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ABSTRACT

The statistics collection methods applied to the Statistical
Synchronisation Method (SSM) are studied. The distributions to be
estimated are assumed to be time invariant. The accuracy and the
resource requirements of the statistics collection is investigated both in
general for some well-known distributions and in a practically important
case: in a simulation of an FDDI network.

INTRODUCTION

The Statistical Synchronisation Method (SSM) (Pongor 1992) is a
promising alternative to the conventional synchronisation methods for
parallel discrete event simulation (e.g., conservative, optimistic)
(Fujimoto 1990).

The conventional synchronisation methods use event-by-event
synchronisation between the segments of the simulated system and they
are unfortunately not applicable to all cases, or do not provide the
desirable speedup. The conservative method is efficient only if certain
strict conditions are met. The most popular optimistic method "Time
Warp" (Jefferson et al. 1987) often produces excessive rollbacks and
inter-processor communication.

SSM does not exchange individual messages between the
segments but rather the statistical characteristics of the message flow.
Actual messages are regenerated from the statistics at the receiving side.
(Further explanation will be given later.) SSM claims to be less
sensitive to communication delay and it requires less network
bandwidth than event-by-event methods. Nevertheless, it is not accurate
in the sense that an event that occurred in one segment of the system
does not have an immediate influence on another segment. For this
reason, the method cannot be applied in some simulations, for example
in the case of digital circuits but remains feasible in other classes of
simulation such as the performance estimation of communication
systems.

The transient behavior and accuracy of SSM applied to an FDDI
simulation were already demonstrated in (Lencse 1997), and the
questions of parallelisation using SSM were discussed in (Lencse 1998).
The latter paper shows that a very good speed up can be achieved in a
PDES (parallel discrete-event simulation) applying SSM and loose
synchronisation between the segments of the simulated system, because
the processors executing the segments run independent in the vast
majority of time.

The aim of this paper is to examine what statistics collection
methods should be for used for SSM to be able to faithfully regenerate
the statistical characteristics of the message flow. The distributions to
be estimated are assumed to be time invariant. The accuracy and the
resource requirements of the statistics collection, sending and
regeneration are investigated both in general for some well-known
distributions and in a practically important case: in a simulation of an
FDDI network.

The applied distribution estimation methods are: count the relative
frequency of the possible values of the random variable (for the discrete
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case only), the equidistant histogram, the Barron estimate and two types
of the equiprobable bin histograms.

The investigated resource requirements are: computation used
during the statistics collection and statistics regeneration, storage
requirements  during  statistics  collection and  regeneration,
communication requirement between the segments.

The remainder of this paper is organized as follows: first, a brief
introduction to SSM is presented, then the reasons for the choice of the
error criterion are given, next the statistics collection methods and their
resource requirements are considered, afterwards the types of the
distributions that can be met in discrete-event simulation (DES) are
discussed, finally the accuracy of the estimation of the discrete,
continuous and pseudo-continuous types of random variables are
investigated both in general and in a special case.

This topic was identified as being of importance in the
investigation of the accuracy of the Statistical Synchronisation Method.

THE STATISTICAL SYNCHRONISATION METHOD

For those not familiar with SSM, a short summary of the Statistical
Synchronisation Method is given here. See (Pongor 1992) for more
information.

Similarly to other parallel discrete event simulation methods, the
model to be simulated -- which is more or less a precise representation
of a real system -- is divided into segments, where the segments usually
describe the behavior of functional units of the real system. The
communication of the segments can be represented by sending and
receiving various messages. For SSM, each segment is equipped with
one or more input and output interfaces. The messages generated in a
given segment and to be processed in a different segment are not
transmitted there but the output interfaces (OIF) collect statistical data
of them. The input interfaces (IIF) generate messages for the segments
according to the statistical characteristics of the messages collected by
the proper output interfaces. (See Figure 1.)
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Figure 1. An OIF - IIF pair

The segments with their input and output interfaces can be
simulated separately on separate processors, giving statistically correct
results. The events in one segment have not the same effect in other
segments as in the original model, so the results collected during SSM
are not exact. The precision depends on the partitioning of the model, on
the accuracy of statistics collection and regeneration, and on the
frequency of the statistics exchange among the processors.

