EFFICIENT PARALLEL SIMULATION WITH THE STATISTICAL
SYNCHRONIZATION METHOD

Gabor Lencse
Department of Telecommunications
Technical University of Budapest
Sztoczek utca 2
H-1111 Budapest, Hungary
E-mail: Gabor.Lencse@hit.bme.hu

KEYWORDS

parallel discrete-event simulation, communication networks,
performance analysis, statistical synchronization, speed-up

ABSTRACT

The transient behavior, accuracy and efficiency of the
Statistical Synchronization Method (SSM) are studied in a
practically important case. An existing high-speed network (two
interconnected FDDI Rings) is simulated accurately. The
topology, cable lengths and the offered load is taken from the real
system. The results of the simulation with SSM are compared to
the results of a reference simulation without SSM. The execution
times of distributed and non-distributed simulations using SSM
are compared to the execution time of the reference simulation
(without SSM). The questions of implementation of parallel
simulation with the help of SSM are also discussed. We conclude
that the simulation with SSM is a bit less accurate but it facilitates
a very efficient parallel simulation, which can be easily
implemented and provides an excellent speedup.

INTRODUCTION

Discrete event simulation is a powerful method in the
performance analysis of communication networks, digital circuits
and computer systems. The simulation of large and complex
systems requires a large amount of memory and computing power
that is often available only on a supercomputer. Efforts were made
to use clusters of workstations or multiprocessor systems instead
of supercomputers, as this would be much more cost effective.
The conventional synchronization methods for parallel simulation
(e.g., conservative, optimistic) (Fujimoto 1990) use event-by-event
synchronization and they are unfortunately not applicable to all
cases, or do not provide the desirable speedup. The conservative
method is efficient only if certain strict conditions are met. The
most popular optimistic method "Time Warp" (Jefferson 1987)
often produces excessive rollbacks and inter-processor
communication.

The Statistical Synchronization Method (SSM) (Pongor 1992)
is a promising alternative to the conventional methods. As with
other parallel simulation methods, the model is divided into
segments that typically execute on separate processors; but unlike
other methods, SSM does not exchange individual messages
between the segments but rather the statistical characteristics of the
message flow. Actual messages are regenerated from the statistics
at the receiving side. Further explanation will be given later.

SSM claims to be less sensitive to communication delay and it
requires less network bandwidth than event-by-event methods.
Nevertheless, it is not accurate in the sense that an event that
occurred in one segment of the system does not have an immediate
influence on another segment. For this reason, the method cannot
be applied in some simulations, for example in the case of digital
circuits but remains feasible in other classes of simulation such as
the performance estimation of communication systems.

The transient behavior and accuracy of SSM were already
demonstrated in an earlier paper (Lencse 1997). This paper deals
with the questions of parallelisation using SSM and with the
efficiency of SSM. As SSM used for distributed simulation in this
paper is slightly different from SSM in the above mentioned paper,
some of the earlier experiments were repeated to check the
transient behavior and accuracy of the new SSM.

The simulated system is an FDDI network. First, a very
accurate non-parallel simulation of two interconnected FDDI rings
is done to set up a reference. One ring consists of several FDDI
stations interconnected by wiring concentrators and the other one
is a smaller ring of FDDI stations. The topology and the cable
lengths are taken from a real system. The load is produced by
measurements. Second, SSM is used between the two rings and
the results are compared to the case without using SSM. Third,
the simulation is executed in parallel by one processor: the
simulation of the two rings is done by cooperating processes on
the same processor; SSM is used between the two rings; the local
virtual time of the two parts of the modell is syncronized by loose
synchronisation (see later). Fourth, the simulation is executed in
parallel by two processors: the simulation of each rings runs on its
own processor; SSM and loose synchronisation is used between
the two rings. The execution times are measured in the 4 cases
and are compared.

This topic was identified as being of importance in the
efficient parallelisation of event-driven discrete event simulation
facilitating rapid and easy parallel implementation.

The remainder of this paper is organized as follows: first, a
brief introduction to SSM is given, then the simulated system is
described, next the simulation model is defined, afterwards the
questions of parallelisation are considered and finally, the
simulation results are presented and discussed.

THE STATISTICAL SYNCHRONISATION METHOD

A short summary of the Statistical Synchronization Method is
given here.

