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Abstract
RFC 5180, the IPv6 update of RFC 2544, declared IPv6 transition technologies out of its scope. RFC 8219 defined a
benchmarking methodology for IPv6 transition technologies including stateless NAT64 (more properly called SIIT) in the
category of single translation solutions. Whereas several research papers have dealt with the performance of different
stateful NAT64 implementations, none of them used RFC 8219 compliant measurements or addressed stateless NAT64
implementations. In this paper, we show, how stateless NAT64 implementations can be benchmarked carrying out the most
important tests recommended by RFC 8219 without a special purpose NAT64 Tester, using simply an RFC 2544/RFC 5180
compliant legacy Tester. We carry out benchmarking measurements to examine the performance of three free software NAT64
implementations, namely: Jool, TAYGA and map646. All the details of our measurements are disclosed and their results are
presented in the paper.
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1 Introduction

In the current phase of transitioning from IPv4 to IPv6 it
is becoming more common that Internet Service Providers
(ISPs)would like to use only IPv6 in their core and access net-
works, while some content providers still assign only IPv4
addresses to their servers. The combination of DNS64 [1]
and stateful NAT64 [2] can be a proper solution to facilitate
the communication of an IPv6-only client and an IPv4-only
server. Further issue arises from the fact that certain applica-
tions can use only IPv4.1 464XLAT [4] is a good and widely
used solution for this issue. 464XLAT uses stateless transla-
tion from IPv4 to IPv6 (NAT46) at the client side and stateful
translation from IPv6 to IPv4 (NAT64) at the core network.

Although it is less common, but it is also an increasing ten-
dency that content providers would like to use solely IPv6 in
their internal network, whereas they still need to provide dual

1 For example, several IPv4-only applications are listed on slide 10 of
[3].
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stack access to their services. This situation can be handled
by stateless translation from IPv4 to IPv6 (NAT46). One of
the earliest such solution was done as a part of the WIDE
project [5].

Whereas a connection through a stateful NAT64 gateway
may be initiated exclusively from the IPv6 side, stateless
NAT64 (more properly called SIIT [6]) translators have no
such constraints. Many free software [7] (also called open
source [8]) implementations exist for stateful or stateless
NAT64 and some of them support both. Their stability and
performancemay be an important factor, when network oper-
ators are selecting from among them.

RFC 2544 [9] defines a benchmarking methodology for
network interconnect devices to facilitate proper and unbi-
ased performancemeasurements. Although it is theoretically
IP version independent, it focuses on IPv4. RFC 5180 [10]
provides a technology update (e.g. regarding the frame rates
of contemporary media) and addresses IPv6 specificities, but
it explicitly states that: “IPv6 transition mechanisms are out-
side the scope of this document”. RFC 8219 [11] defines a
benchmarkingmethodology for IPv6 transition technologies.
Since the number of IPv6 transition technologies is rather
high [12] it classifies them into a small number of categories
and it defines the benchmarking methods for the categories
not for the individual IPv6 transition technologies.Both state-
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ful NAT64 and stateless NAT64 belong to the category of
single translation solutions, thus the same tests should be
used for their benchmarking. The difference is that there are
some additional tests defined for the stateful solutions, see
Sect. 8 of RFC 8219 for the details.

The purpose of this paper is twofold:

• to develop a method for benchmarking stateless NAT64
implementations without a special purpose NAT64 Tester,
using simply an RFC 2544/RFC 5180 compliant legacy
Tester,

• to carry out the benchmarking of a few stateless NAT64
implementations.

The remainder of this paper is organized as follows. In
Sect. 2, we give a short overview of research papers on the
performance analysis of various NAT64 implementations. In
Sect. 3, we highlight the benchmarking method for single
translation solution defined in RFC 8219 and its most impor-
tant differences from and similarities to RFC2544/RFC5180
tests. In Sect. 4, we examine different possibilities, how
legacyRFC2544/RFC5180 compliant testers can be used for
benchmarking stateless NAT64 implementations. In Sect. 5,
we present the details of our benchmarking measurements
and also disclose and evaluate our results. Section 6 con-
cludes our paper.