THE CHOICE OF THE ERROR CRITERION

Our task is to estimate the unknown distribution of a random
variable X having the distribution function F(x)=Pr(X<x) and (in the



continuous case) probability density function f(x)=F’(x). We estimate
f{x) by g(x) and measure the error of the estimation by one of the error
criteria:
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The most popular error criterion is the L, (squared error) because
of its analytical simplicity. However, it is not adequate here, because it
de-emphasizes the tails of a density by squaring the small density values
there. L; is the criterion of choice, for the following reason: we are
interested in that how well we can estimate the probabilities of events
i.e. the integral of f{x) for a given interval, rather than the function f{x)
itself. In other words how much differs the probability measure of our
estimation g(x) from the theoretical f{x) for any Borel sets. The
supremum of this difference can be expressed by the L error, Scheffe's
Theorem, see (Devroye and Gy 6rfi 1985. p. 2.):

1 e 1
sup I (x)dx = | g(x)dx‘ =~ I 7~ emlas =~ 1,
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Another useful property of the absolute error (L) is its invariance
to monotone continuous changes of scale (Scott 1992. p. 41). L isa

dimensionless quantity and it is easy to see that 0 <L; < 2.

For discrete random variables, L is calculated by sum instead of
integral. Let X take the values x1, X2, ... Xk, ... with the probabilities p1,
P2 --- Px ... Let qi, q2, ... qk ... denote the measured relative
frequencies of the values taken by X.

L = %‘pk _qk‘

THE STUDIED STATISTICS COLLECTION METHODS

As simulation is usually applied to solve complex problems the
analytical solution of which is not known, the distributions observed in
simulation are not known in the vast majority of cases, so we consider
only the nonparametric estimations. In the next subsections we examine
the computation, storage and communication requirements for the
studied statistics collection algorithms. We assume the reader is
familiar with the elementary algorithm theory (Aho et al. 1975) and the
C programming language. (C code segments will be setin courier.)

Relative Frequency

If a random variable has a discrete distribution and can take not
too many values that are known in advance, the simplest way to collect
statistics of the random variable is to count for its all possible values
how many times they occur in the sample. It is called empirical
distribution. Let X1, X2, ... Xk, ... Xm denote the possible values of the
discrete random variable X. If X takes its possible value x for ny times
in a sample of size N, its relative frequency is qx = ni/N. To collect
statistics one needs an array of counters (that is integers) of size M. In
the general case we need to store the xi values ordered (requires another
array of size M, usually an array of type “double” in the C
programming language) and use binary search for all X; (i =1 to N)
observations to find j: X=x; and then the j-th counter is to be
incremented. In special cases, when we have some extra knowledge of
the possible values of X, we may avoid the binary search and use a hash
function or even direct mapping. (E.g.: Let X take the values 0, 10, 20,
... 1000. Then X/10 can be used as the index in the array of counters.)

If we know and store the possible xi values ordered in advance, the
algorithmical complexity of the collection of a sample sized N is
O(N*log(M)) in the general case and for statistics exchange, we need to
transfer only the counters: M*sizeof (int).

However, if we do not know or do not want to store the possible
values of X in advance (perhaps because there are too many of them and
some of them are too rare), we need to build the array of the x values
during the statistics collection. The insertion of a new element may
require to move some elements of the array, the cost of which can be
linear with the array size, so the complexity of the statistics collection is:
O(N*log(M’)+(M’)2), where M’ is the number of the different values of
X in the actual N sized sample. Of course, the possible values of X

(together with the counters) can be stored is a data structure that has a
logarithmical insertion cost, for example AVL-tree, 2-3-tree, B-tree, etc.
In this case we reduce the additional O((M’)?) cost to O(M’*log(M”)).
Anyway, the communication costs will include the transfer of the M’
elements too: M’*sizeof (double).

