SPT-N4U Tester used
out of courtesy for the measurements of [20].

VII. CONCLUSION
We have carefully examined, what kind of factors may

distort the measurement results of siitperf, and we set up
an error model.

We have compared the results of siitperf used with and
without Ethernet flow control in a 10GBase-T environment, and
we found that the deviation of the results was always below 1%.

We have calibrated siitperf with a commercial Tester in

TABLE IV
 IPV4 LINUX KERNEL ROUTING PERFORMANCE OF THE SUN SERVER: MEASURED BY THE ANRITSU TESTER WITHOUT FLOW CONTROL

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 548,958 526,351 452,899 234,962 158,629 119,732 96,154 81,274
min (fps) 511,310 522,720 452,853 234,962 158,629 119,732 96,154 81,274
max (fps) 553,720 529,561 452,899 234,962 158,629 119,732 96,154 81,274
disp. (%) 7.73 1.30 0.01 0.00 0.00 0.00 0.00 0.00

TABLE V
IPV4 LINUX KERNEL ROUTING PERFORMANCE OF THE SUN SERVER: MEASURED BY SIITPERF WITH FLOW CONTROL

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 549,297 522,413 452,930 234,986 158,652 119,752 96,173 81,294
min (fps) 547,850 521,285 452,926 234,986 158,650 119,752 96,173 81,294
max (fps) 550,782 524,610 452,960 234,990 158,667 119,767 96,178 81,301
disp. (%) 0.53 0.64 0.01 0.00 0.01 0.01 0.01 0.01

7
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

frames per second (including frames in both directions), but we
divided the results by two to report the number of frames per
second per direction. We did so to show values comparable
with the theoretical maximum frame rates given in Appendix
A.1 of RFC 5180 [19].

One of the most conspicuous things in the table is the high
dispersion of the results at 64-byte frame size. It is caused by a
single outlier. We have investigated the case in the
measurement log file, and we found that 8 frames were missing
during that step of the binary search when the target rate was
34.37%. Of course, it meant that the test failed. After that, all
tests were successful and thus the final result was 34.36%. This
single outlier does not influence the median, but it is reflected
by the minimum and, therefore, in the dispersion, too.

As for the results at 128-byte frame size, the minimum and
the maximum are nearly symmetrical around the median.

As for the results at 256-byte frame size, a single test failed
at 100% due to the loss of a few frames, therefore, binary search
was performed, which finished at 99.99%. All other tests passed
at 100% and thus no binary search was performed.

No binary search was performed at any higher frame sizes,
this is why their minimum and maximum values are equal with
their medians.

The results of the throughput measurements with
siitperf are shown in Table V. The dispersion of the results
is always below 1%, and it is practically 0 upwards from 256
bytes frame size, as the maximum frame rate for the media has
limited the throughput. As the upper limit was set higher than
the theoretical maximum frame rate for the media, siitperf
executed binary search and it measured slightly higher values.
It was possible for at least two reasons:

 As Appendix A.1 of RFC 5180 states: “Ethernet's
maximum frame rates are subject to variances due to
clock slop. The listed rates are theoretical maximums,
and actual tests should account for a +/- 100 ppm
tolerance.”

 The “TOLERANCE” parameter of siitperf was set
to 1.00001, which means that 0.001% more time is
allowed for sending.

There are two throughput values that were limited by the
CPU performance: throughput measured with 64 bytes and 128
bytes frame sizes. The differences of the results of the two test
systems are 0.06% and 0.75%, which we consider good and
acceptable, respectively.

VI. DISCUSSION AND PLANS FOR FUTURE RESEARCH
Our conditions for calibrating siitperf with a standard

tester were far from ideal. We cannot tell the maximum frame
rate, at which the CPU of the Dell PowerEdge R620 server
would be able to generate frames, but it is very likely several
million frames per second, thus the measured throughput
around 550,000 fps was not at all close to it. The technical issue
that we could use the Anritsu tester only without flow control,
whereas we could use siitperf only with flow control (in
the Gigabit Ethernet environment) makes the comparison of
their results more difficult.

We plan to purchase a NetFPGA device like the one used by
the authors of [12] and examine the inter-frame time of the
traffic generated by siitperf.