2 A short survey of papers
on the performance analysis of various
NAT64 implementations

Several papers on the performance analysis of different state-
ful NAT64 implementations were published. The first group
of papers measured together the performance of a given
NAT64 implementation with that of a given DNS64 imple-
mentation. In [13] the performance of the TAYGA NAT64
implementation (and implicitly that of the TOTD DNS64
implementation) is compared to the performance of NAT44.
In [14], the performance of the Ecdysis NAT64 implementa-
tion (and that of its ownDNS64 implementation) is compared
to the performance of the authors’ own HTTP ALG. In [15],
the performance of the Ecdysis NAT64 implementation (and
implicitly that of its DNS64 implementation) is compared to
the performance of both the NAT-PT and an HTTP ALG. In
[16], we argued that: “on the one hand this is natural, as both
services are necessary for the operation, on the other hand this
is a kind of ‘tie-in sale’ that may hide the real performance
of a given DNS64 or NAT64 implementation by itself. Even
though both services are necessary for the complete opera-
tion, in a large network they are usually provided by separate,
independent devices; DNS64 is provided by a name server
and NAT64 is performed by a router. Thus, the best imple-

mentation for the two services can be—and therefore should
be—selected independently.”

In [17], we have developed a method suitable for indepen-
dent performance analysis and stability testing of NAT64 and
DNS64 implementations. In [18], we have compared the per-
formances of TAYGA and OpenBSD PF using this method.
In [19] we repeated our measurements using also TCP and
UDP over IP besides ICMP, which was used solely in [18].
Whereas the method we used was suitable for performance
comparison and stability analysis, it has several limitations,
e.g. its results depend on the whole test setup, not only on
the performance of the DUT (Device Under Test), thus it is
not suitable for benchmarking.

In [20], the performance of different IPv6 transition solu-
tions were measured including the TAYGA and the Jool
NAT64 implementations by means of one way delay and
throughput. Not surprisingly, neither the measurements of
this one comply with the requirements of the later published
RFC 8219 as the throughput was measured by iperf.

We note that although TAYGA is a stateless NAT64
implementation it was always used together with iptables
to provide stateful NAT64. Similarly, although Jool can do
both stateful and stateless NAT64, it was used to provide a
stateful NAT64 service.

Whereas we consider the above results important and use-
ful, we point out that they do not include stateless NAT64
tests and none of them complies with RFC 8219, which was
published later than any of the above mentioned papers.

We are aware of only one paper reported an RFC 8219
compliant stateless NAT64 testing tool [21]. However, this
tool cannot be used for benchmarking in practice due to
its low performance, this is why its author has started re-
implementing it using DPDK [22].

3 Benchmarkingmethod for NAT64
gateways

Although RFC 8219 discusses all single translation solutions
together, now we focus on NAT64, under which we under-
stand both stateful NAT64 and stateless NAT64 as well as
stateless NAT46.

Thefirst andmost important difference from theRFC2544
(RFC 5180) benchmarking is visible on the Test Setup in
Fig. 1. The fact that the two ports use different IP versions has
the consequences that legacy RFC 2544 (RFC 5180) compli-
ant Testers, which expect the same IP version, fail to operate
(unless an appropriate trick is used).

Except this very important difference, the majority of the
measurement procedures were kept unchanged. They are:
throughput, frame loss rate, back-to-back frames, system
recovery and reset. The measurement procedure for latency
has been redefined to achieve higher accuracy, and further
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Fig. 1 Single DUT test setup [11]

measurement procedures for packet delay variation and inter
packet delay variation have been added. For more details,
please refer to Section 7 of RFC 8219.

We note that, similarly to its predecessors, RFC 8219
requires bidirectional traffic for testing and allows also uni-
directional tests. For us, it also means that we do not need to
distinguish stateless NAT64 and stateless NAT46.

Section 8 of RFC 8219 describes additional tests for state-
ful IPv6 transition solutions, which can be applied to stateful
NAT64. For us, the point is that the basic tests of the stateful
NAT64 are the same as that of the stateless NAT64.