At the place of the statistics regeneration, the storage requirement
is also M*sizeof (int). The generation of a random number on the
basis of the collected statistics requires O(M) number of “+” operations
if we use the trivial algorithm: Generate a random number R in the [0,
n) interval according to uniform distribution. Then add the ny, ... ng,
...nj values until the sum is greater than R. Return x; as the result. A
more sophisticated algorithm is the following one: calculate and store
the sum(j) values for all possible j (requires M*sizeof (int) storage)
and find the appropriate one by a binary search of O(log(M)) steps.

sum(j)=z/ X,
i=1

Equidistant Histogram

If a random variable has continuous distribution or if it has
discrete distribution but it may take extremely many values, and it is
acceptable, one may use some kind of histogram for statistics collection.

An equal bin width histogram is characterized by its starting point
to, the size (h) and number (M) of its bins. It requires a counter for all
its bins, altogether about M*sizeof (int) storage and
communication. The collection of the statistics is very simple if we use
the algorithm: counter of bin[int ((X-to)/h)]++; the cost
of the collection of N samples is only O(N).

For the generation of a random number on the basis of the
collected statistics, one needs to choose a bin and generate a random
number from that bin according to uniform distribution. The choice of
the bin may be done by the same way and cost as we have seen it in the
case of the statistics regeneration on the basis of the relative frequencies
of the possible values of the random variable.

Note that this approach can only be used if we know a lower and
an upper bound for the distribution. In some practical cases we now
these bounds as “high probability bounds” only, that is, with a small
probability the value of X may exceed these boundaries, in this case it is
common to apply an underflow and/or an overflow bin for counting the
extreme values.

Barron Estimate

Barron estimate (Barron et al. 1992) is a histogram-based density
estimation method. It collects statistics according to the following steps:
Transform the random samples by a fixed distribution function G(x),
that is related somehow to F(x), the distribution function of the random
variable X. Make an equidistant histogram in the [0,1] with A number
of bins of width % from the transformed samples. The calculation of the
approximated density function is in Figure 2.

if xebin; then
o (bin;) h
f) = Se(x) T G(x)

where p(binj) is the
empirical measure
of the j-th bin.
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—

bin; bin;;,

Figure 2. Barron estimate

Note that using g(x;) instead of g(x), where x; is an appropriate
fixed point in the j-th partition a nearly equiprobable bin histogram
estimate can be made if G(x) is close to F(x).

The resource requirements can be derived from that of the
equidistant histogram plus the computational costs of the transformation
of the samples.



Equiprobable Bin Histograms

Knowing the distribution function F(x) one might set up the bin
boundaries so that the bins are equi probable. The collection of the
statistics requires to find the appropriate bin for the samples. This can
be done by a binary search, and the algorithmical complexity of the
collection of a sample sized N is O(N*log(M)), just like in the case of
collecting the relative frequencies of the samples. The storage
requirements include both the storage of the bin boundaries and the
counters M*(sizeof (double)+sizeof (int)). The other
resource requirements are similar to that of the equidistant histogram.

As F(x) is not known, this method will only be used as a reference
for the following one.

Semi-equiprobable Bin Histograms

We set up the bin boundaries so that we gain statistically
equivalent blocks. According to Fn(x) (the empirical distribution
function) the partition is equi probable. In this way the bin boundaries
of the histogram are computed from the collected samples. We expect,
that if the sample size N is large enough, the bin boundaries will be
close to the optimal, and the L, error of the statistics will be close to that
of the above mentioned reference method.

For this method we recommend the following algorithm: Store all
the N observations of X. Then sort the collected samples and draw the
boundaries of the M bins so that the same number of samples fall into
all bins.

The cost of the sort is O(N*log(N)), the storage requirement is
N*sizeof (double) for storing the observations. Theoretically only
the bin boundaries have to be transferred between the segments (about
M*sizeof (double) bytes), because the counter values are the same
for all bins. However, the counters may differ for some reasons: the
number of observations is not an exact multiple of the number of cells or
if we use this method for collecting statistics of a quantized random
variable then there may be equal ones among the observations and they
have to be placed into the same bin. In this case the counters also have
to be transmitted.

Other Possible Density Estimation Methods

The following two methods work without storing the observations:
The P? method (Jain and Imrich 1985) calculates the quantiles of a
density. The K-split method (Varga 1997) maintains the number of
cells (i. e. bins) optimal for the distribution and the number of
observations by doing cell splits.