We also plan to test the accuracy of siitperf in a
10GBase-T environment with a Spirent SPT-N4U Tester used
out of courtesy for the measurements of [20].

VII. CONCLUSION
We have carefully examined, what kind of factors may

distort the measurement results of siitperf, and we set up
an error model.

We have compared the results of siitperf used with and
without Ethernet flow control in a 10GBase-T environment, and
we found that the deviation of the results was always below 1%.

We have calibrated siitperf with a commercial Tester in

TABLE IV
 IPV4 LINUX KERNEL ROUTING PERFORMANCE OF THE SUN SERVER: MEASURED BY THE ANRITSU TESTER WITHOUT FLOW CONTROL

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 548,958 526,351 452,899 234,962 158,629 119,732 96,154 81,274
min (fps) 511,310 522,720 452,853 234,962 158,629 119,732 96,154 81,274
max (fps) 553,720 529,561 452,899 234,962 158,629 119,732 96,154 81,274
disp. (%) 7.73 1.30 0.01 0.00 0.00 0.00 0.00 0.00

TABLE V
IPV4 LINUX KERNEL ROUTING PERFORMANCE OF THE SUN SERVER: MEASURED BY SIITPERF WITH FLOW CONTROL

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 549,297 522,413 452,930 234,986 158,652 119,752 96,173 81,294
min (fps) 547,850 521,285 452,926 234,986 158,650 119,752 96,173 81,294
max (fps) 550,782 524,610 452,960 234,990 158,667 119,767 96,178 81,301
disp. (%) 0.53 0.64 0.01 0.00 0.01 0.01 0.01 0.01

7
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

frames per second (including frames in both directions), but we
divided the results by two to report the number of frames per
second per direction. We did so to show values comparable
with the theoretical maximum frame rates given in Appendix
A.1 of RFC 5180 [19].

One of the most conspicuous things in the table is the high
dispersion of the results at 64-byte frame size. It is caused by a
single outlier. We have investigated the case in the
measurement log file, and we found that 8 frames were missing
during that step of the binary search when the target rate was
34.37%. Of course, it meant that the test failed. After that, all
tests were successful and thus the final result was 34.36%. This
single outlier does not influence the median, but it is reflected
by the minimum and, therefore, in the dispersion, too.

As for the results at 128-byte frame size, the minimum and
the maximum are nearly symmetrical around the median.

As for the results at 256-byte frame size, a single test failed
at 100% due to the loss of a few frames, therefore, binary search
was performed, which finished at 99.99%. All other tests passed
at 100% and thus no binary search was performed.

No binary search was performed at any higher frame sizes,
this is why their minimum and maximum values are equal with
their medians.

The results of the throughput measurements with
siitperf are shown in Table V. The dispersion of the results
is always below 1%, and it is practically 0 upwards from 256
bytes frame size, as the maximum frame rate for the media has
limited the throughput. As the upper limit was set higher than
the theoretical maximum frame rate for the media, siitperf
executed binary search and it measured slightly higher values.
It was possible for at least two reasons:

 As Appendix A.1 of RFC 5180 states: “Ethernet's
maximum frame rates are subject to variances due to
clock slop. The listed rates are theoretical maximums,
and actual tests should account for a +/- 100 ppm
tolerance.”

 The “TOLERANCE” parameter of siitperf was set
to 1.00001, which means that 0.001% more time is
allowed for sending.

There are two throughput values that were limited by the
CPU performance: throughput measured with 64 bytes and 128
bytes frame sizes. The differences of the results of the two test
systems are 0.06% and 0.75%, which we consider good and
acceptable, respectively.

VI. DISCUSSION AND PLANS FOR FUTURE RESEARCH
Our conditions for calibrating siitperf with a standard

tester were far from ideal. We cannot tell the maximum frame
rate, at which the CPU of the Dell PowerEdge R620 server
would be able to generate frames, but it is very likely several
million frames per second, thus the measured throughput
around 550,000 fps was not at all close to it. The technical issue
that we could use the Anritsu tester only without flow control,
whereas we could use siitperf only with flow control (in
the Gigabit Ethernet environment) makes the comparison of
their results more difficult.

We plan to purchase a NetFPGA device like the one used by
the authors of [12] and examine the inter-frame time of the
traffic generated by siitperf.

