Parallel Simulation with OMNeT++ using the
Statistical Synchronization Method

Gabor Lencse

Széchenyi Istvan University, Department of Telecommunications
Hédervari u. 3. H-9026 Gyoér, Hungary
Lencse@szif.hu
http://www.hit.bme.hu/phd/lencse

Abstract. The synchronization methods for parallel discrete event simulation
(PDES) are compared. The original Statistical Synchronization Method (SSM)
and its time driven version (SSM-T) are described. The PDES support of OM-
NeT++ is explained. A case study is given about the parallel simulation with
OMNeT++: the simulation of two interconnected FDDI rings executed on two
processors. The presentation contains also a demonstration of this parallel simu-
lation at the workshop.

Introduction

Parallel discrete event simulation (PDES) could be an important tool for the perform-
ance analysis of communication systems. The precise simulation of these large and
complex systems would really benefit from computing power of parallel systems.
However PDES is a difficult problem. Fujimoto [1] describes the well-known syn-
chronization methods for PDES. The aim of the synchronization methods is to deal
with the problem of causality.

The conservative method avoids the causality errors, by executing only safe events.
(For a segment S; an event E; with timestamp T, is safe if S; can determine that it is
impossible for it to receive an event with timestamp smaller than T;.) Mechanisms
were developed for either deadlock avoidance or deadlock detection and recovery.
The main problem of the conservative method is that it can produce good speed-up
only for systems that meet special criteria, otherwise the method cannot exploit the
possible parallelism.

The optimistic method allows the causality errors. Then it detects and recovers
from them. There are several variants of the optimistic method offering different
solutions. One of the most popular is Time Warp. It performs periodic state saving.
If the state-saving overhead is large it may seriously degrade the performance of the
simulation. Dynamic memory allocation of the processes causes further complica-
tions.

Both of the synchronization methods mentioned above have their own limitations
and require quite much support from the simulation kernel. The Statistical Synchro-
nization Method [2] is a promising alternative. SSM does not exchange individual
messages between the segments but rather the statistical characteristics of the message



flow. Actual messages are regenerated from the statistics at the receiving side. It has
numerous advantages over the two other methods.

This paper first briefly describes the Statistical Synchronization Method, than the
parallel simulation functionalities of OMNeT++ and finally a case study: parallel
simulation of two interconnected FDDI rings.

1  The Statistical Synchronization Method

In its original form, SSM was invented by Gyorgy Pongor [2] at the Lappeenranta
University of Technology, Finland. It was further developed (as SSM-T) by Gabor
Lencse [3] at the Technical University of Budapest, Hungary.

1.1  The Original SSM

Similarly to other parallel discrete event simulation methods, the model to be simu-
lated — which is more or less a precise representation of a real system — is divided into
segments, where the segments usually describe the behavior of functional units of the
real system. The communication of the segments can be represented by sending and
receiving various messages. For SSM, each segment is equipped with one or more
input and output interface. The messages generated in a given segment and processed
in another segment are not transmitted there but the output interfaces (OIF) collect
statistical data of them. The input interfaces (IIF) generate messages for the segments
according to the statistical characteristics of the messages collected by the proper
output interfaces. (See Fig. 1.)

\ ’
\ ’

.. ! re-generated
statistics !

messages . : : messages

'

|
\
1
\

segment A '\ segment B

Fig. 1. An OIF —IIF pair

The segments with their input and output interfaces can be simulated separately on
separate processors, giving statistically correct results. The events in one segment do
not have the same effect in other segments as in the original model, so the results
collected during SSM are not exact. The precision depends on the partitioning of the
model, on the accuracy of statistics collection and regeneration, and on the frequency
of the statistics exchange among the processors.



SSM has the following advantages compared to the other PDES synchronization
methods:
e requires less network bandwidth
tolerates communication delay better
can be easily implemented
requires less support from the simulation kernel
may produce better speed-up

1.2 The Definition of SSM-T

In its original form, SSM was applicable for the analysis of steady state behavior of
systems. In another paper [4] Dr Pongor emphasizes the advantages of the fact that
the local virtual time (LVT) of the segments may be completely different, this feature
may result in automatic importance sampling and super optimal speed-up.