Similarly to other parallel discrete event simulation methods,
the model to be simulated -- which is more or less a precise
representation of a real system -- is divided into segments, where
the segments usually describe the behavior of functional units of
the real system. The communication of the segments can be
represented by sending and receiving various messages. For SSM,
each segment is equipped with one or more input and output
interfaces. The messages generated in a given segment and to be
processed in a different segment are not transmitted there but the
output interfaces (OIF) collect statistical data of them. The input
interfaces (IIF) generate messages for the segments according to
the statistical characteristics of the messages collected by the
proper output interfaces. (See Fig. 1.)

. re-generated
statistics

messages . : ‘/\ messages

segment A segment B

Fig. 1. An OIF - IIF pair

The segments with their input and output interfaces can be
simulated separately on separate processors, giving statistically
correct results. The events in one segment have not the same effect
in other segments as in the original model, so the results collected
during SSM are not exact. The precision depends on the
partitioning of the model, on the accuracy of statistics collection
and regeneration, and on the frequency of the statistics exchange
among the processors.

Advantages of SSM

SSM has the following advantages compared to the other
PDES (Parallel Discrete Event Simulation) methods:

e requires less network bandwidth

e tolerates communication delay better

e can be easily implemented

e requires less support from the simulation kernel

e may produce better speedup

A feasible approach can be that one implements his simulation
as a uni-processor version first. After verification, he replaces the
message paths on the segment boundaries with statistical interface
pairs. He may run the simulation fast on a cluster of workstations
and produce results that are probably less accurate than those that
can be achieved without SSM but they can be produced much
faster and are probably applicable for tuning the model on the
basis of them. The final results are to be verified with the usual
DES verification methods.

THE SIMULATED SYSTEM

To examine the characteristics of the SSM in a practically
important case, a widely used communication network: Fiber
Distributed Data Interface was chosen. FDDI is a 100-Mbps fiber

optic network standard. (ANSI X3.139, 1987) It has a dual ring
topology that can be extended by wiring concentrators. The so-
called Timed-Token access protocol is applied for media access
control purposes.

The aim of this simulation study was to examine SSM in a
realistic simulation, so all possible efforts were made to use a
simulation model that is very close to an existing network.

(bmebr2 j (ethswl j (ethsw2 j (fizika2 j
(bmebrl)

bmeconc5

| bmeconc4

bmeconc3

bmeconc2

Challenge

Northern
FDDI
Ring

bmecisco2

bmecisco3

bmeciscol

gibridge

protocol analyzer

bmeconcl |—(Delfin)

(bigmac J (Goliat J

protocol analyzer

Southern
FDDI Ring

(Heliosz) (bmecisco4) (mhtbridge) (Wagner)

Legend:

I:I = wiring concentrator / = double attachment wiring
C) = FFDI Station

Fig. 2. FDDI backbone of the Technical University of Budapest

bmecisco5

/ = single attachment wiring

The FDDI backbone of the Technical University of Budapest
was found to be appropriate. It consists of two rings: The
Northern Ring is a university-wide network and consists of 15
FDDI stations interconnected by 5 wiring concentrators. The
Southern Ring is the backbone of the Faculty of Electrical
Engineering and Informatics, and being smaller ring of 7 FDDI
stations. The topology of the network and the cable lengths were
taken from the real system. Fig. 2. shows the topology of the two
interconnected rings.

The two rings are interconnected by the bmecisco7 router.

The load used in the simulation model came from
measurements taken on the real rings. By using a protocol

analyzer, the first 32 octets of all the packets were copied from the
ring and the packet lengths, arrival times, as well as the addresses
of the source and destination stations were stored.

From the above data, one can produce a very detailed traffic
matrix T=[t;] where i and j stands for the source and destination
stations, respectively and all the t; elements are two-dimensional
distributions of the packets from station; to station;, the
dimensions being packet length and inter-arrival time.

THE SIMULATION MODEL
What is Modeled from the FDDI Network?

The parts of the FDDI standard that were found to be
irrelevant concerning our simulation are not modeled. From the
dual ring topology, only the primary ring is modeled because the
secondary ring is not used during normal operation. All the FDDI
stations contain a Media Access Control (MAC) entity. Its normal
operation (Timed-Token Ring Protocol) is simulated precisely.
All the ring initialization and ring recovery mechanisms are
omitted. At the beginning of the simulation, the operative value of
the Target Token Rotation Time (T_Opr) is set in all the stations
and a token is inserted into the ring by a chosen station. No errors
are modeled during the operation as no errors were observed
during the measurements. The exact fiber lengths between stations
were taken from measurement logbooks. The value of station
latency was taken from (MIL 3, 1996). The value of T_Opr was
queried from FDDI stations. The effect of the wiring
concentrators is modeled by a constant delay.