Other nonparametric estimations are: frequency polygon, aver aged
shifted histogram and the different kernel methods. (Scott 1992)

These methods we do not study.
The Consideration of the Resource Requirements

When selecting the statistics collection method we must take care
for the resource requirements described above not to slow down the

simulation. The estimation of the number of inter-segment messages
per simulation execution time seconds may be necessary. The accuracy
of the estimation methods has primary importance, but it is also
essential to check that the storage, computation and communication
requirements of the algorithms can be satisfied without significant loss
in the speed of the simulation.

THE TYPES OF THE DISTRIBUTIONS IN DES

In many cases random variables in a DES take discrete values. For
example in a network simulation packet length, queue length, number of
active stations etc. take not only discrete but even integer values. On the
other hand the time of events is usually referred as continuous random
variable. Let us introduce the quantized random variables for the
following reasons.

e the resolution of the floating point variables of computers is finite
e asmallest unit of time may exist in the simulated system

e  if the input data of the simulation come from measurements on a
real system, they may be quantized

. in the simulation, there may be mixture distributions (that are a
mixture of discrete and absolutely continuous distributions)

THE ACCURACY OF THE ESTIMATION

As it was mentioned before, the parametric estimation cannot be
used, as the distributions to be estimated are unknown. However, we
can test the different estimation methods for some frequently used
distributions. It gives us an impression of the behaviour of the accuracy
of the method, that help us to choose the method to be used in a
particular simulation.

Exponential Distribution

The exponential distribution occurs many times in simulations as
the distribution of the inter-arrival time of requests. It can be
characterized by its probability density function:

f(x) =A™

The value of the A parameter was chosen to be 1 in the
experiments. What is the best L; error that can be achieved when the
estimation is done by N number of observations with the optimal choice
of the parameters of the studied statistics collection methods?

Equidistant Histogram

Besides the N number of the collected samples the L; error
depends on the parameters of the histogram. The to should be 0.
Simulation experiments were executed with different values for the hn
size and the My number of bins. The N number of samples was chosen
to be 1000 and the experiments were repeated for 1000 times to smooth
the diagram.

Method Computation Storage Communication

relative frequency O(N*log(M)) or M*(sizeof (int) +sizeof (double))or M*sizeof (int) or
O(N*log(M’)+(M’)2) M’*(sizeof (int) +sizeof (double)) M’*(sizeof (int) +sizeof (double))

equidistant histogram | O(N) M*sizeof (int) M*sizeof (int)

Barron estimate O(N) M*sizeof (int) M*sizeof (int)

equiprobable bin O(N*log(M)) M*(sizeof (int) +sizeof (double)) M*(sizeof (int) +sizeof (double))

histogram

semi-equiprobable O(N*log(N)) N*sizeof (double)+ M*sizeof (double) or

bin histogram M*(sizeof (int) +sizeof (double)) M*(sizeof (int) +sizeof (double))

Table 1. The resource requirements of the studied distribution estimation methods.
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Figure 3. L, error of the equiprobable histogram estimation of 1000
samples from exponential distribution in the function of the hy size and
the My number of bins

Figure 3 shows that for a given My number of bins there is an hnopt
optimal value for the bin size. If hx>hnep then the resolution is too
coarse that causes the error to grow as hy increases. If hn<hnop then
the number of observations per bin is too small (there is too much
fluctuation) that causes the error to grow as hy decreases. To optimize
the parameters the value of hy was changed while the value My was
always set so that the range of the histogram be large enough, that is:

07 0

=T

The 7/A range is enough, because in this case the measure of the
tail of the exponential distribution is less than 0.001, which is negligible
compared to the measured values of the L error.

hy 0.13 0.17 0.21 0.25 0.29 0.33 0.37
E(L1) ]0.1393 | 0.1253 | 0.1194 | 0.1166 | 0.1173 | 0.1193 | 0.1242
o(L1) |0.0178 | 0.0164 [ 0.0154 | 0.137 0.0120 | 0.0105 | 0.0100

Table 2. The L, error in the function of the bin size (exponential
distribution, 1000 samples, 1000 experiments)

As it can be seen from table 1, a good choice for hy is 0.25. It also
can be seen that a small change in hn does not cause a significant
change in the L; error. The number of bins (Mn) was chosen to be 20,
because for fewer bins the L; error is significantly worse and for more
bins the L error is not significantly better.