We also plan to test the accuracy of siitperf in a
10GBase-T environment with a Spirent SPT-N4U Tester used
out of courtesy for the measurements of [20].

VII. CONCLUSION
We have carefully examined, what kind of factors may

distort the measurement results of siitperf, and we set up
an error model.

We have compared the results of siitperf used with and
without Ethernet flow control in a 10GBase-T environment, and
we found that the deviation of the results was always below 1%.

We have calibrated siitperf with a commercial Tester in

TABLE IV
 IPV4 LINUX KERNEL ROUTING PERFORMANCE OF THE SUN SERVER: MEASURED BY THE ANRITSU TESTER WITHOUT FLOW CONTROL

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 548,958 526,351 452,899 234,962 158,629 119,732 96,154 81,274
min (fps) 511,310 522,720 452,853 234,962 158,629 119,732 96,154 81,274
max (fps) 553,720 529,561 452,899 234,962 158,629 119,732 96,154 81,274
disp. (%) 7.73 1.30 0.01 0.00 0.00 0.00 0.00 0.00

TABLE V
IPV4 LINUX KERNEL ROUTING PERFORMANCE OF THE SUN SERVER: MEASURED BY SIITPERF WITH FLOW CONTROL

frame size 64 B 128 B 256 B 512 B 768 B 1024 B 1280 B 1518 B
med (fps) 549,297 522,413 452,930 234,986 158,652 119,752 96,173 81,294
min (fps) 547,850 521,285 452,926 234,986 158,650 119,752 96,173 81,294
max (fps) 550,782 524,610 452,960 234,990 158,667 119,767 96,178 81,301
disp. (%) 0.53 0.64 0.01 0.00 0.01 0.01 0.01 0.01

8
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

a Gigabit Ethernet environment, and we found that the
deviation of the results was below 1%.

We conclude that it is necessary to calibrate siitperf also
in a 10GBase-T environment and we plan to do so.

ACKNOWLEDGEMENTS

The measurements for the investigation of the effect of
Ethernet flow control were carried out by remotely using the
resources of NICT StarBED, 2-12 Asahidai, Nomi-City,
Ishikawa 923-1211, Japan. The author would like to thank
Shuuhei Takimoto for the possibility to use StarBED, as well as
to Satoru Gonno and Miku Takuma for their help and advice in
StarBED usage related issues.

The author thanks the National Media and
Infocommunications Authority (NMHH) of Hungary for
lending us the Anritsu MP1590B Network Performance Tester.
The author thanks István Pilisi, NMHH, for his support how to
use the device.

The author thanks István Pilisi and Alexandru Moise for
reading and commenting the manuscript.

REFERENCES
[1] M. Georgescu, L. Pislaru, G. Lencse, “Benchmarking

methodology for IPv6 transition technologies”, IETF RFC 8219,
2017. DOI: 10.17487/rfc8219

[2] G. Lencse and Y. Kadobayashi, “Comprehensive survey of IPv6
transition technologies: A subjective classification for security
analysis”, IEICE Transactions on Communications, vol. E102-B,
no 10, pp. 2021–2035. DOI: 10.1587/transcom.2018ebr0002

[3] G. Lencse, “Design and implementation of a software tester for
benchmarking stateless NAT64 gateways”, IEICE Transactions
on Communications, vol. E104-B, no. 2, pp. 128-140. DOI:
10.1587/transcom.2019ebn0010

[4] C. Bao, X. Li, et al., IP/ICMP translation algorithm, IETF RFC
7915, DOI: 10.17487/rfc7915

[5] D. Scholz, “A look at Intel’s dataplane development kit”, Proc.
Seminars Future Internet (FI) and Innovative Internet
Technologies and Mobile Communications (IITM), Munich,
2014, pp. 115–122. DOI: 10.2313/NET-2014-08-1_15

[6] G. Lencse, Siitperf: An RFC 8219 compliant SIIT (stateless
NAT64) tester, free software under GPLv3 license, [Online]
Available: https://github.com/lencsegabor/siitperf

[7] G. Lencse, Benchmarking methodology for IPv6 transition
technologies, IIJ Lab seminar, Tokyo, Oct. 10, 2017. [Online]
Available: https://seminar-materials.iijlab.net/iijlab-
seminar/iijlab-seminar-20171010.pdf