The Simulation Environment

The simulation was performed using the OMNeT++ discrete-
event simulator. It was developed by Andras Varga at the
Technical University of Budapest, and is freely available for
academic purposes. Readers interested in the simulator should
refer to the OMNeT++ Home Page (Varga, 1997).

OMNeT++ makes it possible to run the segments of the
simulated system on different computers. It uses PVM for the
communication of the segments. All the segments are simulated
separately using their own Future Event Sets (also called event
queue), and their Local Virtual Times (LVT) are NOT
synchronized, unless the user” explicitly asks for it.

Load Modeling

As it was mentioned before, the T=[t;] traffic matrix was
derived from the measurements on the FDDI rings. This matrix
was observed at given points of the rings where the protocol
analyzer was inserted. T is not identical with the D=[d;] demand
matrix, where dj expresses the two-dimensional (length and inter-
arrival time) distribution of send requests arriving from the outside
world at station; (as source station) to be sent to station;. We need
to use D for load generation but only T can be easily measured. In

" Throughout this paper, under “user” we mean the person who
implements the simulation.

(Lencse 1997) we have already shown why one can use T for load
generation instead of D, though they are not identical matrices.

As the average utilization of the observed FDDI network is
below 5%, a factor called Load Multiplier was introduced to
simulate higher load. The inter-arrival time is divided by this
factor so the load becomes Load Multiplier times more. By
changing the value of this factor, the load of the system can be
easily modified, while the nature of the traffic remains the same.

Traffic Between the Rings

The two rings are interconnected by a router, which has one
port in both rings. In the simulation model called "wired", the two
router-ports are interconnected by 2 wires. All the packets
destined to the router in one ring will be captured by the router
port and sent to the router port connected to the other ring. In the
model, that port has to select a destination station randomly for the
packet in the other ring, because the original routing information
was not captured during the traffic measurement. The selection is
done on statistical basis and the algorithm can be found in
(Lencse, 1997).

In the simulation models called "SSM-C" and "SSM-T" the two
router ports operate in the same way but they are interconnected
through statistical interfaces.

Statistical Interfaces

The statistical interfaces of the SSM consist of output interface
(OIF) and input interface (IIF) pairs. An OIF captures the
messages, collects statistics about them, and if certain conditions
are met it sends the statistics to the corresponding IIF. The IIF
generates messages on the basis of the statistics it received from
the corresponding OIF.

The condition that triggers the OIF to send the collected
statistics should be chosen by the user. In the earlier paper
(Lencse 1997), the counter driven approach was used. This is
called SSM-C. In SSM-C the transmission of the statistics is
controlled by the so called update threshold (UT) parameter. The
OIF counts the captured messages and if the counter reaches UT,
the OIF sends the collected statistics to the appropriate IIF and
also restarts its own statistics collection. In this way, when the
OIF sends its statistics they are already based on enough
observations to achieve the required accuracy; but this method
may produce long transient if the rate of message arrival to the OIF
is low.

We have already mentioned that OMNeT++ supports the
synchronization of the LVT’s of the segments if the virtual time of
the required synchronization is known in advance. Unfortunately,
it is not known in advance, at what LVT an OIF will finish
collecting UT number of samples. For this reason, the time-driven
approach is used in this paper. This is called SSM-T. In SSM-T
the OIF sends its statistics after an update interval (UI) LVT has
been elapsed. Using this second method, the LVT of the statistics
sending is predictable but the accuracy of the statistics is not
ensured. For the latter, the OIF does not delete its statistics at the
time of statistics sending automatically. The user must explicitly
specify, when the statistics collection should be restarted.

During the simulation, the length and the inter-arrival time of
the messages are observed by the OIF’s and the collected statistics
(histograms) are sent to the appropriate IIF’s. The IIF’s re-generate
the traffic on the basis of the statistics.

QUESTIONS OF PARALLELISATION
Partitioning of the Model

Partitioning is always an important question in parallel
discrete-event simulation. The question is even more critical if we
use SSM between the segments. SSM may be used only at points,
where not the individual messages but only the statistical
characteristics of the message flow are important. In our
simulation model, there is only one point where this condition is
satisfied: the connection between the two rings. The insertion of a
statistical interface pair into an FDDI ring would result in the
violation of the media access control protocol of the ring.

Diverse Local Virtual Times

SSM eliminates the need for event-by-event synchronization
of the segments. In this way, if the system is simulated distributed
(in multiple processes, either on the same processor, or on multiple
ones) then each segment has its own event queue, and the LVT’s
of the segments may be different. (Pongor 1994) This approach
uses SSM-C, the counter-driven version of SSM.