4 How legacy testers can be reused
for benchmarking stateless NAT64
gateways?

4.1 Which tests can be and should be reused?

Throughput and frame loss measurement procedures are the
same and they are both very important, thus they definitely
should be reused. As the latency measurement procedure has
been changed, if the old one is reused, its results may give
some valuable insight, but they are not comply with the RFC
8219.Measurement procedures for PDV and IPDVmeasure-
ments as well as stateful tests are missing from the legacy
Testers. Procedures for back-to-back frames, system recov-
ery and reset test should exist, but in our understanding, they
are seldom used, thus we do not deal with them. Therefore,
we focus on throughput and frame loss rate measurements.

4.2 Reusing legacy testers with the dual DUT setup

4.2.1 Feasibility in theory

Although RFC 8219 recommends the Dual DUT setup for
double translation and encapsulation technologies, it can pro-
vide us a viable solution for reusing the legacy Testers for
benchmarking stateless NAT64 gateways. As it is shown in
Fig. 2, the sequence of two translations that are the inverse
of each other restores the original IP version. As for stateless
NAT64, two equally good solutions are possible:

Fig. 2 Dual DUT test setup [11]

1. If we use NAT64 first and NAT46 after that, then the
Tester must use IPv6.

2. If we use NAT46 first and NAT64 after that, then the
Tester must use IPv4.

Of course, the dual DUT setup has several limitations and
hindrances, for example:

• In the simplest case, two identical DUTs are used, which
hides any possible asymmetric behavior (e.g. due to an
implementation bug) and causes somewhat extra cost (as
two DUTs are needed).

• One may try using two different DUTs, but it is not trivial
how to make one of them the bottleneck for sure, due to
possible unknown asymmetric behavior.

• It excludes the stateful NAT64 devices from testing. (Even
the stateless tests may not be performed, because they do
not allow connection establishment in the direction from
IPv4 to IPv6.)

However, the most important advantage of the dual DUT
setup is deliberate: the two most important tests may be per-
formed using an existing legacy Tester.

4.2.2 Feasibility in practice

In order to test if this setup can be implemented in real life,
we have put together a test system in a virtual environment
using Debian GNU/Linux operating system. From the two,
theoretically equally good solutions, we have chosen the sec-
ond one, because it has the important practical advantage that
even an old, IPv4-only Tester is enough, whereas the first one
requires a Tester with IPv6 capabilities.

We have tested three stateless NAT64 implementations,
TAYGA [23], Jool [24] andmap646 [25].Wewere successful
with the first two ones, but failed with the third one. (We
explain the reason of the failure at the end of this subsection.)

RFC 7757 [26] extended stateless NAT64 with EAM
(Explicit Address Mapping), thus removed the constraints
caused by the limited applicability of IPv4-convertible IPv6
addresses [27]. We have used this approach in our test sys-
tems. Figures 3 and 4 show the test setups with virtual
machines using TAYGA and Jool, respectively. Whereas
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Fig. 3 Dual DUT test setup with virtual machines using TAYGA

Fig. 4 Dual DUT test setup with virtual machines using Jool

there are some slight differences between the two setups
due to particularities of TAYGA and Jool, the two figures
show the same solution. The key of this solution is that
every single network interface has either an IPv4 or an IPv6
address, which is really assigned to it, and they also “have” IP
addresses from the other IP version, which are not assigned
to them, but are used to represent them, when they need to
be referred to using the other IP version. These peers are
mapped to each other by EAM. The two ports of the Tester
are represented by two virtual machines called “Tester (left)”
and “Tester (right)”. They are assigned only IPv4 address.
The IPv6 addresses in italic font are not assigned to them,

they are used to represent their IPv4 addresses in the IPv6
domain. Similarly, an IPv6 network connects the NAT46 and
NAT64 gateways, thus the interfaces are assigned only IPv6
addresses, which have their corresponding IPv4 peers (writ-
ten in italic font).

Routing was set manually to forward the packets accord-
ing to the routing tables shown in Figs. 3 and 4.

We have checked that the first and fourth computers (rep-
resenting the left and right side ports of the Tester) were
mutually accessible from each other (using the ping Linux
command).
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For those, who would like to follow the operation, we
put here an excerpt of the message flow resulted by a ping
command issued at Tester (left) and targeted to Tester (right)
captured by tshark at various interfaces of the NAT46 and
NAT64 virtual machines. (They are from the TAYGA ver-
sion, as TAYGAuses a nat64 virtual interface, which resulted
inmore details, thus an easier traceability of what happened.)

