INVESTIGATION OF EVENT SET ALGORITHMS

Gabor Lencse

Department of Telecommunications
Technical University of Budapest
Irinyi ut 42
H-1117 Budapest, Hungary
E-mail: Gabor.Lencse@hit.bme.hu

ABSTRACT

Seven data structures are examined by simulation and compared
to find out which one should be used to implement the Future
Event Set of an event driven discrete event simulator. The
number of key comparisons and pointer references as well as the
CPU time are measured. The effect of the different CPU
architectures is examined. Various parameters of the model are
changed to determine the characteristics of the studied event set
algorithms.

We conclude that both the processor type and the distribution of
the delay of the new events influence which data structure
produces the best time properties. Though balanced trees
proved to be quite good, heap and especially skip list was found
to be significantly better on modern processor architectures.

INTRODUCTION

Discrete event simulation is a powerful method in the
performance analysis of networks, multiprocessor systems,
digital circuits and other computer systems. In the case of the
event-driven approach, the events (the state changes of the
system) are stored in the Future Event Set (FES). The data
structure and the algorithms used for storing the elements of the
FES influence the speed of the simulator to a great extent.

The most common data structures have already been studied and
their general performance characteristics have been determined.
The cost of different operations on the given data structure (e. g.
the number of key comparisons necessary) is mostly expressed
as the function of the elements currently stored in the FES.
Most investigations on data structures and algorithms assume
that the keys are random (with uniform distribution), the number
of search operations is much higher than the number of
insertions or deletions and the element to be searched or deleted
is also randomly chosen (Aho et al. 1975; Knuth 1973; Wirth
1976). Nevertheless, in the case of the FES, the keys are not
uniformly distributed, but show a rising tendency; in the vast
majority of cases, the first element is deleted and a new one is
inserted. Sometimes randomly chosen elements are deleted, but
no other search operations are used. Reeves (Reeves 1984)
examined variants of lists and heaps, but the different kinds of
tree structures and the skip list (Pugh 1990) require further
investigation.

This paper deals with the experimental investigation of the
performance of different data structures as they are used for
storing the elements of the Future Event Set of an event-driven
discrete event simulator. The examined data structures are:
ordered single-linked list, binary tree, AVL-tree, B-tree, 2-3-
tree, heap and skip list (Aho et al. 1975; Knuth 1973; Pugh
1990; Wirth 1976).

This topic was being of importance to
implementing event-driven discrete event simulators.

identified as

THE MODEL USED FOR INVESTIGATION

To construct a model suitable for our study, we must start from
the algorithm of the event-driven discrete event simulation. Let
us see this algorithm first:
initialize, insert certain events into the FES;
repeat
remove the first event from the FES;
NOW:=the time of the event removed from the FES;
process the event, during this insert some event(s) into the FES
if necessary;
until (FES is empty) or (NOW=>limit) or (for other reason, we must
stop)
Here, 'first event' means the event with the smallest time stamp.
Our model for the FES must be an abstract data structure with
the insert and first operations that insert a new event into the
FES and removes the earliest one from the FES, respectively.
In addition to these operations, a third one is required:
sometimes it is necessary to delete an arbitrary event from the
FES. (This is used for example for handling time-out.)
As we do not take measurements on an existing simulator that is
simulating a given system, but examine how the different data
structures behave if we use them to implement the FES, we must
make the following assumptions:
1. during its processing, an event may generate one or more
new events
2. the time interval between the time stamp of the current event
and that of a newly generated event follows a certain
probability distribution
3. the choice of the event to be deleted from the FES is random
with uniform distribution
To judge the behaviour of the different event set algorithms, the
following characteristics are measured:
e number of key comparisons necessary

e number of pointer references necessary

e CPU time used

Of course, the last one depends on the architecture of the
computer used for performing the simulation.

THE PARAMETERS OF THE MODEL

The State of the FES
According to the first assumption, we must take into
consideration whether an event generates exactly one event or
more. We must examine both the steady state (number of events
in the FES is constant) and the transient one (number of events
in the FES is increasing). In the latter case, let all events
generate wo new ones.

The Number of Events in the FES

The aim of this study is to determine and compare especially the
asymptotic behaviour of the different event set algorithms, so a
sequence of measurements is necessary using different values for
n that denotes the number of events stored in the FES. Let n take
the values 10, 21, 46, 100, 215, 464, 1000, 2154, 4641, 10000.
The numbers were chosen so that the difference between the
logarithm of the successive values be approximately the same
constant.

The Number of Simulation Steps

This way, 2n insertions and » first operations are performed in
the transient state. Let m denote the number of steps (first and
insert operations) in the steady state. This number must be large
enough to ensure the accuracy of the measurements.