However, an approximate synchronism of the LVTs of the segments is often desir-
able. For example the load of communication systems is not constant, but changes
during the day according to a hat-like curve. A simulator should be able to follow this
behavior. At the Department of Telecommunications, Technical University of Buda-
pest, we further developed SSM to have this property. This version is distinguished
as SSM-T, the time driven version of SSM. We also completed OMNeT++ with the
necessary functionality for parallel execution.

The basic idea of SSM-T is very simple. Let the execution of the segments run in-
dependently in the majority of time facilitating good speed-up and let the LVTs of the
segments meet at certain points of time ensuring an approximate synchronism.

Loose synchronization between segment A and segment B is defined formally as
follows:

Let t;, t, t3, ... t;, ... t, be synchronization points of time. Let ts and tg denote the
LVTs of segment A and segment B, respectively. Segment A and segment B are
loosely synchronized if:

(ta<t) =Bt A(ta>t)=> (s 2t), i=1,2,..,n. 1)

The loose synchronization of the two segments means that none of them may leave
any synchronization point of time (t;) until the other one reached it.

At the t; synchronization point of time segments A and B may exchange the statis-
tics they have collected before t; and they may use the new ones in the [t;, ti.(] time
interval. With the appropriate choice of the t; synchronization point of time, it is
ensured that the effect of a change in segment A in t, will reach segment B earliest at
ty and latest at t,+At. In the simplest case, we use loose synchronization where
t;=1*UI, UI being the update interval.

What does this method require from the simulation kernel? Let us consider the fol-
lowing example. If segment A wants to send a message to segment B at LVT t; then
segment A should ask the simulator not to let the LVT of segment B pass t; until seg-
ment B receives a message from segment A. (For simplicity and clarity we consider
only one direction of communication as the other direction can be handled in the same
way. If both segments ask for synchronization for the same LVT, then the LVTs of
the two segments will really meet.) As for the implementation, if segment A sends a



synchronization point request to segment B for LVT t; than segment B schedules a
self message (a special event, that will be processed by the simulation kernel itself)
for LVT t;. If the statistics package from segment A arrives to segment B at LVT t,<t;
than the message carrying the statistics is simply scheduled to t;. If the statistics pack-
age from segment A to segment B does not arrive until t;, segment B processes the
self message and suspends processing of any further events until the statistics package
arrives. Fig. 2. shows examples for both cases.

0 t t

segment A 1L —ll

segment B

 statistics

 statistics

I !
t, ty

l
t'

Fig. 2. The operation of SSM-T. The thin horizontal lines show the wall-clock (real) time of
the processors executing the segments and the thick lines are the virtual times of the segments

1.3  Further Investigations on SSM-T

Because of space limitations we cannot cite all the results on SSM-T, instead we
briefly summarize the topics covered in previous papers. All the cited papers can be
downloaded from the author’s web page.

Accuracy of SSM is dealt with in [5]. Different statistics collection algorithms were
examined concerning their resource requirements and accuracy.

The applicability criteria of SSM are given in [6] together with examples when the
method can or cannot be used.

The Statistics Exchange Control Algorithm [7] is responsible for determining the
appropriate virtual time for the next statistics exchange. Its task is not at all trivial, as
the required accuracy gives the number of observations required for the statistics, and
the statistics exchange control algorithm must meet the correct virtual time. If the
prediction fails, the synchronization point is deleted and the statistics collection must
be continued. The effects of the different kinds of deviations from the optimal case
were examined.



2 Implementing Parallelism in OMNeT++

OMNeT++ can run parallel on different types of hosts and/or operating systems that
support PVM.

2.1 Parallel Topology Description

OMNET++ parallel support includes the parallel topology description, a flexible
method, that enables the user to describe the partitioning of the model. When defin-
ing a module type, a compound module (besides the formal parameter list and the
submodule list) may have a formal machine list introduced by the keyword ma-
chines. When defining the inside structure of the compound module, the user can
express onto which machine (from the formal machine list) he wants to place the
submodules: the keyword on is followed by the machine. Let us see an example:

module Network
machines:
host4netA, hostd4netB;
submodules:
netA: subnetwork;
on: hostédnetAh;
netB: subnetwork;
on: hostédnetB;

connections:
netA.out --> netB.in;
netB.out --> netA.in;
endmodule

When building the network topology, the simulation kernel evaluates the machine
parameters and places the modules into a single segment (process) per host. Espe-
cially for testing/debugging purposes it is possible to place all the segments in sepa-
rate processes onto one host, SINGLE HOST has to be defined in the pvmmod. cc
source file.