Thus, we have successfully constructed a test setup
for benchmarking stateless NAT64 gateways using legacy
Testers having only IPv4 capabilities.

Now, let us return to map646. Its test setup was very
much similar to that of TAYGA, therefore we do not repeat
it. By studying its behavior using tshark captures, we
have observed that map646 applied our EAM static mapping
rules to the destination IPv4 address only, whereas it com-
pletely ignored themconcerning the source IPv4 address, and
it rather synthesized an IPv4-embedded IPv6 address [27]
using the ::/96 prefix (as we have not specified a prefix) plus
the 32 bits of the source IPv4 address. We could circumvent
this behavior, but, consistently to this behavior, map646 also
ignores the mapping rule for the destination address, when it
performs the translation from IPv6 to IPv4 and it expects an
IPv4-embedded IPv6 address.

We have contacted its author, Keiichi Shima, who con-
firmed that map646 was willfully designed so (to avoid
handling IPv6 neighbor discovery proxy operation, which
would have made the code more complex), as it was devel-
oped to be a NAT46 gateway solution for the WIDE project,
for which this behavior was completely satisfactory, how-
ever, it also means that map646 may not be used in the Dual
DUT setup.

4.3 Reusing legacy testers with the single DUT setup

RFC8219 recommends the singleDUTsetup for single trans-
lation technologies.

4.3.1 Single DUT test setup using virtual machines

First, let us see the test setups with virtual machines for
benchmarking the three before mentioned stateless NAT64

implementations. Figures 5, 6 and 7 show the test setups with
virtual machines using TAYGA, Jool, and map646, respec-
tively. We believe that the test setups for TAYGA and Jool
are easy to follow after the understanding of their Dual DUT
test setups. Map646 is somewhat similar to TAYGA in the
sense, that it also uses a pseudo interface, tun646, however, its
operation is rather different from that of TAYGA. To reveal
the difference, let us compare their message flows. First, let
us see an excerpt of the message flow of TAYGA resulted
by a ping command issued at Tester (right) and targeted to
Tester (left) captured by tshark at various interfaces of the
NAT64 virtual machine.

This is similar to the message flow of TAYGA with the
Dual DUT setup. However, the message flow of the same
ping command looks differently with map646.

As we have mentioned before, when doing the translation
from IPv4 to IPv6, map646 uses EAM only concerning the
destination IPv4 address. In our example, it synthesized an
IPv4-embedded IPv6 address using the specified 64::/96 pre-
fix as the IPv6 source address. Similarly, in the IPv6 to IPv4
direction, map646 uses EAM only for the source address,
and it expects an IPv4 embedded-IPv6 address as the des-
tination address, otherwise is does not work. Our example
demonstrated that this functionality is enough to provide an
IPv4 access to IPv6 only servers (the ping command was
successful). This limitation also means that map646 cannot
be tested in the Dual DUT setup, but (in itself) it should not
prevent us from benchmarking a map646 gateway according
to the Single DUT setup with bidirectional traffic.

A ping6 64::198.19.0.2 command issued at
Tester (left) using the IPv4 embedded-IPv6 address of Tester
(right) works perfectly resulting the following message flow.
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Fig. 5 Single DUT test setup with virtual machines using TAYGA

Fig. 6 Single DUT test setup with virtual machines using Jool

Thus, map646 may be benchmarked according to the
Single DUT setup, but it visibly requires different network
settings at the Tester than TAYGA and Jool.

4.3.2 Application of a legacy tester

A legacy Tester must comply with the following two require-
ments so that it may be used for benchmarking stateless
NAT64 implementations according to the Single DUT setup:

1. It must support the RFC 2544 (RFC 5180) tests for both
IPv4 and IPv6.
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Fig. 7 Single DUT test setup with virtual machines using map646

2. It must allow the user not to connect all its “logical ports”
physically. (It is needed for our “trick”.)

As different Testers may use different technical terms, from
now on we use that of a Spirent SPT-N4U Tester, which we
used for our measurements.