The distribution of the delay

The probability distribution of the time interval
between the current event and the newly generated one
(mentioned in the second assumption) was represented by the
following distributions:

e uniform distribution in the [0, 1] interval

e exponential distribution with A=1 intensity

e normal distribution: Expected value=1, Standard
deviation=0.3

e normal distribution: Expected value=1, Standard
deviation=0.1

(where the normal distributions are truncated to £>0)

The number of deletions

Let us use deletions (see assumption 3) as a given percentage of
all the removal of events from the FES. The values used were
0%, 5%, 10%, 20%, 50%. Let us call them delete percentages.
(The 0% means that all removals are first operations and the

50% means that the number of random deletions equals with the
number of first operations.)

The type of the processor

As it was mentioned before, the time of the operations depends
on computer architecture. For this reason, three different
processors were used. (DEC ALPHA, i80846-DX, i80486-DLC.
For more details see the next section.) On a processor without
hardware floating point support, the number of key comparisons
dominates. However when the hardware support speeds up the
floating point operations, the number of pointer references and
other instructions necessary for the maintenance of the data
structure may influence the time of the event set operations more
than in the first case.

Data structures studied

The names of the seven data structures used for storing the
clements of the FES are listed here:

e ordered single-linked list

e Dbinary tree

e AVL-tree
e B-tree

o 2-3-tree

e heap

e skip list

Six out of the seven parameters described in the previous sub-
sections (with the exception of m, the number of simulation
steps in the steady state) are orthogonal, which means that
measurements must be performed for all possible combinations
of their values. This way, we get a huge quantity of results.

INVESTIGATION BY SIMULATION

To measure the before mentioned performance characteristics of
the seven data structures, several series of very simple event
driven discrete event simulations were performed. Events were
inserted into the FES and they were removed by first or delete
operations. The algorithm of the discrete event simulation
shown at the beginning of the paper was modified as follows:
The removal of the element is done by delete operation with the
probability of delete percentage and by first with (1-delete
percentage) probability. "NOW" is updated only in the case of
first. After every removal two new events are inserted with the
time stamp of NOW-+random(actual distribution) in transient
state and only one in steady state.

The parameters were changed across the series of simulation
runs and 100 experiments were executed with all the parameter
combinations used. Average and standard deviation of the
number of key comparisons and pointer references as well as
that of the CPU time used were calculated. The following

formula of empirical deviation was used:

2 2
o= E (x)-NI&X

N-1
Where N=100 is the number of experiments and X denotes the
average value of x.
The rest of this section describes further details necessary to
reproduce the simulation.
All the programs were written in the C++ language taking
advantage of both the incomplete Boolean evaluation and
operator overloading. The standard 'double' type of C++ was
used to store the keys of the events.
The simulation was run on three different computers.
One of them was a DEC ALPHA workstation (150MHz,
Evolution 4 processor, 512 KB cache, 64MB RAM, DEC 2000,
model 300, DEC OSF/1 V3.0 operating system). The programs
were compiled with gce (v2.6) using all optimizations (-O3
flag).
The second one was an Intel 80486 DX2 (66MHz, 256KB
cache, 20MB RAM, DOS 6.2). The Borland C++ 3.1 compiler
was used and the compilation was optimized for the speed of the
code. The memory model was "Compact".
The third one was an Intel compatible (Texas) 80486 DLC
(40MHz, 128KB cache, 4MB RAM, no mathematical co-
processor, DOS 6.2). The compiler and its options were the
same as in the second case except that the floating point
emulation was turned on as this third processor (unlike the first
two) does not have hardware floating point support.
Unfortunately, the clocks of these machines have the resolution
of Ims, 55ms, 55ms, respectively, so it was necessary to repeat
the experiments within one time-measuring interval in the case
of the transient state for the small values of n (number of events
loaded into the FES) to obtain acceptable accuracy.
The number of steps in steady state (earlier denoted by m) was
chosen to be large enough (10,000, 10,000 and 1000 for the
three processors, respectively) to ensure the satisfactory
precision of the time-measuring.
The random number generator was taken from (Jain 1991) to
ensure the quality of the random numbers used for the
simulation.
The algorithms of the data structures were taken from the
sources below:
AVL-tree (Wirth 1976)
B-tree (Wirth 1976)
heap (Gonnet 1984)
skip list! (Pugh 1990)
As the 2-3-tree is the special case of the B-tree, the code was
written on the basis of the B-tree applying a number of
simplifications. Binary tree and list were found to be trivial and
implemented by the author.
Heap is usually implemented in the way that its elements are
stored in an array. However, this slows down its operations

IThe source code was downloaded via anonymous ftp from
ftp.cs.umd.edu/pub/skipLists

when an element has to be moved. For this reason, only pointers
to the elements (the events) were stored in the array.
The parameter of the B-tree is 20, that is, minimum 20,
maximum 40 keys can be stored in a node. And again, pointers
to event entries were stored in the array of the node.