[8] S. Bradner, J. McQuaid, Benchmarking methodology for network
interconnect devices, IETF RFC 2544, 1999. DOI:
10.17487/rfc2544

[9] D. Raumer, S. Gallenmüller, et al., “Revisiting Benchmarking
Methodology for Interconnect Devices”, Proc. 2016 Applied
Networking Research Workshop (ANRW’16), Berlin, 2016. DOI:
10.1145/2959424.2959430

[10] K. Velásquez and E. Gamess, “A survey of network benchmark
tools”, in: Machine Learning and Systems Engineering, Springer,
Dordrecht, 2010, pp. 465–480. DOI: 10.1007/978-90-481-9419-
3_36

[11] Intel, Intel 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2B: Instruction Set Reference, M-U, Order

Number: 253667-060US, 2016. [Online] Available:
https://www.intel.com/content/dam/www/public/us/en/document
s/manuals/64-ia-32-architectures-software-developer-vol-2b-
manual.pdf

[12] P. Emmerich, S. Gallenmüller, et al., Mind the gap - A
comparison of software packet generators, Proc. 2017
ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), Beijing, China, 2017. DOI
10.1109/ancs.2017.32

[13] G. Lencse, D. Bakai, “Design and implementation of a test
program for benchmarking DNS64 servers”, IEICE Transactions
on Communications, vol. E100-B, no. 6, pp. 948–954. DOI:
10.1587/transcom.2016EBN0007

[14] G. Lencse and A. Pivoda, “Checking and increasing the accuracy
of the dns64perf++ measurement tool for benchmarking DNS64
servers”, International Journal of Advances in
Telecommunications, Electrotechnics, Signals and Systems, vol.
7, no 1, pp. 10–16. DOI: 10.11601/ijates.v7i1.255

[15] G. Lencse, K. Shima, “Performance Analysis of SIIT
Implementations: Testing and Improving the Methodology”,
Computer Communications, vol. 156, no. 1, pp. 54–67. DOI:
10.1016/j.comcom.2020.03.034

[16] G. Lencse, “Adding RFC 4814 random port feature to siitperf:
Design, implementation and performance estimation”,
International Journal of Advances in Telecommunications,
Electrotechnics, Signals and Systems, vol. 9, no. 3, pp. 18–26.
DOI: 10.11601/ijates.v9i3.291

[17] D. Newman, T. Player, “Hash and stuffing: Overlooked factors in
network device benchmarking”, IETF RFC 4814, 2008. DOI:
10.17487/RFC4814

[18] G. Lencse and Y. Kadobayashi, “Benchmarking DNS64
Implementations: Theory and Practice”, Computer
Communications, vol. 127, no. 1, pp. 61–74. DOI:
10.1016/j.comcom.2018.05.005

[19] C. Popoviciu, A. Hamza, et al., “IPv6 benchmarking
methodology for network interconnect devices”, IETF RFC 5180,
2008. DOI: 10.17487/rfc5180

[20] G. Lencse, “Benchmarking Stateless NAT64 Implementations
with a Standard Tester”, Telecommunication Systems, vol. 75, no.
3, pp. 245–257. DOI: 10.1007/s11235-020-00681-x

Gábor Lencse received his MSc and
PhD in computer science from the
Budapest University of Technology and
Economics, Budapest, Hungary in 1994
and 2001, respectively.

He has been working full time for the
Department of Telecommunications,
Széchenyi István University, Győr,
Hungary since 1997. Now, he is a

Professor. He has been working part time for the Department of
Networked Systems and Services, Budapest University of
Technology and Economics, Budapest, Hungary as a Senior
Research Fellow since 2005. The main area of his research is
the performance and security analysis of IPv6 transition
technologies. He is a co-author of RFC 8219.

Dr. Lencse is a member of IEICE (Institute of Electronics,
Information and Communication Engineers, Japan).

Gábor Lencse received his MSc and PhD in computer
science from the Budapest University of Technology
and Economics, Budapest, Hungary in 1994 and 2001,
respectively.
He has been working full time for the Department of
Telecommunications, Széchenyi István University,
Győr, Hungary since 1997. Now, he is a Professor.
He has been working part time for the Department of
Networked Systems and Services, Budapest University
of Technology and Economics, Budapest, Hungary

as a Senior Research Fellow since 2005. The main area of his research is the
performance and security analysis of IPv6 transition technologies. He is a co-
author of RFC 8219.
Dr. Lencse is a member of IEICE (Institute of Electronics, Information and
Communication Engineers, Japan).