The size and number of bins were determined in the case of some
other number of samples collected. Table 3 shows the results. Note that

Figure 4. Density functions for Barron estimate

The optimal value for M is determined in the usual way, and the
results for the L error are shown in Table 4.

G Gi®) G(x) Gs(x)

N 1000 8000 1000 8000 1000 8000
My 9 20 10 23 5 14
E(L) 0.0865 [ 0.0438 | 0.1028 | 0.0588 | 0.1716 | 0.1402
o(Ly) 0.0141 | 0.0062 | 0.0127 [ 0.0052 | 0.0133 | 0.0053

Table 4. The L, error of the Barron estimate for different G(x) functions
(exponential distribution, optimal bin number)

Barron estimate produced better results with both G 1(x) and G,(x)
than the equidistant histogram. However, if we do not have an
appropriate a priori knowledge of the distribution then this method is
not applicable, G3(x) is a negative example.

Equiprobable Bin Histogram

The [0, 5/A) interval is used for statistics collection and the bin
boundaries are set according to the following: The [0,1) interval is
divided into Mn equal intervals. The boundaries of the intervals are
transformed by the modified inverse distribution function, so that the
last bin boundary fall to 5/A:

. —In(1- xe )
Flay=—""
A

The My number of cells is optimized in the following way: My is
increased until the further increment of M does not have a significant
effect on the L error. Table 5 shows the results for some values of N,
the number of observations.

the range of histogram collection (Mn*hy) is in the order of 5/A. N 500 1000 2000 4000 8000 [ 16000 | 32000
My 9 12 15 19 24 30 40
N 500 1000 2000 4000 8000 16000 | 32000 E(L)) 0.1871 | 0.1495 | 0.1218 [ 0.0989 [ 0.0803 | 0.0656 | 0.0529
My 17 20 24 33 41 56 67 o(L)) 0.0201 | 0.0157 | 0.0105 [ 0.0073 [ 0.0054 | 0.0039 | 0.0028
hy 0.30 0.25 0.20 0.15 0.12 0.10 0.08
E(L1) | 0.1444 [ 0.1166 [ 0.0952 | 0.0765 | 0.0627 | 0.0485 | 0.0402 Table 5. The L; error of the equiprobable bin histogram in the function
o(L1) | 0.0188 [ 0.0136 [ 0.0090 | 0.0067 | 0.0049 | 0.0035 | 0.0025 of the number of observations (exponential distr., optimal bin number)

Table 3. The L, error of the equidistant histogram in the function of the
no. of observations (exponential distribution, optimal bin no. and size)

Barron Estimate

Of course, if G(x)=F(x) is chosen, then with Mn=1 cell the method
produces zero L; error, so we must take care to be honest with the
choice of the G(x) function. Let us consider the following three
examples:

2
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The first one is also an exponential distribution, but with A/2
parameter, the second and third ones are linear approximations
concerning the density function. (See Figure 4.)

The idea of the equiprobable histogram gave the hope of a good
solution for the bins with too few observations and therefore much
uncertainty and error, but our results show that the value of the L error
is higher for the equiprobable bin histogram than for the equidistant
histogram. This is quite surprising and unexpected. To check our
simulation results, let us compare the L; error of the ideal equidistant
and equiprobable bin histograms. Here, “ideal” means that the
histograms are constructed on the basis of the probability density
function of the exponential distribution instead of on the basis of finite
number of observations. The histograms are constructed for the [0, 5/1)
range, the L; error contains the e 3~0.0067 error caused by the loss of
the [5/A, o) tail of the distribution. Table 6 shows the results, that
justify the intuition: the equiprobable bin histogram has less L error,
but the difference becomes less and less as the number of bins (M)
increases.