Figure 8 shows the Single DUT test setup using a Dell
PowerEdge T630 NAT64 server as DUT and a Spirent SPT-
N4U Tester with and MX2-10G-S8 card, which we used for
benchmarking TAYGA and Jool.

To provide the Tester with an “acceptable situation”, two
unidirectional flowswere set up. IPv6 packets were sent from
virtual device 1 to virtual device 4 and IPv4 packets were
sent from virtual device 3 to virtual device 2. However, only
virtual device 1 and virtual device 3 were actually connected
to the DUT. The IPv6 packets from the Tester were translated
to IPv4 by the stateless NAT gateway and they arrived to
the connected virtual device 3 (instead of the unconnected
virtual device 4). Similarly, the IPv4 packets from the Tester
were translated to IPv6 and they arrived to the connected
virtual device 1 (instead of the unconnected virtual device
2). With this trick, we could achieve that the Tester sent and
received the appropriate IP version packets for benchmarking
the stateless NAT64 gateway.

As formap646, the same structurewas usedwith a slightly
different addressing as shown in Fig. 9.

The details of the benchmarking measurements are dis-
cussed in Sect. 5.

5 Benchmarkingmeasurements

5.1 Frame size considerations

RFC 8219 recommends the following frame sizes for testing
Ethernet devices: 64, 128, 256, 512, 768, 1024, 1280, 1518
bytes. It alsomentions that 84 bytes should be used for single-
translation transition technologies (e.g., NAT64) in the IPv6
to Pv4 direction. It is so, because the translation from IPv6 to
IPv4decreases the frame size by20bytes to 64bytes,which is
theminimumallowed frames size for Ethernet. Of course, the
phenomenon exits in the opposite direction, too: 1498 bytes
long IPv4 frames will be converted to 1518 bytes long IPv6
frames during the NAT46 translation, which is the maximum
allowed frames size for Ethernet. As RFC 8219 does not
say anything about which IP version should use the above
specified frames sizes, we decided that we correct the first or
last frame size value, when needed, and keep the other values
untouched for sending, which means that the frame sizes of
the received frames differed from the listed ones. Table 1
shows the frame sizes we planned to use for benchmarking.
(The above listed and the modified frame sizes are typeset in
bold and italic fonts, respectively.)

Another consequence of the translation is that the traffic
volume measured in bytes is changed by the translation in
both directions. To make our results unambiguous, we either
need to express our results in number of frames per sec-
ond or, if we use number of bytes per second, then we must
also mention the IP version besides the frame size, too. We
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Fig. 8 Single DUT test setup
with a Spirent SPT-N4U Tester
for benchmarking TAYGA and
Jool

Fig. 9 Single DUT test setup
with a Spirent SPT-N4U Tester
for benchmarking map646

Table 1 Frame Sizes used for Benchmarking NAT64 Gateways

NAT64 IPv6 84 128 256 512 768 1024 1280 1518

IPv4 64 108 236 492 748 1004 1260 1498

NAT46 IPv4 64 128 256 512 768 1024 1280 1498

IPv6 84 148 276 532 788 1044 1300 1518

have chosen the first option, and specified the load always in
frames per second.

5.2 Parameters and settings

The measurements were performed according to the setups
shown in Figs. 8 and 9. The Spirent SPT-N4U Tester had an
MX2-10G-S8 card. The most important parameters of the
Dell PowerEdge T630 server were:

• 2× Intel Xeon E5-2698 v3 CPUs
• 8×16 GB RDIMM, 2133 MT/s, Dual Rank,×4 Data
Width memory modules

• 2× 10 Gbps SFP + ethernet ports

We have switched off Hyper Threading in the BIOS setup,
because it could have caused scattered results according to
our previous benchmarking experience [28]. Thus, the Linux
operating system displayed 32 CPU cores. As for NUMA
situation, CPU cores 0–15 belonged to NUMA node 0, and
the other ones to NUMA node 1. Memory was distributed
evenly between the two nodes and all the I/O devices (NICs,
HDD, etc.) were connected to node 0.

