PERFORMANCE OF FUTURE EVENT SET IMPLEMENTATIONS

G. LENCSE

DEPARTMENT OF TELECOMMUNICATIONS
TECHNICAL UNIVERSITY OF BUDAPEST
E-MAIL: GABOR.LENCSE@HIT.BME.HU

Seven data structures were examined with simulation and
compared to find out which one should be used to implement
the Future Event Set of an event driven discrete event
simulator. The number of key comparisons and pointer
references as well as the CPU time were measured. The effect
of the different CPU architectures was examined. Various
parameter settings were used to determine the characteristics
of the studied event set implementations.

1. INTRODUCTION

In an event-driven discrete event simulator the events (the state
changes of the system) are stored in the Future Event Set (FES).
The data structure and the algorithms used for storing the
elements of the FES influence the speed of the simulator to a
great extent.

The most common data structures have already been studied and
their general performance characteristics have been determined.
Most investigations assume that the keys are random (with
uniform distribution), the number of search operations is much
higher than the number of insertions or deletions and the element
to be searched or deleted is also randomly chosen. Nevertheless,
in the case of the FES, the keys are not uniformly distributed, but
show a rising tendency; in the vast majority of cases, the first
element is deleted and a new one is inserted. ~Sometimes
randomly chosen elements are deleted, but no other search
operations are used.

Reeves [1] examined variants of lists and heaps, but the different
kinds of tree structures and the skip list [2] required further study.

The examined data structures were: ordered single-linked list,
binary tree, AVL-tree, B-tree, 2-3-tree, heap and skip list.

2. THE INVESTIGATION

The behavior of a discrete-event simulator (from the viewpoint of
the Future Event Set) was simulated in the following way: new
events were inserted into the FES, then the first event (the one
with the smallest time stamp) was taken out or a randomly chosen
event was deleted. This procedure was repeated many times and
the time stamp of the new event was the sum of the time stamp of
the most recently removed "first" event and a random delay
computed according to different distributions. The parameters
were: the number of the events in the FES, the state of the FES
(transient or steady), the proportion of the randomly deleted
events and the distribution of the delay (exponential, uniform,
and two normal distributions with different deviations).

1500

1300

time 1100
[ms]

900

700

500 -
10 21 46

100 215 464
Number of events in the FES

1000

EEREERER

Fig. 1. Execution time of 1000 simulation steps, i486 DLC proc.

To determine the performance characteristics of the studied event
set algorithms, the number of key comparisons and of pointer
references as well as the CPU time were measured. By changing
the parameters of the simulation model orthogonally, simulations
were run with all possible parameter combinations. The

simulation was performed on the following processors: Intel
486DLC, Intel 486DX, DEC ALPHA.

3. RESULTS

By examining the number of key comparisons, it was found that
the balanced trees and heap produce the lowest values among all
the data structures. For this reason, if we use a processor where
the CPU time of the event set operations is dominated by the key
comparisons (that is, floating point operations are not supported
by hardware), balanced trees and heap are the best choice. Binary
tree produced good performance characteristics in the case of
exponential distribution, though in the case of other distributions
binary tree showed worse results. (Fig. 1. b=best, w=worst case)

On the other hand, skip list produced much better time
characteristics than the balanced trees when advanced hardware
floating point processing was used. (Fig. 2.)

——List(w) -—#List(b) —4—2-3-tree
—— AVL-tree —— B-tree —e—Bin.t. (w)
— Bin.t. (b) — SkipList

—— Heap

10 21 46

100 215 464
Number of events in the FES
Fig. 2. Execution time of 10000 simulation steps, DEC ALPHA proc.

1000 2154 4641

With strong floating point support, it is worth using skip list
rather than balanced trees, especially because its algorithms are
even simpler than that of the balanced trees.

4. CONCLUSION

We concluded that both the processor type and the distribution of
the delay of the new events influence which data structure
produces the best time properties. Though balanced trees proved
to be quite good, heap and especially skip list was found to be
significantly better on modern processor architectures.

REFERENCES

[1] Reeves, C. M. 1984. "Complexity Analyses of Event Set
Algorithms" The computer journal 27.no. 1, 72-79

[2] Pugh, V. 1990. "Skip Lists: A Probabilistic Alternative to
Balanced Trees" Commun. of the ACM 33, no. 6, 668-676



10 21 46

100 215 464 1000

Number of events in the FES

—e— List (w)
—=— List (b)
—— Bin.t. (w)
—<— Skip List
—*— AVL-tree
—e— Heap

—— 2-3-tree
—— B-tree
—— Bin.t. (b)

Fig. 1. Execution time of 1000 simulation steps, 1486 DLC proc.

—e— List (w)

—— Heap

—=—List (b) ——2-3-tree

—*— AVL-tree —*— B-tree —o— Bin.t. (w)

—— Bin.t. (b) —— SkipList

400 1
300 1
time
[ms] 200 1

100 &

Number of events in the FES
Fig. 2. Execution time of 10000 simulation steps, DEC ALPHA proc.

Fig. 1. and Fig. 2. in doubled size for the article:
Gabor Lencse: PERFORMANCE OF FUTURE EVENT SET IMPLEMENTATIONS

10 21 46 100 215 464 1000 2154 4641




1500

1300

time 1100
[ms]

900

700

500 -
10

21 46 100 215 464
Number of events in the FES

1000

—e—List (w)
—=—List (b)
——Bin.t. (w)
—%— Skip List
—*— AVL-tree
—e— Heap
——2-3-tree
—— B-tree
——Bin.t. (b)

Fig. 1. Execution time of 1000 simulation steps, i486 DLC proc.