M 2 4 8 16 32 64 N 500 1000 2000 4000 8000 | 16000 [ 32000
L, of EqD 0.5801 0.3106 | 0.1611 0.0842 | 0.0455 [ 0.0261 My 13 15 19 24 28 37 45
L, of EqP 0.5282 | 0.2846 | 0.1523 0.0818 | 0.0450 [ 0.0260 E(L)) 0.1012 | 0.0839 | 0.0678 | 0.0551 | 0.0459 | 0.0369 | 0.0308

o(Ly) 0.0174 | 0.0122 | 0.0085 | 0.0060 | 0.0042 | 0.0031 | 0.0022

Table 6. The computed L; error of the ideal equidistant (EqD) and
equiprobable bin (EqP) histograms in the function of the number of bins
(M) in the case of exponential distribution.

The results of the simulation experiments for the same number of
bins and for N=8000 number of observations are shown in Table 7. The
experiments were executed 1000 times; average and standard deviation
were calculated. Results show that in the case of the histograms that are
built upon finite number of observations, the equiprobable bin
histogram produces better results than the equidistant one for very little
number of bins only and for larger number of bins the equidistant one
performs better. The question “why” we leave open for mathematicians.

Table 9. The L; error of the equidistant histogram in the function of the
number of observations (gamma distribution, optimal bin number)

Semi-equiprobable Bin Histogram

The optimal bin number (M) was determined for all the values of
N used. Table 9 shows the results. Comparing them with the results of
the equidistant one, we can see that the equidistant one produces about
20-25% less L; error. If the range of the possible values is not known in
advance and storage allows, it may be worth storing the observations.
Then we can set up the range of the histogram on the basis of the
observations, collect the equidistant histogram and send it to the
appropriate segment. There is no justification to use the semi-

Table 7. The L, error of the equidistant (EqD) and equiprobable bin

(EqP) histograms in the function of the number of bins (M) built by

collecting N=8000 observations and repeating the experiments 1000
times in the case of exponential distribution.

Semi-equiprobable Bin Histogram

The number of bin used were not optimised but they were taken
from the equiprobable bin histogram. The results for some values of N
are shown in Table 8. This method gives approximately the same L
error as the “more perfect” equiprobable bin histogram. (Of course the
L, error is not less, see the value of standard deviation!)

N 500 1000 2000 4000 8000 | 16000 [ 32000
My 9 12 15 19 24 30 40
E(L)) 0.1845 [ 0.1482 [ 0.1227 | 0.1019 | 0.0853 | 0.0716 | 0.0588
o(Ly) 0.0216 [ 0.0164 | 0.0113 | 0.0083 | 0.0059 | 0.0042 | 0.0030

Table 8. The L error of the semi-equiprobable bin histogram in the
function of the number of observations (exponential distribution, bin
numbers are equal with that of the equiprobable bin histogram)

Gamma Distribution

The sum of n number of exponential distributions with parameter
A is a gamma distribution with parameters (n, 4). Its probability density
function is:

D A" n=1 —Ax
%_—1)')( e, x>0
fam=0"""
0, x<0

For our experiments, let us choose n=4 and A=1 The random
numbers of the gamma distribution are generated according to the
definition: the sum of n=4 random numbers of exponential distribution
with A=1 parameter. To avoid the two dimensional optimisation, the
range of the statistics collection is the [0, 11) interval omitting the [11,
o0) tail of the distribution, the measure of which is less than 0.005.

Equidistant Histogram

The optimal bin number (M) was determined for all the values of
N used. The bin size is hy = Mn/11. The experiments were repeated
1000 times. Table 9 shows the results.

Because of space limitations we have to omit the Barron estimate
and the equiprobable bin histogram. They are not the methods of choice
in the practical case as we do not know the distributions to be estimated.

M 2 4 8 16 32 64 equiprobable bin histogram.

L,of EgD | 0.5802 | 03109 [ 0.1625 | 0.0898 | 0.0634 | 0.0676

o(Ly) 0.0002 | 0.0003 | 0.0008 | 0.0019 [ 0.0042 | 0.0062 N 500 | 1000 | 2000 | 4000 [ 8000 [ 16000 [ 32000

L, of EqP 0.5283 | 0.2853 | 0.1557 | 0.0948 [ 0.0769 | 0.0841 My 12 16 20 23 28 37 45

o(Ly) 0.0014 | 0.0013 [ 0.0022 [ 0.0043 | 0.0060 [ 0.0063 E(L,) [ 0.1279 | 0.1060 | 0.0888 [ 0.0758 | 0.0649 | 0.0535 [ 0.0449
o(L,) | 0.0221 | 0.0168 | 0.0098 [ 0.0080 | 0.0053 | 0.0039 [ 0.0030

Table 10. The L; error of the semi-equiprobable histogram in the
function of the number of observations (gamma distribution, optimal bin
number)

Packet Length Distribution in an FDDI Backbone

To examine a practical case, let us consider the distribution of the
length of the packets in a physically existing network. The selected
network is the FDDI backbone of the Technical University of Budapest.