For the repeatability of our measurements, we also docu-
ment the software versions:

• TAYGA 0.9.2 [23]
• Jool 3.5.7 [24]

• map646 (GitHub latest commit cd93431 onMar 31, 2016)
[25]

As for the parameters of the benchmarkingmeasurements,
the Trial Duration was set to 60 s. Binary search was used
with Rate lower limit 0.001% and Rate upper limit 100%,
and the Resolution was set to 0.01%, which we considered a
good compromise between speed and accuracy.

RFC 8219 requires bidirectional throughput tests with
absolutely 0 frame loss. We used this one, but we note that
the Tester offers a possibility to set non-zero frame loss rate.

The parameters set in the RFC 2544 Throughput Param-
eters dialog box of the Spirent Tester apply to all frames to
be sent: the user cannot specify distinct values for IPv6 and
IPv4. Therefore, for bidirectional tests, we were not able to
use the distinct frame size values for IPv6 and IPv4 frames
presented in the first and last column of Table 1. Thus, for
bidirectional tests, we used only the 128, 256, 512, 768, 1024,
1280 bytes frame sizes, which were the same for IPv6 and
IPv4.

Besides the required bidirectional tests,we also performed
unidirectional tests to gain further insight into the operation
of the tested NAT64 implementations. With these tests, we
used the frames sizes shown in the first and third rows of
Table 1 as IPv6 and IPv4 frame sizes, respectively.

As for frames loss rate tests, theoretically the entire frame
rate range of the media (10 Gbps Ethernet) should have been
tested using at most 10% granularity. However, considering
the results of the throughput tests, we have chosen reduced
ranges with higher resolution to produce meaningful results.

5.3 Throughput results

First, we present and discuss the results of the three tested
implementations separately and, we compare them after that.
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Fig. 10 Throughput of Jool as a function of frame size and traffic type

5.3.1 Jool

The throughput results of Jool are shown in Fig. 10. The
horizontal axis shows the frame size. Frame sizes 84 and
1518 belong to frames sent by virtual device 1, similarly,
frame sizes 64 and 1498 belong to frames sent by virtual
device 3. The other frame sizes are common. And all frame
sizes are to be interpreted as the sizes of the sent frames.
(Sizes of the received frames were 20 bytes shorter and 20
longer due to NAT64 and NAT46 translation, respectively.)
In the legend, IPv6 and IPv4 indicate the types of the sent
frames, when unidirectional traffic was used.

We can observe that the number of frames per second
shows a very slight degradation as the frame size increases,
being the decrease so small that the number of frames per sec-
ond could be called roughly independent from the frame size.
(For the explanation of the slight fluctuations, please refer to
the frame loss tests in Sect. 5.4.1.) This observation can be
explained by the fact that NAT64/NAT46 translation affects
only the IP header, and the bottleneck is surely the process-
ing capacity of the CPU not the transmission capacity of the
10 Gbps Ethernet. The fact that the unidirectional throughput
was about 230,000 fps for IPv6 and about 250,000 fps for
IPv4, whereas bidirectional throughput is about 430,000fps,
which means 215,000 fps for each directions, complies with
our observations during preliminary testing that only a sin-
gle CPU core was working, when unidirectional traffic was
used, but Jool could utilize two CPU cores, when bidirec-
tional traffic was used.

5.3.2 Tayga

The throughput results of TAYGA are shown in Fig. 11. (The
notations of the figure are to be interpreted as that of Fig. 10.)
The results of the IPv4 unidirectional and bidirectional tests
with 1280 bytes long frames seem to be missing. It is so,
because the throughput tests reported 0 packet per second
in both cases. (The repeated test gave the same results.) To
investigate the issue, we have checked the detailed results
of the unidirectional IPv4 test, and we have found that all
the frames were lost at 1280 bytes frame size independently

Fig. 11 Throughput of TAYGA as a function of frame size and traffic
type

from the load conditions. We have found this phenomenon
very strange, especially that the unidirectional IPv4 test with
1498 bytes long frames was successful, though the through-
put was about halved compared to other frame sizes. To find
the root causes of this behavior, we have checked the traffic
at the DUT with tshark. Figure 12 shows a fraction of the
traffic captured at the nat64 interface using 1280 bytes long
frames. It is visible that TAYGA has fragmented the incom-
ing IPv4 packet (no. 86) into two IPv6 packets (no. 87 and
88), which were not recognized as valid by the Tester, and
thus it sent back an ICMPv6 error message (no. 89), which
was then translated to an ICMPv4 error message (no. 90) by
TAYGA. The situation is partially different with 1498 bytes
long frames, as shown in Fig. 13, which contains the packets
belonging to two consecutive test frames. (The packets of
the second one are displayed to show that the first one did
not result in an ICMPv6 error message.) Fragmentation also
happens here, but now the Tester accepts the fragmented test
frames. Of course, fragmentation had its computational cost,
hence the maximum achievable rate decreased to about less
than one half.