 [10] K. Velásquez and E. Gamess, “A survey of network benchmark tools”,
in: Machine Learning and Systems Engineering, Springer, Dordrecht,
2010, pp. 465–480. doi: 10.1007/978-90-481-9419-3_36

 [11] Intel, Intel 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B: Instruction Set Reference, M-U, Order Number: 253667-
060US, 2016. [Online] Available: https://www.intel.com/content/
dam/www/public/us/en/documents/manuals/64-ia-32-architectures-
software-developer-vol-2b-manual.pdf

 [12] P. Emmerich, S. Gallenmüller, et al., Mind the gap - A comparison
of software packet generators, Proc. 2017 ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (ANCS),
Beijing, China, 2017. doi: 10.1109/ancs.2017.32

 [13] G. Lencse, D. Bakai, “Design and implementation of a test program
for benchmarking DNS64 servers”, IEICE Transactions on
Communications, vol. E100-B, no. 6, pp. 948–954.

 doi: 10.1587/transcom.2016EBN0007
 [14] G. Lencse and A. Pivoda, “Checking and increasing the accuracy

of the dns64perf++ measurement tool for benchmarking DNS64
servers”, International Journal of Advances in Telecommunications,
Electrotechnics, Signals and Systems, vol. 7, no 1, pp. 10–16.

 doi: 10.11601/ijates.v7i1.255
 [15] G. Lencse, K. Shima, “Performance Analysis of SIIT Implementations:

Testing and Improving the Methodology”, Computer Communications,
vol. 156, no. 1, pp. 54–67. doi: 10.1016/j.comcom.2020.03.034

 [16] G. Lencse, “Adding RFC 4814 random port feature to siitperf: Design,
implementation and performance estimation”, International Journal
of Advances in Telecommunications, Electrotechnics, Signals and
Systems, vol. 9, no. 3, pp. 18–26. doi: 10.11601/ijates.v9i3.291

 [17] D. Newman, T. Player, “Hash and stuffing: Overlooked factors in
network device benchmarking”, IETF RFC 4814, 2008.

 doi: 10.17487/RFC4814
 [18] G. Lencse and Y. Kadobayashi, “Benchmarking DNS64

Implementations: Theory and Practice”, Computer Communications,
vol. 127, no. 1, pp. 61–74. doi: 10.1016/j.comcom.2018.05.005

 [19] C. Popoviciu, A. Hamza, et al., “IPv6 benchmarking methodology for
network interconnect devices”, IETF RFC 5180, 2008.

 doi: 10.17487/rfc5180
 [20] G. Lencse, “Benchmarking Stateless NAT64 Implementations with a

Standard Tester”, Telecommunication Systems, vol. 75, no. 3, pp. 245–
257. doi: 10.1007/s11235-020-00681-x

Checking the Accuracy of Siitperf

https://doi.org/10.17487/rfc8219
https://doi.org/10.1587/transcom.2018ebr0002
https://doi.org/10.1587/transcom.2019ebn0010
https://doi.org/10.17487/rfc7915
https://doi.org/10.2313/NET-2014-08-1_15
https://github.com/lencsegabor/siitperf
https://seminar-materials.iijlab.net/iijlab-seminar/iijlab-seminar-20171010.pdf
https://seminar-materials.iijlab.net/iijlab-seminar/iijlab-seminar-20171010.pdf
https://doi.org/10.17487/rfc2544
https://doi.org/10.1145/2959424.2959430
http://doi.org/10.1007/978-90-481-9419-3_36
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-2b-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-2b-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-2b-manual.pdf
https://doi.org/10.1109/ancs.2017.32
https://doi.org/10.1587/transcom.2016EBN0007
https://doi.org/10.11601/ijates.v7i1.255
https://doi.org/10.1016/j.comcom.2020.03.034
https://doi.org/10.11601/ijates.v9i3.291
https://doi.org/10.17487/RFC4814
https://doi.org/10.1016/j.comcom.2018.05.005
https://doi.org/10.17487/rfc5180
https://doi.org/10.1007/s11235-020-00681-x