DISCUSSION OF THE RESULTS?
Distribution Dependence

The quantity of the results is so large that some reductions seem
to be necessary. Let us examine first whether the performance
of the different event set algorithms depends on the distribution
used. (If not, then we can reduce the data to be examined by
75%.)

The number of key comparisons is suitable for this purpose as it
is not architecture-dependent so it is enough to examine a data
structure only one processor.

The AVL-tree, the B-tree and the 2-3-tree show very similar
behaviour: their behaviour does not depend on the distribution
used, and the number of key comparisons is rising as a function
of delete percentage. The graph below shows the results for the
B-tree only as the figure would be very similar for the other two
trees.

B-tree, transient state, FES is filled up to 1000 events

30000
25000 W Uniform
E Expon.
Number 20000 B Normal 1
ofkey 15509 [Normal 2
compa-
risons 10000
5000
0 —
0% 5% 10% 20% 30%
delete percentage
This distribution independence is not

surprising, because all the three trees are

well balanced, and the effect of delete
percentage can be explained by the fact
that the first operation does not require

key conparisons while the del ete does.

The binary tree (see on the next page) shows distribution
dependence. This data structure produces its best results in the
case of the exponential distribution. If we compare the results of
the two normal distributions,
produces worse results than the other one.

the one with smaller deviation
(An intuitive
explanation is that the first operation consumes the binary tree
from its left side and insertion builds it on the right side. This is
even more true if we use normal distribution with small
deviation as it is nearer to the deterministic scheduling of the

21f you are interested to get all the results, please send an e-mail
to the author (Gabor.Lencse@hit.bme.hu).

new events using constant delay. The exponential distribution
produces values near zero with higher probability so it also
builds the left side of the tree.).

Binary Tree, transient state, FES is filled up to 1000

events
60000 ;
<0000 W Uniform
E Expon.

Number 40000 M Normal 1
of key
compa- 30000 O Normal 2
risons 20000

10000

0 —

0% 5% 10% 20% 50%
delete percentage

Another important observation is that the delete percentage has
much less influence on the number of key comparisons here than
we saw earlier.

The behaviour of the heap is shown in the graph below:

Heap, transient state, FES is filled up to 1000 events

20000
W Uniform
15000 B Expon.
Number B Normal 1
ofkey 16000 O Normal 2
compa-
risons
5000
0

0 5 10 20 50
delete percentage

It has a slight distribution dependence, but it is small so we can
neglect it. Unlike all the others, heap requires less key
comparisons as the delete percentage increases.

The simulation with the list was so slow that it could not be run
by n=1000, so now we shall use the results for n=215. (These
values should not be compared to the result of the other data

structures with n=1000.)

List, transient state, FES is filled up to 215 events

100000
. - -
80000 o
Number m -
of key 60000 o .
compa- 40000 —
risons
20000
0 Ly

0 5 10 20 50
delete percentage

Its distribution dependence is similar to that of the binary tree,
and the number of key comparisons increases slightly in the
function of the delete percentage as well.

Finally, let us look at the skip list:

Skip List, transient state, FES is filled up to 1000 events

50000
M Uniform
40000 E Expon.
Number
ofke 30000 M Normal 1
y O Normal 2
€ompa- (000
risons
10000
0

0 5 10 20 50

delete percentage

The distribution dependence

but the nunber of

certain
gr ows.

is negligible
key conparisons shows a
increase as the delete percentage

Comparison of the performance of the data structures

As discussed above, both the distribution and the delete
percentage may influence the performance of the data structures
examined. This can make the comparison very hard unless we
find a reasonable compromise. Let us use a 10% delete
percentage - that seems to be quite realistic. The solution to the
problem of distribution dependence is to use two graphs of the
data structures the performance of which is highly influenced by
the distribution used, the binary tree and the list. One of them
shows their best result and the other the worst one, denoted by
"b" and "w", respectively. Uniform distribution is used for all
the other 5 data structures.

The following 3 figures show the time characteristics of the data
structures.