Considering the other packet rates, the measured through-
put of TAYGA is roughly independent from the frame size.

The fact that the bidirectional throughput of TAYGA
looks approximately the same as its unidirectional through-
put (which means twice one half per direction), complies
with our observation that TAYGA could utilize only a single
CPU core, even when bidirectional traffic was used.

5.3.3 Map646

The throughput results of map646 are shown in Fig. 14. (The
notations of the figure are to be interpreted as that of Fig. 10.)
Here, the results of the IPv4 test with 1498 bytes frame size
seem to be missing, since all frames of this size were lost at
any packet rate. It is also caused by fragmentation.

We have attempted to test the performance of map646 in
the IPv6 to IPv4 direction, however, we have got the follow-
ing error message from map646:
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Fig. 12 A tshark capture of the traffic at the nat64 interface of TAYGA, using 1280 bytes test frames

Fig. 13 A tshark capture of the traffic at the nat64 interface of TAYGA, using 1498 bytes test frames

Fig. 14 Throughput of map646 as a function of frame size and traffic
type

map646: Extention header 59 is not
supported.

The value 59 in the Next Header field of an IPv6 datagram
means “NoNext Header”. As it can be seen from the captures
inFigs. 12 and13, theTester sent raw IPpacketswith protocol
type 253.2 However, map646 expected one of TCP, UDP or
ICMPv6. We know it from Keiichi Shima, that the aim of the
checking of the Next Header field was to prevent incorrect
translation of extension headers. (In the IPv4–IPv6 direction
no such checkingwas necessary, as no extension headersmay
occur in the IPv4 packets, thus testing was possible in that
direction.) For us, the point is that we could not perform the
test in the IPv6 to IPv4 direction.

Otherwise the throughput of map646 shows some fluctu-
ations, but is also roughly independent from the frame size.

5.3.4 Comparison

As the throughput of all three tested implementations is inde-
pendent from the frame size, and we could test map646 only
in the IPv4–IPv6 direction, we compare their IPv4 through-
put using 64 bytes long test frames. Figure 15 shows the

2 The 253 IP protocol field value was reserved for experimentation and
testing purposes by RFC 3692.

Fig. 15 Throughput of Jool, TAYGA, and map646 in the IPv4 to IPv6
direction with 64 bytes frame size

results. We note that the results were not surprising for us,
as Jool is the latest implementation of them, which is still
actively developed and is works in the kernel space [24].
TAYGA works in user space and it was “intended to provide
production-quality NAT64 service for networks where ded-
icated NAT64 hardware would be overkill” [23], however,
TAYGA is no more developed. Map646 was developed for
a single purpose to serve as stateless NAT46 gateway solu-
tion for the WIDE project [5] and it was published as free
software for public benefit out of courtesy.

5.4 Frame loss results

For the comparability of the results, Jool and TAYGA were
tested under the same conditions: their frame loss rate was
measured with IPv6 to IPv4 traffic, and the frame rate was
increased from 50,000 to 800,000 in 50,000 fps steps. How-
ever, these limits were inappropriate for map646, which was
tested using IPv4 to IPv6 traffic, and the frame rate was
increased from 40,000 to 100,000 fps in 10,000 fps steps.

5.4.1 Jool

The frame loss rate of Jool as a function of frame rate and
frame size is shown in Fig. 16. For all frame sizes, the frame
loss rate is between 0.001 and 0.004% at 250,000 fps frame
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Fig. 16 Frame loss rate of Jool as a function of frame rate and frame
size, using IPv6 to IPv4 traffic

rate, it is below 0.01% and at 300,000 fps, and it is still below
1% at 500,000 fps, but it raises sharply from 550,000 fps
frame rate.