Loose Synchronization

It is many times expected, that the LVT’s of the segments meet
at certain points of time. For example, if a parameter is changed in
segment A at to, its effect should reach segment B not earlier than
to and not later than ty+At, where At is an allowed time interval for
the transient. This requirement can be satisfied by the following
construction:

Loose synchronization between segment A and segment B is
defined formally as follows:

Let ti, t, t3, ... t, ... to be synchronization points of time.
Let ta and tg denote the LVT’s of segment A and segment B,
respectively.

Segment A and segment B are loosely synchronized if:

((tA < ti) = (tB < ti)) AN ((tA > ti) = (tB > ti)), i= 1, 2, e,

The loose synchronization of the two segments means that
none of them may leave any synchronization point of time (t;) until
the other one reached it.

In t; the segments A and B may exchange the statistics they
have collected before ti and they may use the new ones in the [t;,
ti1] time interval. With the appropriate choice of the ¢t
synchronization points of time, it is ensured that the effect of a
change in segment A in tyo will reach segment B at the eariest at to
and at the latest at totAt. In this paper, we use loose
synchronization where t=i*UI, Ul being the update interval. This
approach uses SSM-T, the time driven version of SSM. The great
advantage of the loose synchronization and SSM-T over the event
by event synchronization is that the segments may be simulated
independently between the t; synchronization points of time.

The simulation tool, OMNeT++ supports the loose
synchronization in the following way. If Segment 4 wants to send
a message to Segment B at LVT t, then Segment A should ask the
simulator not to let the LVT of Segment B pass t, until it received
a message from Segment A. In this way, the causality is ensured
and no rollback is necessary. This is a so-called "uni-directional"
synchronization. If both segments ask for synchronization for the
same LVT, then the LVT’s of the two segments will really meet.

SIMULATION RESULTS
Types of Transients Caused by the SSM

The aim of our first simulation experiments was to examine
the transient behavior of SSM. First, to set up a reference, the two
rings were interconnected with wires. Second, the wires were
replaced with the statistical interfaces of SSM-C. Third, SSM-T
was used between the two rings. With the help of the Load
Multiplier factor, the offered load of the Northern Ring was raised
by a factor of 2 at t;=1 (LVT) and it was set back to its original
value at t,=2s. The statistics collection of the output interfaces of
SSM-T was restarted at t; and t,. We observed the utilisation in
both rings and calculated the average in each 25 ms (LVT)
window and plotted as a function of time.

0.9
0.8 NR wired

07} |
ol | NR_SSM-C UT300 l‘

ol

047 <€— NR SSM-T UI=100ms

03 -)/SR wired RS R ""x"/

0.2 -[fwvww" \

011 SR _SSM-T UI=100ms

0

0 0.5 1 1.5 2 25 3
Fig. 3. Transient behaviour: the load changes

Fig. 3. shows the average of 20 simulation runs with different
seeds for the random number generator. The averaging of the
results of multiple runs was necessary because there were too
many fluctuations -- the 25 ms window size could not be increased
because the transients would have disappeared.

The curve titled "NR wired" shows the utilization of the
Northern ring in the case when the two rings are interconnected by
wires and serves as a reference. "NR SSM-C UT=300" and
"NR_SSM-T UI=100ms" show the utilization of the Northern
Ring in the case when using SSM-C and SSM-T, respectively.
The meanings of the curve titles are similar for the Southern Ring
(SR).

Two types of transients can be observed in the graph. The
initial transient is caused by the statistical interfaces only: a
certain proportion of the load of the rings comes from the other
ring, and the OIF - IIF pair needs some time to collect statistics.
This time (and in this way the length of the initial transient)

depends on the rate of packets arriving to the OIF in the case of
SSM-C. This difference can be observed in the graph: the
Southern Ring has longer initial transient then the Northern Ring.
In the case of SSM-T the length of the initial transient depends on
the UI parameter only and for this reason it is of equal length for
both rings. When the load of the rings is changed, the statistical
interfaces need some time to collect new statistics, in this way if
there is a transient in the simulated system, SSM produces further
transient. Let us see the graph again: at t; NR_SSM-C and
NR_SSM-T rise with NR_wired, because the load from the
Southern Ring to the Northern Ring does not change. After t; the
IIF of the Southern Ring still generates packets according to the
old statistics, so SR_SSM-C and SR_SSM-T do not raise until the
IIF gets new statistics. The situation is similar after t, but the
transient of the SSM-C is longer than after t; because the OIF
sends the statistics after the arrivial of every UT-th packets and
after t, the load in the Northern Ring is significantly less the after
ti. Again, the length of the transient caused by SSM-T is equal to
UL