First, we examine the case where the processor does not support
the floating point operations:

Steady state, 1000 simulation steps, i486 DLC
(no hardware floating point support)
10% of all the removals is "delete"

—e— List (w)
—u—List (b)
—— Bin. tr. (w)
—=— Skip List
—*— AVL-tree
—eo— Heap
——2-3-tree
—— B-tree

— Bin. tr. (b)

10 21 46

100 215 464 1000
Number of events in the FES

(Not e: t he hori zont al

| ogarithmic scale.)

The well-balanced data structures (2-3-tree, B-tree and AVL-
tree) performed well because they efficiently minimize the

axi s has a

number of key comparisons that dominate the time on this

processor. Heap is fairly good here because it requires a
relatively small number of key comparisons as we saw earlier.
Binary tree required the least time when it showed its "best case"
performance. However, since we cannot guarantee that
exponential distribution will be used in the vast majority of the
simulations, we must (also) consider the worse performance
results of the binary tree.

Skip list was definitely worse than the balanced trees.

Of course, list was inferior to all of them.

Second, we deal with the results produced on the other Intel
processor - the one with built-in mathematical co-processor:

Steady state, 10000 simulation steps, 1486 DX
(with hardware floating point support)
10% of all the removals is "delete"

—— List (w)

—=— List (b)
1200 —&— B-tree
—%— Bin. tr. (w)
1000 —%— 2-3-tree
time 800 —e— Heap
[ms] 600 —+— AVL-tree
——— SkipList
400 — Bin. tr. (b)
200 +
10 21 46 100 215 464 1000 2154 4641

Number of events in the FES

As we can see, AVL-tree, 2-3-tree and heap retained their good
position, B-tree is significantly worse. We can say the same
about the binary tree and the list as we did earlier at the previous
processor. Linked list is the worst only above a certain value of
n, the number of events in the FES. On this platform, skip list

has overtaken the well-balanced tree structures and the heap.

Finally, let us have a look at the results on the ALPHA
processor. Here we use 0% delete operations and apply uniform
distribution to all the data structures:

Steady state, 10000 simulation steps, DEC ALPHA
(with hardware floating point support)
all the removals are "first" operations

—e— List

—=&— Bin. tree
—4— AVL-tree
—*—2-3-tree
—*— B-tree
—e— Heap
—+— SkipList

time
[ms]

10 21 46

100 215 464 1000 2154 4641
Number of events in the FES

The graph shows that the heap and
especially the skip list are the best
choice on this architecture.

CONCLUSION

Seven data structures were examined by simulation and
compared to find out which one should be used to implement the
Future Event Set of an event driven discrete event simulator.

We conclude that both the processor type and the distribution of
the delay of the new events influence which data structure
produces the best time characteristics.

By examining the number of key comparisons, we found that the
balanced trees and heap produce the lowest values from among
all the data structures. For this reason if we use a processor
where the CPU time of the event set operations is dominated by
the key comparisons (that is, floating point operations are not
supported by hardware), balanced trees and heap are the best
choice. Binary tree produced good performance characteristics
in the case of exponential distribution, though in the case of
other distributions binary tree shows worse results.

On the other hand, skip list and also heap have produced much
better time characteristics than the balanced trees when
advanced hardware floating point processing was used.
(ALPHA processor) In this case, it is worth using skip list or
heap rather than balanced trees, especially because their
algorithms are even simpler than that of the balanced trees.

REFERENCES

Aho, A. V.; J. E. Hopcroft; and J. D. Ullman. 1975. The Design

and Analysis of Computer Algorithms. Addison-Wesley,

Reading, Mass.

Gonnet, G. H. 1984. Handbook of Algorithms and Data
Structures. Addison-Wesley.

Jain, R. 1991. The Art of Computer Systems Performance
Analysis. John Wiley & Sons, 441-444, 455.

Knuth, D. E. 1973. The Art of Computer Programming. Vol. 3.
(Sorting and Searching) Addison-Wesley

Pugh, V. 1990. "Skip Lists: A Probabilistic Alternative to
Balanced Trees" Commun. of the ACM 33, no. 6 (June) 668-676

Reeves, C. M. 1984. "Complexity Analyses of Event Set
Algorithms" The computer journal 27.no. 1, 72-79

Wirth, N. 1976. Algorithms + Data Structures = Programs.
Prentice Hall

BIOGRAPHY

Gabor Lencse was born in GyOr, Hungary, in 1970. He
received his M.S. in electrical engineering and information
science from the Technical University of Budapest in 1994. He
is currently pursuing his Ph. D. at he same university. The area
of his research is computer architectures and parallel processing.
He is also interested in PVM.

List, transient state, FES is filled up to 215 events

100000
80000

Number
of key 60000

compa- - 40000
risons

20000

0

5 10 20

delete percentage

50

M Uniform
E Expon.

B Normal 1
O Normal 2