2.2 Communication Between the Segments

In OMNeT++, the modules communicate with each other by sending and receiving
various messages. The messages may contain arbitrarily complex data structures.
Basically, the user does not have to take care if the modules communicating with each
other are placed into the same segment or into different ones. If communication oc-
curs between two modules that are in different segments, OMNeT++ packs all the
standard data structures — that are included in the message — into PVM messages and
carries them safely to the destination. Of course there are some natural restrictions:

1. Pointers became meaningless if they are transferred from one process to another



2. The conversion of the different architectures is done interpreting data as their types
are defined. For example the order of the 4 bytes of an integer is reversed if it is
transferred between a little-endian and a big-endian computer. The dirty trick of
accessing the 4 bytes of this integer as char type variables will not work well.

3. The range of the possible values of data types may differ. For example the storage
size of a variable of C++ type long is 4 or 8 bytes on a 32 or 64 bit architecture
computer.

2.3 Synchronization Between the Segments

OMNeT++ provides a very simple mechanism for the inter-segment synchronization.
The user may send a synchpoint (time) from one segment to another. The tar-
get segment’s LVT may not pass time (and its execution is suspended if it has no
more events with less or equal timestamp than t ime) until a message from the source
segment arrives. The first synchronization points are sent at the beginning of the
simulation and the user must take care to send the next synchronization point always
before he sends the expected message that deletes the actual synchronization point.
This mechanism can be used for either conservative or statistical synchronization.
The latter is supported by different statistics collecting classes, such as histograms, P?,
K-split [8].

3 Parallel Simulation of Two Interconnected FDDI Rings

We would like to demonstrate the parallel simulation with OMNeT++ on the example
of an FDDI network. In 1996, the backbone of the Technical University of Budapest
consisted of two rings: The Northern Ring was a university-wide network and con-
sisted of 15 FDDI stations interconnected by 5 wiring concentrators. The Southern
Ring was the backbone of the Faculty of Electrical Engineering and Informatics, and
being a smaller ring consisted only of 7 FDDI stations. Figure 3. shows the topology
of the network. The two rings are interconnected by the bmecisco7 router. The to-
pology of the network and the cable lengths were taken from the real system.

The load used in the simulation model came from measurements taken on the real
rings. By using a protocol analyzer, the first 32 octets of all the packets were copied
from the ring and the packet lengths, arrival times, as well as the addresses of the
source and destination stations were stored.

The natural segmentation of the network is to place each ring into its own segment.
The bmecisco7 router is a part of both rings and is cut into two in the middle. The
statistical interfaces are inserted between the two rings, each segment has one input
and one output interface, as the data flow between the segments is bi-directional. The
NeD description of the network looks as follows (the parameters were removed to
save space):



(bmeer ) (ethswl J (ethst ) [ fizika2 ]

bmeconc5 bmeconc3
bmeconc2
bmeciscol

bmeconc4

Challenge

gibridge

protocol analyzer

bmeconcl |—( Delfin J

(bigmac J ( Goliat J

protocol analyzer

Southern
FDDI Ring

bmecisco5

( Heliosz] (bmecisco4j (mhtbridge] (Wagner J

Legend:

I:I = wiring concentrator / = double attachment wiring
[: =FDDI Station / = single attachment wiring

Fig. 3. The FDDI backbone of the Technical University of Budapest in 1996

module TUB SSM
machines:
NR host, SR host;
submodules:

NRing: TUBNRing;
on: NR host;
SRing: TUBSRing;
on: SR host;
NRing oif: SSM OIF type like SSM OIF;

on: NR host;
NRing iif: SSM IIF;



on: NR host;
SRing oif: SSM OIF type like SSM OIF;
on: SR host;
SRing iif: SSM IIF;
on: SR host;
connections:
NRing.out --> NRing oif.in;
NRing oif.out --> delay 0.05 us --> SRing iif.in;
SRing iif.out --> SRing.in;
SRing.out --> SRing oif.in;
SRing oif.out --> delay 0.05 us --> NRing iif.in;
NRing iif.out --> NRing.in;
endmodule

OMMeT++/Therw - TUBs

=iEiC]