A drawback of SSM-T is that the OIF can not automatically
delete its statistics after sending them because it has to be ensured
that the statistics collected by the OIF are based on enough
observations. In the present implementation of the OIF of SSM-T
it is the responsibility of the user to explicitly specify when the
statistics collection of the OIF has to be restarted. As it can be
seen from the graph the UI=100ms is large enough ("NR_SSM-C
UT=300" rises earlier than "NR_SSM-T UI=100ms") to collect the
necessary number of observations. The needed time interval for
the collection of the required number of observations is not known
in general bacause it depends on the arrivial rate of the messages.
Of course, if the arrival rate is measured in advance, an appropriate
UI can be choosen and then the OIF may delete the old statistics
right after sending them.

Accuracy of the Results

As it was examined in (Lencse 1997), SSM-C produces
acceptable result accuracy. SSM-T is even better, as its statistics
are based on more and more observations as time elapses because
the OIF does not delete the old statistics. If the user tunes the
value of the UI and asks for the deletion of the statistics after every
sending of the statistics to the appropriate IIF, then the result
accuracy will depend on the choice of Ul

Fig. 4. shows the utilisation of the rings for a longer period.
The value of the average utilisation in the (1s, 5s) interval can be
seen in brackets next to the titles of the curves.

0.8
NR wired, (0.4472)
0.7
06| / NR SSM-T UI-100ms, (0.4500)
0571

o4 W
SR_wired, (0.2076) i

03f /

0.2 WW@W
orf T~ SR_SSM-T UT=100, (0.2150) 1
0

0 0.5 1 1.5 2 25 3 35 4 4.5 5
Fig. 4. Utilisation of the FDDI rings with and without SSM-T

Efficiency of SSM

The main aim of our research is to speed up the simulation
with SSM. The following 4 simulation models were executed
until 2s virtual time.

1. The two rings are interconnected by wires; the simulation of
the whole network is done by one process; there is one event
queue; the LVT’s of the two rings are common.

2. The two rings are interconnected by statistical interfaces of
type SSM-T; the simulation of the whole network is done by
one process; there is one event queue; the LVT’s of the two
rings are common.

3. The two rings are interconnected by statistical interfaces of
type SSM-T; the simulation of the rings is done by two
separate processes having their own event queue; the LVT’s
of the two rings are loosely synchronized. The two
processes are executed by the same processor, using PVM for
communication with each other.

4. The two rings are interconnected by statistical interfaces of
type SSM-T; the simulation of the each ring is done by a
separate process having their own event queue; the LVT’s of
the two rings are loosely synchronized. Each process is
executed by its own processor, using PVM for
communication with each other.

Of course, the results produced by the execution of the 2, 3
and 4 models are completely the same, only the execution times
differ.

All the experiments were executed on PCs with 100MHz Intel
Pentium processors, I6MB RAM, 512KB cache. In model 4, the
two computers were interconnected by a 150 Mbps ATM network.
The processes ran under Linux operating system (kernel version
2.0.25) and were compiled by gec v2.7 with the "-O3" flag on (full
optimization). The PVM version was 3.3.

The execution times were measured by the UNIX "time"
command; the so called wall clock times were taken into
consideration. (Wall clock time means the physically elapsed time
in the real world from the start to the termination of a process.)

Table 1. shows the results. As it can be seen, neither the
insertion of the SSM-T interfaces (model 2) nor the loose

synchronization with the necessary inter-process communication
(model 3) caused significant overhead compared to the reference
simulation (model 1). The results of model 4 show 1.91 and 1.86
speedups compared to the results of model 1 for Ul=100ms and
UlI=10ms, respectively. Model 4 was executed for Ul=1ms too
and its execution time was 5 minutes and 33 seconds resulting in a
speedup of 1.75. This is also good but Ul=1ms probably will not
be used in practice being too small for statistics collection as the
typical value of the TTRT (Target Token Rotation Time) of FDDI
is in the order of 10ms.