The data were acquired from the so-called Northern Ring by a
protocol analyser (Lencse 1997). Figure 5 shows a rough overview of
the distribution. This is a discrete distribution of integer values in the
range [61-1521], the number of the possible values is 1461.

frequency
of packets
30000

25000 [

20000 |

15000 [

10000 |

5000 [

. i I |

0 length
0 500 1000 1500 2000

Figure 5. The distribution of the packet length in an FDDI backbone.
(The column at length=67 is truncated, its height is about 130000.)

As we do not know the distribution itself, the relative frequencies
of the values in the N=500..32000 size samples are compared to the
relative frequencies of the values in the whole sample (500000
observations). The N sized samples are chosen randomly. Table 11
shows the results.

N 500 1000 2000 4000 8000 | 16000 { 32000
E(L)) 0.3874 | 0.2978 | 0.2242 | 0.1691 | 0.1246 | 0.0904 | 0.0654
o(L)) 0.0230 | 0.0189 | 0.0137 | 0.0093 | 0.0062 | 0.0048 | 0.0026

Table 11. The L; error of the relative frequency estimation (packet
length distribution in an FDDI backbone)

In the case of this distribution, the value of the L error is quite
high for the smaller values of N, but the convergence speed in nearly
c1/NY2. This is faster than the convergence speed experienced in the
case of the other distributions that produce the rate of ¢o/N"3, which is
the guaranteed one for histograms.



Inter-Arrival Time Distribution in an FDDI Backbone

The inter arrival time of the packets in the before mentioned
network was also observed. Unfortunately, the protocol analyser
recorded the time data with 0.00001s accuracy only. As FDDI is a
100Mbit/s network, this 10us is the time of 1000 bits. In this way the
inter-arrival time is a quantized random variable, so we use relative
frequency estimation.

12000

10000

8000

6000

4000

2000

Il i
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Figure 6. The distribution of the inter-arrival time ("delay", measured in
seconds) in an FDDI backbone

Figure 6 shows an empirical picture of a part the distribution only,
the distribution is not limited to the [0, 0.006] interval. The envelope of
the distribution reminds us the exponential distribution. The range of
the statistics collection is [0, 0.01] and the measure of the omitted tail is
0.012, which is a significant part of the L; error for the samples of size
greater than 2000. Results are shown in Table 12.

N 500 1000 2000 4000 8000 | 16000 [ 32000
E(L)) 0.1911 [ 0.1478 | 0.1160 | 0.0918 | 0.0702 | 0.0552 | 0.0438
o(Ly) 0.0243 [ 0.0171 | 0.0113 | 0.0084 | 0.0061 | 0.0049 | 0.0034

Table 12. The L error of the relative frequency estimation (packet
length distribution in an FDDI backbone)

CONCLUSION

A number of statistics collection methods were compared and
applied in the case of different distributions in order to determine what
estimation methods should be used for statistics collection for the
Statistical Synchrinisation Method. Both their resource requirements
and accuracy were examined. Their resource requirements must be
taken into consideration, not to slow down the simulation, but their
accuracy is even more important to safeguard the accuracy of the
simulation results.

The L; error criteria was chosen for measuring the error of the
estimation methods.

Barron estimate may produce the smallest L error among all the
distribution estimation methods, but it requires an a-priori information
of the distribution that is not available in the general case so the method
cannot be used in general.

Theoretically, the equiprobable bin histogram should produce less
L, error than the equidistant one, and it is also the experience in the case
when very small number of bins are used, but if there are enough bins,
the equidistant histogram is better. For continuous distributions, the
equidistant histogram is the method of choice.

The relative frequency method produced acceptable results for the
examined real life discrete or quantized distributions.
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