Eile Edit Simulate Trace Inspect Mieww Options  Help

ST$| RUH. |Fﬁ5?’|EH?RIbSS. UH%‘I:‘.'| @ Eﬂ
Run #3: TUBs |Event #1 |T=0.0000000 {0.005) |Mext #B TUBs SRing bmecisc
Msgs in FES: 27 | Total msgs: 26 |
Evfsec: nia Simsecssec: nia

Live msgs: 24
Ewfsimsec: nfa

Starting up segments, .,
host taid: running 'fddi taid': TID=0xd0004
host dolphing this segment, TID=0xd40003
Total ¢ zegments counted,
Broadcasting all TIDs to other segments, ..
Sending run number 2 to other segments, , .
Setting up connectionz acroszs segments,, .
Broadcasting info about our gates: my_tid=0wd40003, num_outoates=l
out_gatev[0]=TUB=,5Ring_iif,in
+e. and collecting info from the others,,.
seqn_tids[0]=0x40004 seqm_numgates[0]=1
TUB=z,MRing_iif.in =
Added SYMCPOINT: gate=0 +=0,010000, current lists:
gate=0 =0, 010000

Fig. 4. The main window of OMNeT++

The demonstration of the parallel simulation runs on two notebooks, interconnected
via 10BaseT Ethernet. The PVM version is 3.4.4, OMNeT++ the currently available
2.1 distribution [9]. The complete FDDI model can be found among the samples.
The OMNeT++ manual gives a detailed description about how to configure PVM,
and about getting the FDDI model run parallel. Despite the fact, that the FDDI simu-
lation was written in 1997, before the public release of OMNeT++ the code still com-
piles and even works. (Thanks to Andras Varga, who always updated it when the
simulator was changed.) For those, who would like to repeat the experiment: the
above statements are true only if SINGLE HOST is nof defined. If it is defined the



2.1 distribution src/sim/pvm/pvmmod. cc file will not compile, but needs about
10 minutes hacking... Bugfix is planned to be provided soon.

4 Summary

We have shown, that SSM-T is a good solution for PDES synchronization. All the
necessary functionality is already included in OMNeT++. So now we are looking for
volunteers, who test the method for real life applications.

References

1. Fujimoto, R. M.: "Parallel Discrete Event Simulation". Communications of the ACM 33,
(1990.) no 10, pp. 31-53

2. Pongor, Gy.: "Statistical Synchronization: a Different Approach of Parallel Discrete Event
Simulation". Proceedings of the 1992 European Simulation Symposium (ESS’92) (Dresden,
Germany. Nov. 5-8) SCS Europe, pp. 125-129.

3. Lencse, G.: "Efficient Parallel Simulation with the Statistical Synchronization Method"
Proceedings of the Communication Networks and Distributed Systems Modeling and Simu-
lation (CNDS'98) (San Diego, CA. Jan. 11-14). SCS International, pp. 3-8.

4. Pongor, Gy.: "Multiple Virtual Times in Parallel Discrete Event Simulation". Proceedings
of the Parallel Processing Workshop (Technical Univ. of Budapest, Budapest, Hungary,
Febr. 10-11, 1994.)

5. Lencse, G.: "Statistics Collection for the Statistical Synchronisation Method" Proceedings of
the 1998 European Simulation Symposium (ESS'98) (Nottingham, UK. Oct. 26-28). SCS
Europe, pp. 46-51.

6. Lencse, G.: "Applicability Criteria of the Statistical Synchronization Method" Proceedings
of the Communication Networks and Distributed Systems Modeling and Simulation
(CNDS'99) (San Francisco, CA. Jan. 17-20). SCS International, pp. 159-164.

7. Lencse, G.: "Design Criterion for the Statistics Exchange Control Algorithm used in the
Statistical Synchronization Method" Proceedings of the Advanced Simulation Technologies
Conference (ASTC 1999) part of the 32nd Annual Simulation Symposium (San Diego, CA.
April 11-15) SCS International, pp. 138-144.

8. Varga, A.: "K-split — On-Line Density Estimation for Simulation Result Collection". Pro-
ceedings of the 1998 European Simulation Symposium (ESS 98) (Nottingham, UK. Oct. 26-
28,.). SCS Europe, 41-45.

9. Varga, A.: "OMNeT++ Discrete Event Simulation System" (2001)
http://www.hit.bme.hu/phd/vargaa/omnetpp.htm