Other Observations

During the simulation
observations were made:

experiments two interesting

The Future Event Set of the OMNeT++ simulator is stored in a
(binary) heap. When linked list was used instead of heap, the
following observation was made. First, the network was simulated
in one process using SSM-T. Afterwards, it was simulated in two
processes running on the same processor. In the second case the
execution of the simulation required 23% less wall clock time than
in the first case. It sounds surprising but the explanation is very
simple. In the first case the average size of the FES was 79. In the
distributed case the average sizes of the FES's were 55 and 24 for
the Northern Ring and for the Southern Ring, respectively. The
number of all the simulation events to schedule was nearly the
same in the two cases but in the second case the linked lists
(storing the FES) were shorter so it required fewer instructions to
handle them. (Especially the number of the key comparisons
dominates.) When heap was used for implementing the FES, no
such kind of speedup was experienced. This observation is in
accordance with the theoretical results in (Lencse 1995).

The other observation is the negative correlation between the
load of the FDDI rings and the execution time of the simulation.
When the load of a ring is small, the stations are repeating the
token in the majority of the time, as they do not have packets to
transmit. The token is short, so the average increment of the
virtual time per event is very low. The simulation of an empty
FDDI ring requires more events (and in this way more execution
time) than a heavily loaded one. For this reason the FDDI models
used in commercial simulators detect the idle state of a ring and
use token extraction and retransmission mechanisms (MIL 3
1996).

CONCLUSION

The transient behavior and accuracy of the Statistical
Synchronization Method were tested and compared to the
traditional event-by-event synchronization. The selected simulated
system was an FDDI network. It was found that the results
produced by using SSM-T are close to the results of the traditional
simulation used as reference.

A simple parallelisation method was proposed with the loose
synchronization and SSM-T. Using this method, a speedup of
1.91 or 1.86 (depending on the UI parameter of SSM-T) was
achieved in the simulation of two interconnected FDDI rings by
two networked computers.

It was found that in some cases the parallel simulation
produces speedup even if the processes simulating the parts of the
system execute on a single processor.

We conclude that SSM-T and loose synchronization makes it
possible to implement efficient parallel simulation of large systems
on clusters of workstations or multiprocessor systems.

Model no. UI =100 ms UI=10 ms
1 9:42
2 9:43 9:46
3 9:45 9:50
4 5:04 5:13

Table 1. Execution times of simulation models in [min:sec]

REFERENCES

ANSI X3.139. 1987. Fiber Distributed Data Interface (FDDI) Token Ring
Media Access Control (MAC). American National Standards Institute,
New York, NY

Fujimoto, R. M. 1990. "Parallel Discrete Event Simulation."
Communications of the ACM 33, no 10, 31-53

Jefferson, D; B. Beckman; F. Wieland; L. Blume; M. DiLoreto; P.
Hontalas; P. Laroche; K. Sturdevant; J. Tupman; V. Warren; J. Vedel; H.
Younger and S. Bellenot. 1987. "Distributed Simulation and the Time
Warp Operating System." Proceedings of the 12th SIGOPS - Symposium
on Operating System Principles, pp. 73-93.

Lencse, G. 1995. "Investigation of Event Set Algorithms" Proceedings of
the 1995 European Simulation Multiconference (ESM 95) (Prague, Czech
Republic, June 5-7). SCS Europe, pp. 821-825.

Lencse, G. 1997. "Efficient simulation of large systems - Transient
Behaviour and Accuracy" Proceedings of the 1997 European Simulation
Symposium (ESS 97) (Passau, Germany, Okt. 19-23). SCS Europe, pp.
660-665.

MIL 3. 1996. OPNET Example Models Manual, Release 3. (Chapter
FDDI) MIL 3, Inc.

Pongor, Gy. 1992. "Statistical Synchronization: a Different Approach of
Parallel Discrete Event Simulation". Proceedings of the 1992 European
Simulation Symposium (ESS 92) (The Blockhaus, Dresden, Germany,
Nov. 5-8). SCS Europe, pp. 125-129.

Pongor, Gy. 1994. "Multiple Virtual Times in Parallel Discrete Event
Simulation". Proceedings of the Parallel Processing Wokshop (Technical
Univ. of Budapest, Budapest, Hungary, Febr. 10-11). Request paper from
its author by E-mail: Pongor@hit.bme.hu

Varga, A. 1997. The OMNeT++ Home Page
http://www.hit.bme.hu/phd/vargaa/omnetpp.htm

BIOGRAPHY

Gabor Lencse was born in GyOr, Hungary, in 1970. He received his M.S.
in electrical engineering and computer systems from the Technical
University of Budapest in 1994. He is currently pursuing his Ph. D. at the
same university. The area of his research is computer architectures and
parallel processing. He is interested in (parallel) discrete event simulation.