Our resultswith very low frame loss rate up to significantly
higher frame rates than the throughput measurement results
taught us two very important lessons:

1. As RFC 2544 based throughput tests use a binary search
to find the highest frame rate, where all frames are trans-
mitted (that is, there is no frame loss), our results explain,
why the results of multiple repetitions may differ sig-
nificantly: tests sometimes fail due to a the loss of a
very small number of frames. (And this observation also
explains our observation in Sect. 5.3.1 that the throughput
results at different frame sizes fluctuate.)

2. Users may experience significantly higher throughput
(e.g. download speed) than the RFC 2544 throughput
result, if TCP selective acknowledgment is enabled and
the end to end delay is low enough.

5.4.2 Tayga

The frame loss rate of TAYGA as a function of frame rate
and frame size is shown in Fig. 17. As a function of the frame
rate, frame loss firs appears at 150,000 fps, where it is under
0.3% with all frame sizes. Frame loss rate suddenly jumps
to about 20% at 250,000 fps, but significantly falls back at
300,000 fps, form where it continuously rises, and it is about
65% at 800,00 fps.

5.4.3 map646

The frame loss rate of map646 as a function of frame rate
and frame size is shown in Fig. 18. We note that because of
the IPv4–IPv6 direction, here the smallest frame size was 64
bytes and the largest one was 1498 bytes, however, we have
omitted the results with 1498 bytes frames, as they were all

Fig. 17 Frame loss rate of TAYGA as a function of frame rate and frame
size using IPv6 to IPv4 traffic

Fig. 18 Frame loss rate of map646 as a function of frame rate and frame
size using IPv4–IPv6 traffic

100%, and thus the scaling of the figure would have been
inappropriate for the other values.

The results of map646 are rather fluctuated, thus we can
not characterize the behavior of the resultswith relevant state-
ments that apply for all frame sizes. Less than 0.1% frame
losses occurred occasionally under 60,000 fps. Non-zero, but
<0.33% frame loss usually appeared at 60,000 fps. Frame
loss achieved 13.2% at 75,000 fps with 64 bytes long frames,
but it was under 5% with all other frames sizes. Frame loss
usually achieved 50% at 100,000 fps, but it was only about
17% with 768 and 1024 bytes long frames.

5.4.4 Comparison

Whereas the behavior of the frame loss of Jool was conse-
quent, the frame loss rates of both TAYGA and map646 have
shown inconsistent behavior under certain parameter combi-
nations. Considering also the throughput values, we consider
that Jool is the most matured stateless NAT64 implementa-
tion from among the examined ones.
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6 Further work and our future plans

During the review process of this paper we have performed
benchmarking measurements using the before mentioned
DPDK-based special purpose test software. The same imple-
mentationswere tested, but Joolwas themost current version,
that is 4.0.1. Our results will be published in [29]. Unfortu-
nately, the test program had several issues, which we could
temporarily fix, but we plan to redesign and re-implement
it in C++. We also plan to validate the new test program by
comparing its results with the results produced by using a
standard tester, thus our efforts described in this paper will
be a great help for us in the validation.

7 Conclusion

We have pointed out that there was a gap in research
papers concerning the benchmarking of stateless NAT64
(SIIT) implementations. We have demonstrated with virtual
machines, how two kinds of test setups may be built for
benchmarking stateless NAT64 implementations according
to RFC 8219 without using a special purpose NAT64 Tester,
rather by reusing legacy RFC 2544/RFC 5180 Testers. From
among the tests defined in RFC 8219, the two most impor-
tant ones, namely throughput and frame loss tests, can be
performed by this way.

We have demonstrated the feasibility of benchmarking
statelessNAT64 gateways according to the SingleDUT setup
by benchmarking three free software stateless NAT64 imple-
mentations: Jool, TAYGA and map646. We have found that
Jool showed both the highest throughput and the most con-
sistent behavior in the frame loss tests, thus we recommend
Jool for new deployments. We hope that our results may con-
tribute to the global deployment of the IPv6 protocol.

Themeasurement method described in this paper will also
be useful in the validation of the planned special purpose
NAT64 test software.
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